JPH06132128A - Amorphous soft magnetic lamination film - Google Patents

Amorphous soft magnetic lamination film

Info

Publication number
JPH06132128A
JPH06132128A JP28304092A JP28304092A JPH06132128A JP H06132128 A JPH06132128 A JP H06132128A JP 28304092 A JP28304092 A JP 28304092A JP 28304092 A JP28304092 A JP 28304092A JP H06132128 A JPH06132128 A JP H06132128A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic
film
amorphous
amorphous soft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28304092A
Other languages
Japanese (ja)
Inventor
Masaharu Oda
雅春 小田
Yoshihiro Sako
佳弘 佐古
Kenji Kushi
憲治 串
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP28304092A priority Critical patent/JPH06132128A/en
Publication of JPH06132128A publication Critical patent/JPH06132128A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3204Exchange coupling of amorphous multilayers

Abstract

PURPOSE:To realize an amorphous soft magnetic lamination film of good high- frequency magnetic characteristics and handling property by laminating a plurality of amorphous soft magnetic layers formed by electrolysis or nonelectrolysis and oxide layers formed by electrolysis oxidation method alternately. CONSTITUTION:Water solution containing each element of ferrous chloride, cobalt sulfate, boric acid and phosphorous acid is used as electrolyte, a stainless steel is used as an electrode, and electrolytic deposition is performed. A deposit layer 1 has a film thickness of several mum and amorphous property is recognized through measurement of X-ray diffraction. Then, anode oxidation is carried out with H2SO4 solution on Ag/AgCl basis, and an oxide insulation layer 2 whose surface color is changed to thin dark brown is formed. After the operation is repeated six times, the deposited layers are peeled off from an electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質軟磁性積層膜に
関する。本発明は、特に、各種の電子機器や産業機器に
用いられる磁性部品に使用され、優れた特性を発揮する
軟磁性材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous soft magnetic laminated film. The present invention particularly relates to a soft magnetic material that is used for magnetic parts used in various electronic devices and industrial devices and exhibits excellent properties.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの技術革新は目
覚しく、特に電子機器の小型化、軽量化および高密度化
は技術の中心課題になっている。電子機器の小型化にお
いては、インダクター素子の改善が一つの要素である。
例えば、磁気増幅器を利用したスイッチング電源では、
スイッチング周波数の高周波化によって飛躍的に電源を
小型化できることが予想される。そして、高周波化によ
ってインダクター素子を構成する磁性材料は、これまで
以上に高周波特性に優れたものであることが必要とされ
ている。
2. Description of the Related Art In recent years, technological innovation in electronics has been remarkable, and miniaturization, weight reduction and high density of electronic devices have become a central issue in the technology. In miniaturization of electronic equipment, improvement of the inductor element is one of the factors.
For example, in a switching power supply using a magnetic amplifier,
It is expected that the power supply can be dramatically reduced in size by increasing the switching frequency. Further, it is required that the magnetic material that constitutes the inductor element with higher frequency has better high frequency characteristics than ever.

【0003】高周波特性に優れた磁性材料を得るために
は、磁気損失を極力小さなものにする必要がある。高周
波に於ける磁気損失は、主に渦電流損失で支配され、下
記式によって表される。
In order to obtain a magnetic material having excellent high frequency characteristics, it is necessary to minimize the magnetic loss. The magnetic loss at high frequency is mainly controlled by the eddy current loss and is represented by the following equation.

【0004】[0004]

【数1】 [Equation 1]

【0005】この式から明らかな通り、材料の電気抵抗
率が高く、厚さが薄い程、磁気損失が小さいことがわか
る。現在、高周波特性に最も優れる材料の一つとして、
フェライトが挙げられる。フェライトの場合は、絶縁性
であることから、渦電流が小さく、高周波での特性がよ
い。しかしながら、軟磁気特性である飽和磁束密度、透
磁率などは、高いレベルにはなく、むしろ他の材料に劣
る点が多い。最近、急速冷却法による非晶質合金の製造
法が開発され、軟磁性材料として優れたものが得られて
いる。かかる材料は、比較的電気抵抗率も高く、諸特性
も良いことから、現在インダクター素子などの磁性部品
として多く用いられている。急速冷却法による非晶質合
金の製造法は、溶融金属を冷却した回転ロールに導き、
105 〜106 deg/sで急冷することにより、結晶
化のための時間を与えずに固化させ、非晶質合金を形成
することからなる。しかし、急冷法によって作製される
非晶質合金は、現在、その製法上厚さが数10μm以上
のものに限られている。これは、溶融金属が冷却ロール
に接触する際に表面に凹凸が生じ、薄膜化することが困
難なためである。(1)式からわかる通り、厚さをより
薄くすることが特性の良い材料を得る効果的な手段であ
るが、上記急冷法では限界がある。
As is clear from this equation, it is understood that the higher the electrical resistivity of the material and the thinner the material, the smaller the magnetic loss. At present, as one of the materials with the highest high frequency characteristics,
Examples include ferrite. In the case of ferrite, since it is insulating, it has a small eddy current and good characteristics at high frequencies. However, the soft magnetic characteristics, such as saturation magnetic flux density and magnetic permeability, are not at a high level, and are rather inferior to other materials. Recently, a method for producing an amorphous alloy by a rapid cooling method has been developed, and an excellent soft magnetic material has been obtained. Since such a material has a relatively high electric resistivity and various characteristics, it is now widely used as a magnetic component such as an inductor element. The method of producing an amorphous alloy by the rapid cooling method is to guide the molten metal to a cooled rotating roll,
Quenching at 10 5 to 10 6 deg / s solidifies without giving time for crystallization to form an amorphous alloy. However, the amorphous alloy produced by the quenching method is currently limited to a thickness of several tens of μm or more due to the production method. This is because when the molten metal comes into contact with the cooling roll, unevenness occurs on the surface and it is difficult to form a thin film. As can be seen from the equation (1), making the thickness thinner is an effective means for obtaining a material with good characteristics, but the quenching method has its limits.

【0006】一方、薄膜の非晶質合金を製造する方法と
して、スパッタリング法、真空蒸着法およびイオンプレ
ーティング法などが検討されている。しかしながら、こ
れらの方法は、析出速度が遅く、生産性が悪い上、特殊
な装置が必要であり、設備投資も大きなものとなる。従
って、より安価に大量生産したい場合には、あまり適当
ではない。
On the other hand, as a method for producing a thin film amorphous alloy, a sputtering method, a vacuum vapor deposition method, an ion plating method and the like have been studied. However, these methods have a slow deposition rate, are poor in productivity, require special equipment, and require a large capital investment. Therefore, it is not suitable for mass production at a lower cost.

【0007】他方、電解めっきおよび無電解めっきを用
いた非晶質合金の製造法も、検討されている(特開昭5
2−140403号公報および特開昭55−16409
2号公報)。本出願人は、めっき法を用いて、軟磁性に
優れ、かつ、従来の非晶質合金に比較して格段に薄い鉄
−コバルト非晶質合金箔について開示した(特開平3−
126889号公報)。この合金は、数μmの厚さのも
のであり、膜厚が薄いが故に高周波での磁気特性が極め
て優れている。
On the other hand, a method for producing an amorphous alloy using electrolytic plating and electroless plating has also been studied (Japanese Patent Laid-Open No. Sho 5).
2-140403 and JP-A-55-16409.
No. 2). The present applicant has disclosed an iron-cobalt amorphous alloy foil which is excellent in soft magnetism and is much thinner than conventional amorphous alloys by using a plating method (Japanese Patent Laid-Open No. Hei.
No. 126889). This alloy has a thickness of several μm, and because of its thin film thickness, it has excellent magnetic properties at high frequencies.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、磁性膜
が薄くなりすぎると取り扱い性に難点が生じる。例え
ば、製造時には、連続的にめっきを行い、その後薄膜を
電極から剥離することになるが、磁性膜が薄くなりすぎ
た場合は時々膜の切断を生じる。また、薄膜を磁性部品
への応用としてトロイダルコアに利用する場合、膜が薄
いとコアにうまく巻くことができず、コア内の膜間に空
隙を生じたりする。このように、薄すぎる磁性膜では、
作業性に問題点を残し、廉価な製品を製造することがで
きない。
However, if the magnetic film becomes too thin, the handling becomes difficult. For example, during manufacturing, plating is continuously performed, and then the thin film is peeled off from the electrode. However, when the magnetic film becomes too thin, the film is sometimes cut. Further, when a thin film is used for a toroidal core as an application to a magnetic component, if the film is thin, it cannot be wound well around the core, and voids are generated between the films in the core. Thus, if the magnetic film is too thin,
It leaves a problem in workability and cannot manufacture a low-priced product.

【0009】本発明者らは,高周波磁気特性が優れるも
のの作業性に問題があり、工業的規模で利用することが
困難であった、数μmの厚さの磁性膜の改良について鋭
意検討した結果、本発明に到達した。
The present inventors have made earnest studies on improvement of a magnetic film having a thickness of several μm, which has a problem in workability although it has excellent high-frequency magnetic properties and is difficult to use on an industrial scale. Has reached the present invention.

【0010】[0010]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、電解または無電解法によって形成された非晶質軟
磁性層と電解酸化法によって形成された酸化層とが交互
に複数層積層されていることを特徴とする非晶質軟磁性
積層膜である。本発明は、まず、電解または無電解法に
よって高周波磁気特性に優れた、充分薄い非晶質軟磁性
層を形成することから始まる。非晶質軟磁性層は、それ
自体磁気特性に優れるものでなければならない。非晶質
合金の磁気特性は、その合金組成に支配される。軟磁性
に優れた特性を発現するためには、磁気特性パラメータ
である磁歪を極力小さくする必要がある。磁歪の大きさ
は、その合金組成と密接な関係を有する。例えば、強磁
性を示す組成物のうち(磁歪)=0となる組成物として
は、Fe/Co=6/94、Fe/Ni=18/82お
よびCo/Ni=46/54がよく知られている。これ
らのうち、比較的高い飽和磁束密度の得られるFe/C
o系は、軟磁性材料の組成としては優れたもので好まし
い。このような合金組成の非晶質軟磁性層を非常に薄い
層として得るためには、電解または無電解法による必要
がある。前述したように、非晶質合金を製造する急速冷
却法では、20〜25μm以下の厚みとすることは難し
い。本発明の非晶質軟磁性層の厚みは、渦電流を軽減
し、優れた高周波磁気特性を示すために、好ましくは1
0μm以下、更に好ましくは4μm以下である。電解法
による非晶質軟磁性層の形成手段としては、特公昭63
−10233号公報に記載の次亜リン酸または次亜リン
酸塩を用いる方法、または特願平1−118591号公
報に記載の亜リン酸または亜リン酸塩を用いてCo基を
主成分とする非晶質合金を析出させる方法を利用するこ
とができる。無電解法には、特願昭63−276190
号公報記載の方法が適している。還元剤としては、次亜
リン酸塩やホウ水素化物を用いることができる。これら
の還元剤の種類によって、非晶質合金を安定化させる半
金属元素を選択することができる。無電解法であるか
ら、析出基材として、導電性に限らず、あらゆる種類の
材質を用いることができる。非常に薄いプラスチックフ
ィルムを用いれば、析出した非晶質軟磁性層を剥離する
ことなく、そのまま巻回して磁性コアを形成することが
できる。
SUMMARY OF THE INVENTION The gist of the present invention is that an amorphous soft magnetic layer formed by an electrolytic or electroless method and an oxide layer formed by an electrolytic oxidation method are alternately laminated in plural layers. The amorphous soft magnetic multilayer film is characterized by being formed. The present invention begins by forming a sufficiently thin amorphous soft magnetic layer excellent in high frequency magnetic characteristics by an electrolytic or electroless method. The amorphous soft magnetic layer itself must have excellent magnetic properties. The magnetic properties of an amorphous alloy are governed by its alloy composition. In order to exhibit the characteristics excellent in soft magnetism, it is necessary to minimize the magnetostriction which is a magnetic characteristic parameter. The magnitude of magnetostriction is closely related to its alloy composition. For example, among compositions exhibiting ferromagnetism, Fe / Co = 6/94, Fe / Ni = 18/82 and Co / Ni = 46/54 are well known as compositions having (magnetostriction) = 0. There is. Of these, Fe / C that provides a relatively high saturation magnetic flux density
The o type is preferable because it is excellent in the composition of the soft magnetic material. In order to obtain an amorphous soft magnetic layer having such an alloy composition as a very thin layer, it is necessary to use an electrolytic or electroless method. As described above, it is difficult to obtain a thickness of 20 to 25 μm or less by the rapid cooling method for producing an amorphous alloy. The thickness of the amorphous soft magnetic layer of the present invention is preferably 1 in order to reduce eddy currents and exhibit excellent high frequency magnetic characteristics.
It is 0 μm or less, more preferably 4 μm or less. As a means for forming an amorphous soft magnetic layer by an electrolytic method, there is disclosed in Japanese Examined Patent Publication No.
A method using hypophosphite or hypophosphite described in JP-A-10233 or a Co group as a main component using phosphorous acid or phosphite described in Japanese Patent Application No. 1-118591. The method of precipitating the amorphous alloy can be used. Japanese Patent Application No. 63-276190
The method described in the publication is suitable. Hypophosphite or borohydride can be used as the reducing agent. Depending on the type of these reducing agents, a semimetal element that stabilizes the amorphous alloy can be selected. Since it is an electroless method, the deposition base material is not limited to conductivity, and any kind of material can be used. If a very thin plastic film is used, the deposited amorphous soft magnetic layer can be wound as it is to form a magnetic core without peeling off.

【0011】次に、上記非晶質軟磁性層表面に、電解酸
化法によって酸化層を設けることが必要である。一般
に、金属酸化物は絶縁性物質であることが多く、Coや
Feを含む非晶質合金であっても高い電気抵抗性を示
す。本発明の積層膜は、非晶質軟磁性表面に、電解酸化
法によって形成された高抵抗層を有することを特徴とす
る。これによって、高周波で発生する渦電流を阻止する
ことができる。この酸化層は、非常に薄いものであって
よい。渦電流はその電流経路に絶縁物があれば遮断する
ことができるから、厚みがいかに薄いものであっても効
果がある。その厚さは、渦電流がリークしない程度まで
薄くでき、数千Åまで、好ましくは数百Å、更に好まし
くは数十Åまで薄くすることができる。逆に酸化層が厚
すぎると、CoやFeの酸化物は硬磁性の特性を示すよ
うになり、軟磁気特性が劣化する。
Next, it is necessary to provide an oxide layer on the surface of the amorphous soft magnetic layer by an electrolytic oxidation method. In general, metal oxides are often insulating substances, and even amorphous alloys containing Co or Fe exhibit high electrical resistance. The laminated film of the present invention is characterized by having a high resistance layer formed by an electrolytic oxidation method on an amorphous soft magnetic surface. This can prevent eddy currents generated at high frequencies. This oxide layer may be very thin. The eddy current can be blocked if there is an insulator in the current path, so that it is effective even if the thickness is thin. The thickness can be made thin to the extent that eddy currents do not leak, and can be made as thin as several thousand Å, preferably several hundred Å, more preferably several tens Å. On the other hand, if the oxide layer is too thick, the oxides of Co and Fe will exhibit hard magnetic properties and the soft magnetic properties will deteriorate.

【0012】電解酸化の方法は、通常の方法により、金
属の不働体形成電位を印加して行う。図1にCoを主成
分とする非晶質合金のアノード分極曲線を示す。0.5
MのH2 SO4 溶液における不働体形成電位はAg・A
gCl基準で0〜+1.5Vであり、この範囲の電位を
作用極に印加して陽極酸化を行う。また、他の電解液を
用いる場合には、それぞれに適した不働体形成電位を用
いる。電解液としては、H2 SO4 ,HCl,HNO3
などの酸性溶液、Na2 SO4 ,NaClなどの中性溶
液、NaOH,KOHなどのアルカリ溶液などが用いら
れ、またpH調整剤によって各種の塩の溶液を任意のpHに
調整したものも用いることもできる。
The electrolytic oxidation is carried out by applying a metal passivation potential by a conventional method. FIG. 1 shows an anodic polarization curve of an amorphous alloy containing Co as a main component. 0.5
The passive substance formation potential in the H 2 SO 4 solution of M is Ag · A.
It is 0 to +1.5 V based on gCl, and a potential in this range is applied to the working electrode to perform anodic oxidation. When other electrolytes are used, the passivation potential suitable for each is used. The electrolytic solution may be H 2 SO 4 , HCl, HNO 3
An acidic solution such as, a neutral solution such as Na 2 SO 4 or NaCl, an alkaline solution such as NaOH or KOH is used, and a solution of various salts adjusted to an arbitrary pH with a pH adjuster should also be used. You can also

【0013】かかる電解酸化法により得られた、高抵抗
層である酸化層上に、さらに電解法によって非晶質軟磁
性層を形成する場合、ガルバノスタット法を用いると、
酸化層表面により電極電位が変動しても、非晶質合金析
出のための過電圧が一定に保たれ、析出合金組成は酸化
層の無い場合と同一のものとなる。よって、酸化層を薄
くすることによって、容易に非晶質合金の電解析出を行
うことができる。
When an amorphous soft magnetic layer is further formed by an electrolytic method on the oxide layer which is a high resistance layer obtained by the electrolytic oxidation method, the galvanostat method is used.
Even if the electrode potential fluctuates due to the surface of the oxide layer, the overvoltage for depositing the amorphous alloy is kept constant, and the composition of the deposited alloy becomes the same as that without the oxide layer. Therefore, by thinning the oxide layer, electrolytic deposition of an amorphous alloy can be easily performed.

【0014】他に、金属表面の酸化法として、熱酸化法
や溶液酸化法などが挙げられる。しかし、熱酸化法で
は、非晶質合金がある程度の耐食性を有することから、
酸化速度が遅すぎる。また、溶液酸化法では、酸化剤の
濃度や酸化時の温度に敏感で、酸化層厚みのコントロー
ル性が悪い。これに対して、電解酸化法では、印加電位
をコントロールすることによって、その酸化度合と酸化
層厚みを容易に調節することができる。
Other examples of the method for oxidizing the metal surface include a thermal oxidation method and a solution oxidation method. However, in the thermal oxidation method, since the amorphous alloy has some corrosion resistance,
Oxidation rate is too slow. Further, the solution oxidation method is sensitive to the concentration of the oxidant and the temperature at the time of oxidation, and the controllability of the oxide layer thickness is poor. On the other hand, in the electrolytic oxidation method, the degree of oxidation and the thickness of the oxide layer can be easily adjusted by controlling the applied potential.

【0015】本発明の積層膜を製造するに当たっては、
このように非晶質軟磁性層上に酸化層を設け、さらに酸
化層上に非晶質軟磁性層を形成するということを繰り返
し、後工程での作業性に問題がなくなる程度にまで積層
膜の膜厚を厚くする。本発明に係る非晶質軟磁性積層膜
は、図2の(a),(b)および(c)に示す如き構造
を有する。(a)は、積層膜の両端が非晶質軟磁性層1
であり、少なくとも1層以上の酸化層2とを交互に積層
したものである。この場合、単体膜で用いるときは磁束
密度の点で有利であるが、積層膜を巻回して磁性コア等
を作成する場合には別途絶縁層を設ける必要がある。
(b)は、酸化層2を両端に配置して交互に積層した構
造であり、上記磁性コアに巻回する場合には絶縁層2を
施す必要がなく、さらに非晶質軟磁性層1を酸化層で保
護することができる。(c)は、非晶質軟磁性層1と酸
化層2とを交互に積層したものであり、一般にこのよう
な構造のものは、汎用性に優れている。
In producing the laminated film of the present invention,
In this way, the formation of the oxide layer on the amorphous soft magnetic layer and the formation of the amorphous soft magnetic layer on the oxide layer are repeated, and the laminated film is formed to such an extent that there is no problem in workability in the subsequent steps. Thicken. The amorphous soft magnetic laminated film according to the present invention has a structure as shown in FIGS. 2 (a), 2 (b) and 2 (c). (A) shows the amorphous soft magnetic layer 1 at both ends of the laminated film.
And at least one or more oxide layers 2 are alternately laminated. In this case, when it is used as a single film, it is advantageous in terms of magnetic flux density, but when a laminated film is wound to form a magnetic core or the like, it is necessary to separately provide an insulating layer.
(B) has a structure in which oxide layers 2 are arranged at both ends and alternately laminated, and when wound around the magnetic core, it is not necessary to apply the insulating layer 2, and the amorphous soft magnetic layer 1 is further added. It can be protected by an oxide layer. (C) is a layer in which the amorphous soft magnetic layers 1 and the oxide layers 2 are alternately laminated. Generally, the structure as described above is excellent in versatility.

【0016】[0016]

【実施例】以下、本発明を実施例によってさらに説明す
る。 実施例1 塩化第1鉄0.1 mol/l、硫酸コバルト0.9 mol/
l、ほう酸0.1 mol/lおよび亜リン酸0.1 mol/
lの濃度で各成分を含有する水溶液のpHを1.7に調整
し、電解液として用いた。電極として中心表面粗さ0.
5μ以下に鏡面仕上げを施したステンレス板を用い、電
流密度0.05A/cm2 、温度50℃で6分間電解析出
を行った。析出層は、2.97μの膜厚を有し、X線回
折の測定から非晶質であることが認められた。次、に
0.5MのH2 SO4 溶液でAg・AgCl基準で+
0.5Vの電位を印加し、25℃で30秒間陽極酸化を
行った。表面は薄いこげ茶色に変色していた。
EXAMPLES The present invention will be further described below with reference to examples. Example 1 Ferrous chloride 0.1 mol / l, cobalt sulfate 0.9 mol /
1, boric acid 0.1 mol / l and phosphorous acid 0.1 mol / l
The pH of an aqueous solution containing each component at a concentration of 1 was adjusted to 1.7 and used as an electrolytic solution. The center surface roughness of the electrode is 0.
Using a stainless steel plate having a mirror finish of 5 μm or less, electrolytic deposition was performed at a current density of 0.05 A / cm 2 and a temperature of 50 ° C. for 6 minutes. The deposited layer had a film thickness of 2.97μ and was confirmed to be amorphous by X-ray diffraction measurement. Next, add 0.5M H 2 SO 4 solution to the Ag / AgCl standard.
A potential of 0.5 V was applied and anodization was performed at 25 ° C. for 30 seconds. The surface was light brown.

【0017】上記の操作を6回くり返した後、析出層を
電極から剥離した。合計厚さ19.4μの膜が得られ
た。この膜の合金組成の測定をICP発光分析装置(日
本シャーレルアッシュ製ICAP・575MK型)を用
いて定量分析した。この結果を表1に示す。また、この
膜の磁気特性として以下の方法で初透磁率を測定した。
この膜を幅5mmのテープ状に切断した。この磁性薄膜
を、外径10mm、長さ5mm、厚さ1mmの石英管に1周巻
回し、窒素雰囲気中、250℃で焼鈍した。この石英管
に0.5mmのエナメル線を15ターン巻き付けた。横河
ヒューレットパッカード(株)製4275A型マルチフ
リケンシLCRメータによってインダクタンスを測定
し、下記の式によって初透磁率を求めた。但し、周波数
は10kHz 〜10MHz で、励磁を4mOe 換算で測定し
た。
After repeating the above operation 6 times, the deposited layer was peeled from the electrode. A film with a total thickness of 19.4μ was obtained. The alloy composition of the film was quantitatively analyzed by using an ICP emission spectrometer (ICAP 575MK type manufactured by Nippon Charel Ash). The results are shown in Table 1. Further, as the magnetic characteristics of this film, the initial magnetic permeability was measured by the following method.
This film was cut into a tape having a width of 5 mm. This magnetic thin film was wound once around a quartz tube having an outer diameter of 10 mm, a length of 5 mm and a thickness of 1 mm, and annealed at 250 ° C. in a nitrogen atmosphere. A 0.5 mm enamel wire was wound around this quartz tube for 15 turns. The inductance was measured with a Model 4275A multi-frequency LCR meter manufactured by Yokogawa Hewlett-Packard Co., Ltd., and the initial permeability was determined by the following formula. However, the frequency was 10 kHz to 10 MHz, and the excitation was measured in terms of 4 mOe.

【0018】[0018]

【数2】 [Equation 2]

【0019】ここで、Lはインダクタンス(H)、ωは
2πf(f:周波数)、lは平均磁路長(cm)、nは巻
線回数、Sは磁性膜総断面積(cm2 )である。得られた
結果を図3に示す。
Here, L is the inductance (H), ω is 2πf (f: frequency), l is the average magnetic path length (cm), n is the number of windings, and S is the total cross-sectional area (cm 2 ) of the magnetic film. is there. The obtained results are shown in FIG.

【0020】比較例1 実施例1と同一の電解液を用い、同一の電解条件で6分
間非晶質合金の電解析出を行った。得られた膜の組成分
析および初透磁率の測定を実施例1と同様に行った。
尚、初透磁率測定時においては、この膜の片面にアルミ
ナ粉末(1μ粒径)を有機溶剤に分散させ、塗布した
後、石英管に7周巻回して実施例1とほぼ同じ磁性断面
積とし、測定誤差を極力小さくした。この場合、石英管
に巻回するとき、磁性膜が薄いために、しわが入った
り、切れたりして簡単には巻けず、作業性は不良であっ
た。これらの結果をそれぞれ表1および図3に示す。
Comparative Example 1 The same electrolytic solution as in Example 1 was used to electrolytically deposit an amorphous alloy for 6 minutes under the same electrolytic conditions. The composition analysis and the measurement of the initial magnetic permeability of the obtained film were performed in the same manner as in Example 1.
At the time of measuring the initial magnetic permeability, alumina powder (1 μ particle size) was dispersed in one surface of this film in an organic solvent and applied, and then the film was wound around a quartz tube for 7 turns and had a magnetic cross-sectional area almost the same as that of Example 1. And made the measurement error as small as possible. In this case, when wound around a quartz tube, since the magnetic film was thin, it could not be easily wound due to wrinkles or breaks, and the workability was poor. These results are shown in Table 1 and FIG. 3, respectively.

【0021】比較例2 実施例1と同一の電解液を用い、同一の電解条件で40
分間非晶質合金の電解析出を行った。得られた膜の厚さ
は19.9μmであった。実施例1と同様に、初透磁率
の測定を石英管に1周巻回して行った。得られた結果を
図3に示す。
Comparative Example 2 The same electrolytic solution as in Example 1 was used and the same electrolytic conditions were applied.
The amorphous alloy was electrolytically deposited for a minute. The thickness of the obtained film was 19.9 μm. As in Example 1, the initial magnetic permeability was measured by winding the quartz tube once around the circumference. The obtained results are shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】表1からわかる通り、酸化層上に電解析出
しても、電流密度を一定とすれば同一組成の非晶質合金
を電解析出せしめることができる(尚、小数点1位の変
動は測定精度内のものである)。図3に示す通り、比較
例2の19.9μ膜は、MHZ 帯での初透磁率の低下が
著しく、渦電流損失の大きなものと推察される。比較例
1の2.97μ膜では、10MHZ まで全く低下がな
い。本発明の実施例1の19.4μ膜は、MHZ 帯での
低下を若干示すものの、優れた高周波磁気特性を示して
おり、酸化層による高周波での渦電流軽減があるものと
考えられる。
As can be seen from Table 1, even if electrolytic deposition is performed on the oxide layer, an amorphous alloy having the same composition can be electrolytically deposited if the current density is constant (note that the fluctuation of the first decimal place is Within the measurement accuracy). As shown in FIG. 3, the 19.9 μ film of Comparative Example 2 is presumed to have a large initial magnetic permeability in the MH Z band and a large eddy current loss. In 2.97μ film of Comparative Example 1, there is no decrease at all to 10 MHz Z. The 19.4μ film of Example 1 of the present invention exhibits excellent high-frequency magnetic characteristics, although it shows a slight decrease in the MH Z band, and it is considered that the eddy current is reduced by the oxide layer at high frequencies.

【0024】比較例3 実施例1と同一の電解液を用い、同一の電解条件で6分
間非晶質合金の電解析出を行った。得られた膜を空気中
200℃でそれぞれ30分間および1時間熱酸化した。
それぞれについて、これらの操作を6回くり返して電極
から剥離した。この膜の厚さは、双方共、19.0μで
あった。これらの膜は硬く脆くなっていた。この膜の初
透磁率を実施例1と同様にして測定した。図4に示すか
らわかる通り、1時間熱酸化を行っても高周波磁気特性
の改善は不充分である。
Comparative Example 3 The same electrolytic solution as in Example 1 was used to carry out electrolytic deposition of an amorphous alloy for 6 minutes under the same electrolytic conditions. The resulting membrane was thermally oxidized in air at 200 ° C. for 30 minutes and 1 hour, respectively.
For each, these operations were repeated 6 times and peeled from the electrode. The thickness of this film was 19.0μ in both cases. These films were hard and brittle. The initial magnetic permeability of this film was measured in the same manner as in Example 1. As can be seen from FIG. 4, even if the thermal oxidation is performed for 1 hour, the high frequency magnetic characteristics are not sufficiently improved.

【0025】[0025]

【発明の効果】本発明によれば、高周波磁気特性並びに
取り扱い性に優れる非晶質軟磁性積層膜が提供される。
According to the present invention, there is provided an amorphous soft magnetic laminated film having excellent high frequency magnetic characteristics and handleability.

【図面の簡単な説明】[Brief description of drawings]

【図1】Coを主成分とする非晶質合金のアノード曲
線。
FIG. 1 is an anode curve of an amorphous alloy containing Co as a main component.

【図2】本発明に係る非晶質軟磁性積層膜の構成例の模
式図。
FIG. 2 is a schematic diagram of a configuration example of an amorphous soft magnetic laminated film according to the present invention.

【図3】実施例および比較例で得られた膜の高周波磁気
特性を示す図。
FIG. 3 is a diagram showing high frequency magnetic characteristics of films obtained in Examples and Comparative Examples.

【図4】比較例で得られた膜の高周波磁気特性を示す
図。
FIG. 4 is a diagram showing high frequency magnetic characteristics of a film obtained in a comparative example.

【符号の説明】 1…非晶質軟磁性層 2…酸化絶縁層[Explanation of Codes] 1 ... Amorphous soft magnetic layer 2 ... Oxide insulating layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電解または無電解法によって形成された
非晶質軟磁性層と電解酸化法によって形成された酸化層
とが交互に複数層積層されていることを特徴とする非晶
質軟磁性積層膜。
1. An amorphous soft magnetic layer comprising a plurality of alternating amorphous soft magnetic layers formed by an electrolytic or electroless method and oxide layers formed by an electrolytic oxidation method. Laminated film.
JP28304092A 1992-10-21 1992-10-21 Amorphous soft magnetic lamination film Pending JPH06132128A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28304092A JPH06132128A (en) 1992-10-21 1992-10-21 Amorphous soft magnetic lamination film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28304092A JPH06132128A (en) 1992-10-21 1992-10-21 Amorphous soft magnetic lamination film

Publications (1)

Publication Number Publication Date
JPH06132128A true JPH06132128A (en) 1994-05-13

Family

ID=17660439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28304092A Pending JPH06132128A (en) 1992-10-21 1992-10-21 Amorphous soft magnetic lamination film

Country Status (1)

Country Link
JP (1) JPH06132128A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059668A1 (en) * 2002-12-26 2004-07-15 Tdk Corporation Magnetic thin film or composite magnetic thin film for high frequency and magnetic device including the same
JP2017048435A (en) * 2015-09-03 2017-03-09 ローム株式会社 Composite plated film and manufacturing method thereof, magnetic device, powder module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004059668A1 (en) * 2002-12-26 2004-07-15 Tdk Corporation Magnetic thin film or composite magnetic thin film for high frequency and magnetic device including the same
JP2017048435A (en) * 2015-09-03 2017-03-09 ローム株式会社 Composite plated film and manufacturing method thereof, magnetic device, powder module

Similar Documents

Publication Publication Date Title
US5435903A (en) Process for the electrodeposition of an amorphous cobalt-iron-phosphorus alloy
EP3315629B1 (en) Soft magnetic alloy and magnetic device
JP2010062424A (en) Manufacturing method of electronic component
JPWO2008133026A1 (en) Antenna core, method for manufacturing antenna core, and antenna
EP3511958B1 (en) Soft magnetic alloy and magnetic device
KR102183923B1 (en) Self
EP3511959B1 (en) Soft magnetic alloy and magnetic device
EP0401805B1 (en) Magnetic core
JP2006060432A (en) Radio wave transmitting and receiving antenna
JP2018142601A (en) Soft magnetic alloy
JPH05275247A (en) Thin inductor/transformer
US11682507B2 (en) Coil component
JPH06132128A (en) Amorphous soft magnetic lamination film
JP2004356468A (en) Laminated magnetic core and magnetic component
JP2007329143A (en) Magnetic metallic thin band laminate and antenna employing same
JP5029956B2 (en) Magnetic core for antenna, method for manufacturing the same, and antenna
JPS6187889A (en) Production of thin alloy strip
JP3089428B2 (en) Method for producing insulating high magnetic permeability alloy
US20230015154A1 (en) Fe-based alloy and electronic component including the same
JPH04345007A (en) Compound magnetic film and manufacture thereof as well as core using the same
JPS6320919B2 (en)
JPH05190314A (en) Inductor
JPH0927413A (en) Choke coil magnetic core and manufacture thereof
JPH02101718A (en) Magnetic core and manufacture thereof
JPH03126847A (en) Soft-magnetic amorphous alloy foil