JP3089428B2 - Method for producing insulating high magnetic permeability alloy - Google Patents

Method for producing insulating high magnetic permeability alloy

Info

Publication number
JP3089428B2
JP3089428B2 JP02297211A JP29721190A JP3089428B2 JP 3089428 B2 JP3089428 B2 JP 3089428B2 JP 02297211 A JP02297211 A JP 02297211A JP 29721190 A JP29721190 A JP 29721190A JP 3089428 B2 JP3089428 B2 JP 3089428B2
Authority
JP
Japan
Prior art keywords
magnetic permeability
titanium
permeability alloy
high magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02297211A
Other languages
Japanese (ja)
Other versions
JPH04173996A (en
Inventor
浩 百谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP02297211A priority Critical patent/JP3089428B2/en
Publication of JPH04173996A publication Critical patent/JPH04173996A/en
Application granted granted Critical
Publication of JP3089428B2 publication Critical patent/JP3089428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は,高透磁率合金を変圧器などの鉄心として高
周波交流で使用する際の絶縁を施された高透磁率合金の
製造方法に関する。
The present invention relates to a method for producing an insulated high-permeability alloy when a high-permeability alloy is used as an iron core of a transformer or the like with high-frequency alternating current.

(従来の技術) 高透磁率合金を変圧器などの鉄心として高周波交流で
使用する際,渦電流損失を減じ,実効透磁率の低下を防
ぐ目的から,合金を薄板とし,その層間を絶縁する必要
がある。
(Prior art) When high permeability alloys are used as high frequency alternating current as iron cores for transformers, etc., it is necessary to make the alloy thin and to insulate the layers between them in order to reduce eddy current loss and prevent reduction in effective permeability. There is.

高透磁率合金の絶縁法として,例えば,筆塗り,ある
いは電気泳動法などにより合金板上にMgO膜を作り,水
素気流中で焼鈍して高透磁率性を与え,次にラッカーな
どで層間絶縁を施す。巻鉄心の如く,焼鈍後そのまま巻
線し鉄心とする場合は,焼鈍時の粘着防止に用いたMgO
膜が鉄心の層間絶縁を兼ねるが,焼鈍後鉄心の重み重ね
を行う打抜鉄心の場合は,さらに有機絶縁体の塗布,あ
るいは酸化絶縁を施している。
As an insulating method for high permeability alloys, for example, an MgO film is formed on an alloy plate by brush painting or electrophoresis, and then annealed in a hydrogen stream to give high permeability, and then interlayer insulation using lacquer or the like Is applied. If the core is to be wound directly after annealing as in the case of a wound core, use MgO to prevent adhesion during annealing.
Although the film also serves as interlayer insulation of the iron core, in the case of a punched iron core in which iron cores are weighted after annealing, an organic insulator is applied or oxidized.

(発明が解決しようとする課題) これら従来法において,筆塗りや電気泳動法などによ
るMgO皮膜の作成,および有機絶縁体の塗布等において
は,その塗布膜が厚い(したがって,極めて薄い塗布膜
の実現が困難なため,鉄心の占積率が悪い)という欠点
を有している。
(Problems to be Solved by the Invention) In these conventional methods, when an MgO film is formed by brush painting or electrophoresis, or when an organic insulator is applied, the applied film is thick (thus, an extremely thin coated film is required). It is difficult to realize, so the space factor of the iron core is poor).

また,高透磁率合金に酸化絶縁を施したとしても,透
磁率が極めて高くなると酸化歪により透磁率の劣化が現
われ,使用に限度があるという欠点を有する。
Further, even if a high magnetic permeability alloy is subjected to oxide insulation, if the magnetic permeability is extremely high, the magnetic permeability deteriorates due to oxidative strain, and there is a drawback that the use is limited.

そこで,本発明の技術的課題は,簡便な方法で,絶縁
材料として可能な薄い酸化物皮膜を有する高透磁率合金
の製造方法を提供することにある。
Therefore, a technical problem of the present invention is to provide a method for manufacturing a high-permeability alloy having a thin oxide film that can be used as an insulating material by a simple method.

(課題を解決するための手段) 本発明者は,チタンの電解析出によって得られる酸化
チタン薄膜は,ち密で密着性もよく,耐熱,および絶縁
性も優れているので,高透磁率合金の絶縁には極めて適
当であると考えた。
(Means for Solving the Problems) The present inventor has reported that the titanium oxide thin film obtained by electrolytic deposition of titanium is dense, has good adhesion, and has excellent heat resistance and insulation properties. Deemed very suitable for insulation.

更に,チタンは水溶液を溶媒とする水溶液電解法では
電析し難く,良好な結果が得られていないため,本発明
者は,めっき液の溶媒に有機溶媒を使用した有機電解め
っき法によるチタンの電解析出法によって得られる酸化
チタンによる高透磁率合金の絶縁法を考えたものであ
る。
Furthermore, titanium is difficult to electrodeposit in an aqueous solution electrolysis method using an aqueous solution as a solvent, and good results have not been obtained. Therefore, the present inventor has proposed that titanium is prepared by an organic electroplating method using an organic solvent as a solvent for the plating solution. An insulating method of a high magnetic permeability alloy using titanium oxide obtained by an electrolytic deposition method is considered.

本発明によれば、チタン金属塩とこれを可溶化する有
機溶媒とを含むめっき液から、電解析出法により、高透
磁率合金からなる基板に酸化チタン皮膜を形成すること
を特徴とする絶縁性高透磁率合金の製造方法が得られ
る。
According to the present invention, there is provided an insulating method characterized by forming a titanium oxide film on a substrate made of a high magnetic permeability alloy from a plating solution containing a titanium metal salt and an organic solvent for solubilizing the same by an electrolytic deposition method. And a method for producing a conductive high magnetic permeability alloy.

ここで,本発明において使用されるチタン金属塩とし
ては,TiCl3,TiCl4,K2TiF6,(NH42TiF6などの塩類を用
いることができる。
Here, as the titanium metal salt used in the present invention, salts such as TiCl 3 , TiCl 4 , K 2 TiF 6 and (NH 4 ) 2 TiF 6 can be used.

しかし,一般に金属を非水溶媒系のめっき浴から電析
させる場合には,水分の混入は好ましくなく,またチタ
ンはその電子配置からd軌道の電子の不足度が高いの
で,酸素の電子と共有結合してオキシアニンになりやす
く,この酸素の電子をd軌道から取り去るのが難しい。
したがって,電解浴中には酸素を完全に除去した状態で
電解を行うことが好ましいため,チタン金属塩は,無水
の化合物を使用するのが好ましい。上記のチタン金属塩
は,比較的その無水物を得やすいため使用することがで
きる。
However, in general, when a metal is deposited from a non-aqueous solvent-based plating bath, it is not preferable to mix water, and titanium has a high degree of d-orbital electron deficiency due to its electron configuration. It easily bonds to oxyanine, and it is difficult to remove this oxygen electron from the d orbit.
Therefore, it is preferable to perform electrolysis in a state where oxygen is completely removed from the electrolytic bath, and therefore, it is preferable to use an anhydrous compound as the titanium metal salt. The above titanium metal salt can be used because it is relatively easy to obtain its anhydride.

本発明において,前述のチタン金属塩を溶解する有機
溶媒としては,誘電率の高い有機溶媒を使用するのが好
ましい。有機溶媒の誘電率が高い溶媒の使用が適してい
る理由としては 1)各種チタンの金属塩の溶解度が高い 2)高電流密度での電解が可能 であるからである。
In the present invention, an organic solvent having a high dielectric constant is preferably used as the organic solvent for dissolving the titanium metal salt. The reason why the use of a solvent having a high dielectric constant of an organic solvent is suitable is that 1) the solubility of various metal salts of titanium is high and 2) electrolysis at a high current density is possible.

また,このようなチタンの電解析出法によって得られ
る酸化チタンは,電解析出されるチタンが非常に微細で
あるため,常温空気中で容易に酸化チタンとなりうる。
更に,高温加熱により,その密着性を向上させることが
可能である。
In addition, titanium oxide obtained by such an electrolytic deposition method of titanium can easily become titanium oxide in room temperature air because the titanium to be electrolytically deposited is very fine.
Furthermore, it is possible to improve the adhesion by heating at a high temperature.

このような本発明のめっき法を利用すれば,水溶液電
解めっき不可能であったチタンをめっき法により容易に
電析でき,その電解析出法によって得られた酸化チタン
を高透磁率合金表面に得ることによって,高透磁率合金
の絶縁が可能である。
By using such a plating method of the present invention, titanium which could not be electrolytically plated in an aqueous solution can be easily deposited by a plating method, and the titanium oxide obtained by the electrolytic deposition method can be deposited on the surface of a high permeability alloy. By obtaining, it is possible to insulate a high magnetic permeability alloy.

(実施例) 以下,本発明の実施例について説明する。(Example) Hereinafter, an example of the present invention will be described.

チタン金属塩としてTiCl3,TiCl4,K2TiF6,(NH42TiF
6のいずれも無水物を用い,有機溶媒としてホルムアミ
ド,アセトアミド,ジメチルホルムアミドを窒素下減圧
蒸留して精製したものを用いた。
TiCl 3 , TiCl 4 , K 2 TiF 6 , (NH 4 ) 2 TiF as titanium metal salt
In each case, an anhydride was used, and formamide, acetamide, and dimethylformamide were purified by distillation under reduced pressure under nitrogen as an organic solvent.

これらの化合物を第1表に示すように所定量混合し,
めっき浴とした。また,電解容器は密閉式のものを用い
た。
These compounds are mixed in predetermined amounts as shown in Table 1,
A plating bath was used. In addition, a closed type electrolytic vessel was used.

陽極には白金板を使用し,陰極には試料としてMoパー
マロイ,および強圧延磁気異方性50%Niパーマロイを選
んだ。Moパーマロイは打抜き後清浄して第1表記載の電
解液中でチタンの電解析出を行い,常温で乾燥して酸化
チタン薄膜となし,次に水素中で1050℃で3hr磁気焼鈍
を行った。50%Niパーマロイは酸化チタン薄膜生成後巻
鉄心に成形し,水素中で1050℃で焼鈍し,そのまま巻銅
線を施した。
A platinum plate was used for the anode, and Mo permalloy and 50% Ni with strong magnetic anisotropy were selected for the cathode. The Mo permalloy was cleaned after punching, subjected to electrolytic deposition of titanium in the electrolyte described in Table 1, dried at room temperature to form a titanium oxide thin film, and then subjected to magnetic annealing in hydrogen at 1050 ° C. for 3 hours. . 50% Ni permalloy was formed into a wound iron core after forming a titanium oxide thin film, annealed at 1050 ° C in hydrogen, and the wound copper wire was applied as it was.

第2表に,各周波数におけるインダクタンスの値を示
す。表において,第3欄の「54枚インダクタンス」と記
してあるのは焼鈍後黒ラッカーの吹き付け塗装によって
層間絶縁を施したもので,占積率が悪く,54枚しか打抜
板を積み重ね得なかった。比較のため,61枚積み重ねた
場合の値に換算したインダクタンス値を第4欄に「61枚
換算インダクタンス」と示した。表より実用打抜鉄心に
おいては透磁率の差異は認められず,酸化チタン絶縁の
ものは占積率がより高く,従って高いインダクタンスを
得ることができた。
Table 2 shows the value of the inductance at each frequency. In the table, column 54, "54 sheet inductance" is the result of interlayer insulation applied by spray coating with black lacquer after annealing, the space factor is poor, and only 54 sheets can be stacked. Was. For comparison, the inductance value converted to the value when 61 sheets are stacked is shown as “61 sheet converted inductance” in the fourth column. From the table, no difference in magnetic permeability was recognized in the practically punched iron core, and the titanium oxide insulated core had a higher space factor, and thus a higher inductance could be obtained.

(発明の効果) 以上,説明したように本発明によれば,チタンの電解
析出によって得られる酸化チタン皮膜による絶縁は,従
来の絶縁法に比べて,薄い絶縁性薄膜の生成が可能で,
占積率の向上,および皮膜の生成法の簡便化が図れる高
透磁率合金の製造方法を提供することができる。
(Effects of the Invention) As described above, according to the present invention, insulation with a titanium oxide film obtained by electrolytic deposition of titanium can produce a thin insulating thin film as compared with the conventional insulation method.
It is possible to provide a method for producing a high magnetic permeability alloy that can improve the space factor and simplify the method of forming a film.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C25D 9/08 C25D 7/00,3/54 H01F 1/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C25D 9/08 C25D 7/00, 3/54 H01F 1/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】チタン金属塩とこれを可溶化する有機溶媒
とを含むめっき液から、電解析出法により、高透磁率合
金からなる基板に酸化チタン皮膜を形成することを特徴
とする絶縁性高透磁率合金の製造方法。
1. An insulating material, comprising: forming a titanium oxide film on a substrate made of a high magnetic permeability alloy from a plating solution containing a titanium metal salt and an organic solvent for solubilizing the same by an electrolytic deposition method. Manufacturing method of high permeability alloy.
JP02297211A 1990-11-05 1990-11-05 Method for producing insulating high magnetic permeability alloy Expired - Fee Related JP3089428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02297211A JP3089428B2 (en) 1990-11-05 1990-11-05 Method for producing insulating high magnetic permeability alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02297211A JP3089428B2 (en) 1990-11-05 1990-11-05 Method for producing insulating high magnetic permeability alloy

Publications (2)

Publication Number Publication Date
JPH04173996A JPH04173996A (en) 1992-06-22
JP3089428B2 true JP3089428B2 (en) 2000-09-18

Family

ID=17843621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02297211A Expired - Fee Related JP3089428B2 (en) 1990-11-05 1990-11-05 Method for producing insulating high magnetic permeability alloy

Country Status (1)

Country Link
JP (1) JP3089428B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231516A (en) * 2007-03-20 2008-10-02 Toyota Motor Corp Metal oxide thin film, capacitor, hydrogen separation membrane-electrolyte membrane joined body and method for manufacturing fuel cell
JP6802255B2 (en) * 2016-03-18 2020-12-16 住友電気工業株式会社 Conductive material and its manufacturing method

Also Published As

Publication number Publication date
JPH04173996A (en) 1992-06-22

Similar Documents

Publication Publication Date Title
EP0591198B1 (en) Method for coating a dielectric ceramic piece
CA2270390A1 (en) Anode, process for anodizing, anodized wire and electric device comprising such anodized wire
US4208254A (en) Method of plating an iron-cobalt alloy on a substrate
JP3089428B2 (en) Method for producing insulating high magnetic permeability alloy
JPH052940A (en) Material for electric contact and manufacture the same
US2803570A (en) Method of making magnetic core layers
EP0690035A1 (en) Metallization of ferrites comprising surface reduction
US5078844A (en) Method for forming tough, electrical insulating layer on surface of copper material
JP2004111072A (en) Flat angular ferromagnetic conductor and its manufacturing method, enamel-coated flat angular ferromagnetic wire, self-fusible enamel-coated flat angular ferromagnetic wire and ferromagnetic flat cable using the conductor
JP2003073883A (en) Electrodeposited iron film for high-frequency, insulated wire for high-frequency coil, and manufacturing method for these
JP3431238B2 (en) Soft magnetic plating thin film and manufacturing method thereof
JP3920428B2 (en) Plating film and manufacturing method thereof
JPS63283004A (en) Flat surface inductor and manufacture thereof
JPH05190314A (en) Inductor
JPH06132128A (en) Amorphous soft magnetic lamination film
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPH0388215A (en) Inorganic insulator
JPS6320919B2 (en)
SU731479A1 (en) High-frequency choke
JP2002231060A (en) Magnetic wire
JPH0722078B2 (en) Manufacturing method of solid electrolytic capacitor
JPH0199454A (en) Manufacture of sheet coil
JP3480339B2 (en) Composite material for electromagnetic induction heating and method for producing the same
JPH05190358A (en) Inductor
KR20020087290A (en) A Ni-Fe ALLOY COATING STEEL SHEET FOR SHEILDING ELECTROMAGNETIC WAVE AND A MANUFACTURING METHOD THEREFOR

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees