JPS6187889A - Production of thin alloy strip - Google Patents

Production of thin alloy strip

Info

Publication number
JPS6187889A
JPS6187889A JP59206981A JP20698184A JPS6187889A JP S6187889 A JPS6187889 A JP S6187889A JP 59206981 A JP59206981 A JP 59206981A JP 20698184 A JP20698184 A JP 20698184A JP S6187889 A JPS6187889 A JP S6187889A
Authority
JP
Japan
Prior art keywords
plating
substrate
alloy
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59206981A
Other languages
Japanese (ja)
Inventor
Kimimichi Goto
後藤 公道
Isao Ito
伊藤 庸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59206981A priority Critical patent/JPS6187889A/en
Publication of JPS6187889A publication Critical patent/JPS6187889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce an extra thin or ultra-extra thin strip in a wide component compsn. range including a hardly workable material by forming multi-layered coating layers consisting of >=2 kinds of pure metals or alloys on a conductive substrate then stripping said layers from the substrate and subjecting the same to a solution heat treatment. CONSTITUTION:The substrate 1 which is a stainless steel strip is made into an endless belt shape and conductive carbon black is coated thereon to permit easy stripping. The substrate 1 is operated and is subjected to Ni plating in the 1st plating cell 6. The strip is washed in a washing tank 8 is subjected to Fe plating in the 2nd plating cell 7. The plated strip is washed in a washing tank 9. Such operation is repeated to form the multi-layered coating layers and thereafter the multi-layered coating layers are stripped by a stripping roll 11 and are taken up on a winder 12. The thin strip of the multi-layered coating layers is then subjected to the soln. heat treatment.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、合金薄帯の製造方法に関し、とくにエレク
トミニりス関連の磁性合金たとえば高透磁率軟磁性材料
であるFe −Ni系合金(パーマロイ)や硬質磁性材
料であるFe −Qr −QO系、Cu−)ii −F
e 系合金、その他ステンレス合金などで、しかも板厚
数μm〜100 pm程度の極薄ないしは超極薄の薄帯
の製造に適用してとりわけ有利なものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing alloy ribbons, and in particular to a method for manufacturing an alloy ribbon, and in particular, for manufacturing electromagnetic alloys such as Fe-Ni alloys, which are soft magnetic materials with high magnetic permeability. Permalloy), hard magnetic materials Fe-Qr-QO system, Cu-)ii-F
It is particularly advantageous when applied to the production of extremely thin or ultra-thin ribbons made of e-based alloys, other stainless steel alloys, etc., and having a thickness of approximately several μm to 100 pm.

(従来の技術) エレクトロニクス分野の進展に伴い、とくに高周波領域
で使用されるコンピュータ電源やモーターの鉄心、さら
には通信m器回路部品として磁性合金薄帯の使用が増加
している。かような用途においては、とくに使用周波数
が高くなる程、鉄損のより少ない極薄板厚の磁性合金薄
帯が必要とされていて、数MHz以上の領域では、将来
、板厚4鰭程度の超極薄のFe −Ni系合金が使用さ
れるようになると予想されている0 ところで上記した如き磁性合金薄帯を含め、一般に合金
薄帯の製造に当っては、所定の合金成分に調製した溶湯
をインゴットまたはスラブなどに鋳造したのち、熱間圧
延ならびに中間腕なましを挾む多段の冷間圧延を施して
所望の板厚に仕上げ、ついで最終熱処理を施す一連の工
程によるのが一般的であった。
(Prior Art) With the progress in the field of electronics, the use of magnetic alloy ribbons has been increasing, especially as iron cores for computer power supplies and motors used in high frequency ranges, and even as circuit components for communication devices. In such applications, especially as the frequency of use increases, ultra-thin magnetic alloy ribbons with lower iron loss are required. It is expected that ultra-thin Fe-Ni alloys will come into use.In general, when manufacturing alloy ribbons, including the magnetic alloy ribbons mentioned above, it is necessary to prepare the alloy to a predetermined alloy composition. Generally, after casting molten metal into an ingot or slab, it is subjected to multiple stages of cold rolling including hot rolling and intermediate arm annealing to achieve the desired thickness, followed by a final heat treatment. Met.

(発明が解決しようとする問題点) しかしながらかかる従来法では、圧延加工が比較的容易
な合金であっても、薄帯に仕上げるためには複数回の冷
延と中間腕なましを施すことが必要であり、とくに10
0μm以下の極薄薄帯を得ようとする場合には板同の減
少に伴って圧延が困難となり、たとえ緩速で慎重な圧延
を施したとしても、時として薄帯の破断を生じ、圧延能
率や歩留りの大幅な低下が避けられず、このため製造コ
ストが著しく高くなる欠点があった。
(Problems to be Solved by the Invention) However, in this conventional method, even if the alloy is relatively easy to roll, it requires multiple cold rolling and intermediate arm annealing in order to finish it into a thin strip. necessary, especially 10
When trying to obtain an ultra-thin ribbon with a thickness of 0 μm or less, rolling becomes difficult as the sheet thickness decreases, and even if rolling is carried out slowly and carefully, the ribbon may sometimes break, making rolling difficult. A significant drop in efficiency and yield is unavoidable, which has the drawback of significantly increasing manufacturing costs.

しかも一般的に言って、合金材料は圧延による加工硬化
が大きいため、冷間あるいは温間圧延によって極薄の薄
帯を製造することは困難な場合が多く、さらに合金成分
によっては圧延そのものが不可能な唖加工性材料もあり
、このため従来、所望の合金薄帯を工業的規模で経済的
に製造することは極めて喧しかったのである。
Moreover, generally speaking, alloy materials undergo significant work hardening due to rolling, so it is often difficult to produce ultra-thin ribbons by cold or warm rolling, and depending on the alloy components, rolling itself may be problematic. There are also materials that can be punched, and for this reason, it has hitherto been extremely difficult to economically produce desired alloy ribbons on an industrial scale.

この発明は、上記の問題を有利に解決するもので、減厚
加工を施す必要なしに、任意の成分および板厚の合金薄
帯を有利に得ることができる合金薄帯の?!造方法を提
案することを目的とする。
The present invention advantageously solves the above problems, and provides an alloy ribbon that can advantageously obtain an alloy ribbon of any composition and thickness without the need for thickness reduction processing. ! The purpose is to propose a method of construction.

(間即点を解決するための手段) すなわちこの発明は、導電体基板上に2種以上の純金属
および/または合金から成る多N被覆層を形成させたの
ち、該被但層を基板上からはく喘し、ついで得られた多
層被覆R薄帯に各層構成成分の相互拡散をもたらす溶体
化処理を施すことを特徴とする合金薄帯の製造方法であ
る。
(Means for Solving the Problem) That is, in the present invention, a multi-N coating layer made of two or more types of pure metals and/or alloys is formed on a conductive substrate, and then the coated layer is coated on the substrate. This is a method for producing an alloy ribbon, which is characterized in that the obtained multilayer coated R ribbon is then subjected to a solution treatment that causes mutual diffusion of constituent components of each layer.

またこの発明は、上記溶体化処理に先立ちまたはその後
に、圧延および/!!たは熱処理を施すことを特徴とす
る合金薄帯の製造方法である0この発明において、多層
被覆層形成手段とじては、電気めっき法の他、化学めっ
き法、溶融めっき法、溶射法、真空蒸着法、イオンブレ
ーティング法および高周波スパッタ法などが有利に適合
するO 以下この発明を具体的に説明する。
Moreover, this invention provides rolling and/or! prior to or after the solution treatment. ! In this invention, the multilayer coating layer forming means includes electroplating, chemical plating, hot-dip plating, thermal spraying, vacuum The present invention will be described in detail below.

第1vffに、この発明に従う製造工程の一例を、フロ
ーチャートで示す。
In the first vff, an example of the manufacturing process according to the present invention is shown in a flowchart.

多層被覆たとえば複合多段めっき層を形成させるための
導電体基板としては、めっき層の適度な密着とはく離容
易な表面特性を有していることが必要で、このためには
金へ基板上に導電性カーボンブラックまたは黒鉛粉末に
銅や銀などの金属微粉を混合したものなどを極<薄<塗
布しておくことが好ましい。またかかる基板としては、
めっき浴に対する耐久性、耐水素脆性および非磁性など
の特性を考広した場合、オーステナイト系ステンレス銅
薄板がとりわG−1有利に適合し、めっき面については
、合金薄帯の平滑な表面性状と良好なはく離性を得るた
めに、前もって鏡面研摩などの平滑化処理を施しておく
ことが望ましい。
As a conductive substrate for forming a multilayer coating, for example, a composite multi-stage plating layer, it is necessary to have suitable adhesion of the plating layer and surface characteristics that allow for easy peeling. It is preferable to apply a very thin coating of carbon black or graphite powder mixed with fine metal powder such as copper or silver. In addition, such a substrate includes:
When considering characteristics such as durability against plating baths, hydrogen embrittlement resistance, and non-magnetism, austenitic stainless steel thin copper sheets are especially suitable for G-1, and as for the plating surface, the smooth surface quality of alloy thin strips In order to obtain good releasability, it is desirable to perform smoothing treatment such as mirror polishing in advance.

さらに複合多段めっき層形成のためのめつき金属として
は、電気めっき可能な金属であれは何れでもよく、要は
最終的に得られる合金薄帯が所望の成分組成となるよう
に、必要とする金属を選定し、同時に所望の混合濃度に
制御すべく各金属舎所定のめつき厚みだけそれぞれ一段
または多段に分けて電析させ、各めっき層の合計厚みが
必要な薄帯厚に等しくなるように制御してやれば良い。
Furthermore, the plating metal for forming the composite multi-stage plating layer may be any metal that can be electroplated; Select the metal, and at the same time, in order to control the desired mixed concentration, deposit the predetermined plating thickness for each metal layer in one or multiple stages, so that the total thickness of each plating layer is equal to the required ribbon thickness. It would be better to control it.

ここに電気めっきが可能な金属として、磁性合金薄帯を
対象とする場合は、F8 、 Ni 、○O# Or 
#Ouおよび罰などが挙げられる。かかる金属をめっき
する場合、すでに公知となっている何れの電気めっき法
を採用してもよいが、望ましくはめつき層中の不純物が
少なく、また格子欠陥やピンホールなどの少ないめっき
法を選定することが肝要である。なおめっき層厚みは、
「電気量」、「めっき時間」および「陰極効率」の積に
比例するので、めっき方法および条件毎に定まる陰極効
率に応じて、「電気量JXrめつき時間」を適切に設定
することによって容易かつ正確に制御できる。
When targeting magnetic alloy ribbons as metals that can be electroplated, F8, Ni, ○O# Or
Examples include #Ou and punishment. When plating such metals, any known electroplating method may be used, but it is preferable to select a plating method that has fewer impurities in the plating layer and fewer lattice defects and pinholes. That is essential. The plating layer thickness is
Since it is proportional to the product of "electricity", "plating time" and "cathode efficiency", it is easy to set the "electricity JXr plating time" appropriately according to the cathode efficiency determined for each plating method and condition. and can be controlled accurately.

この発明において電気めっき法を基本的に用いる理由は
、上記しためっき層厚の制御が容易かつ正確にできるこ
と、つまりは各合金成分の濃度管理が希望する設定値に
対して変動少なく制御できることを重視したためである
。従ってめっき層厚みの制御、管理が容易かつ正確であ
れば、電気めっき法以外のめつき技術、たとえば化学め
っき法、溶融めっき法または溶射法などを用いることは
、−向に差し支えない。
The reason why the electroplating method is basically used in this invention is that the above-mentioned plating layer thickness can be easily and accurately controlled, that is, the concentration of each alloy component can be controlled with little variation to the desired set value. This is because. Therefore, as long as the control and management of the plating layer thickness is easy and accurate, there is no problem in using plating techniques other than electroplating, such as chemical plating, hot-dip plating, or thermal spraying.

この点、所望の合金成分が電気めっきの使用不可または
困難なものであるとき、ことにその成分元素が副次的な
添加元素であって合金濃度として数係以下であるような
場合には、上記した如く電気めっき層を多段形成させる
中間工程において、電気めっき法以外の表面被覆法を用
いて複合積層させることが必要になる。たとえばAI 
、 Si 、 V 。
In this regard, when the desired alloy component cannot be electroplated or is difficult to electroplat, especially when the component element is a secondary additive element and the alloy concentration is below a numerical coefficient, As described above, in the intermediate step of forming electroplated layers in multiple stages, it is necessary to perform composite lamination using a surface coating method other than electroplating. For example, AI
, Si, V.

Nb 、 MoおよびWなどの合金元素を望む場合であ
るが、かような場合には、上記金属を真空層着法イオン
ブレーティング法およびスパッタ法などで所定の厚へま
で複合積層させることにより、所望の合金濃度に調整す
ることができる。
In cases where alloying elements such as Nb, Mo, and W are desired, in such cases, the above metals are compositely laminated to a predetermined thickness by vacuum layer deposition, ion blasting, sputtering, etc. The desired alloy concentration can be adjusted.

(作用) 次に、この発明法に従い複合多段めっきを施す場合につ
いて、工程順に具体的に説明する。
(Function) Next, the case where composite multi-stage plating is performed according to the method of the present invention will be specifically explained in the order of steps.

第2〜4図にそれぞれ、多層被覆層薄帯の形成要領を図
解する。
FIGS. 2 to 4 illustrate the procedure for forming the multilayer coating layer ribbon, respectively.

第2図は、短冊状の合金薄帯を製造する場合で、図中番
号1は導電体基板、2〜4はそれぞれめっき槽であり、
基板1をめつき槽中に順次に浸漬させることによって複
合多段めっきを施すわけである。
FIG. 2 shows the case of manufacturing a rectangular alloy ribbon, in which number 1 is a conductive substrate, 2 to 4 are plating baths,
Composite multi-stage plating is performed by sequentially immersing the substrate 1 into a plating bath.

第8図は、エンドレスベルト状基板を用いて長尺の合金
薄帯を製造する場合で、図中番号5がエンドレスベルト
からなる基板、6.7はめっき槽、8.9は洗浄槽、そ
して10は表面被覆装置であり、かかるめつきWJa*
’tまたは表面被覆装置10で基板5上に形成された多
層被覆層は、洗浄上′19を出たのちは(Mty−ル1
1によってはく離され、薄帯巻取り機12によってコイ
ルに巻取られることになる。
FIG. 8 shows a case where a long alloy ribbon is manufactured using an endless belt-shaped substrate, and in the figure, number 5 is a substrate made of an endless belt, 6.7 is a plating tank, 8.9 is a cleaning tank, and 10 is a surface coating device, and the plating WJa*
't or the multilayer coating layer formed on the substrate 5 by the surface coating device 10 is cleaned after leaving the '19
1 and then wound into a coil by a ribbon winder 12.

さらに第4図は、連続めっき法によって多層被覆層薄帯
18を作製する場合であって、基板14上にめっき層お
よびその他の表面被覆層を形成する要領は、第8図に示
したところと同じである。
Further, FIG. 4 shows a case where a multilayer coating layer ribbon 18 is produced by a continuous plating method, and the procedure for forming the plating layer and other surface coating layers on the substrate 14 is the same as that shown in FIG. 8. It's the same.

かくして得られた多層被覆層騎に溶体化処理を施して合
金成分の相互拡散を生じさせることにより、板厚方向に
おいても均質な合金薄帯とするわけである。
The thus obtained multilayer coating is subjected to solution treatment to cause interdiffusion of the alloy components, thereby producing an alloy ribbon that is homogeneous in the thickness direction as well.

かかる溶体化処理を、連続焼鈍法による短時間の均熱処
理で行う場合には、合金成分相互の拡散距離が短かくな
るように、各被覆層厚みを薄くして積層数を多くするこ
とが望ましく、一方パッチ焼鈍法による長時間の均熱処
理で行う場合には、各被覆層厚みを厚くして積層数を少
なくすることもできる。またかような溶体化処理は、一
般に高温で行う方が望ましいか、被ン層を構成する金属
のうち融点が最も低い金8が融解しない温度範囲で行う
必要がある。さらには隣接金属相互間で融点の低い共晶
体を生成するおそれが大きい場合には、その共晶点以下
の温度において隣接金属相互の拡散処理を施してより高
温の融点をもつ合金とし、順次高温域へ昇温させるよう
な手法で行うことが肝要である。なお溶体化処理の際の
8囲気は、中性または還元性とすることが望ましい。
When such solution treatment is performed by short-time soaking treatment using a continuous annealing method, it is desirable to reduce the thickness of each coating layer and increase the number of layers so that the mutual diffusion distance between alloy components is shortened. On the other hand, in the case of long-time soaking treatment by patch annealing, the thickness of each coating layer can be increased to reduce the number of laminated layers. In addition, such solution treatment is generally preferably performed at a high temperature, or needs to be performed in a temperature range in which gold 8, which has the lowest melting point among the metals constituting the coating layer, does not melt. Furthermore, if there is a strong possibility that a eutectic with a low melting point will be formed between adjacent metals, the adjacent metals are diffused at a temperature below the eutectic point to form an alloy with a higher melting point, and It is important to use a method that raises the temperature to a certain level. Note that the atmosphere during the solution treatment is preferably neutral or reducing.

ところで上記のようにして得られた合金芦督は、そのま
までも十分満足のいく特性をそなえているが、この発明
においては、より一層のvA能性の向上たとえば透磁率
や磁気異方性の向上さらにはヒステリシスカーブの角型
化を図るために、合金薄帯に各種熱処理たとえば規則格
子化焼鈍や磁場中1鈍などを施すことができる。
Incidentally, the alloy obtained as described above has sufficiently satisfactory properties as it is, but in this invention, it is necessary to further improve the vA performance, for example, to improve the magnetic permeability and magnetic anisotropy. Furthermore, in order to square the hysteresis curve, the alloy ribbon can be subjected to various heat treatments such as regular lattice annealing and magnetic field annealing.

さらには必要に応じて、結晶集合組織を「整するために
、溶体化処理後の合金薄帯に圧延、さらにはその後に熱
処理を施すこともできる。ただしここで施す圧延は、機
能性の向上に!Q5要な唯一回の圧延に留める必要があ
る。なお得られる合金が難加工性であり、しかも圧延を
施した方が好ましい場合には、溶体化処理前の多層被覆
層薄帯の段階で圧延を加え、ついで再結晶化と合金化と
を兼ねた熱処理を掩すようにしてもよい。
Furthermore, if necessary, the alloy ribbon after solution treatment can be rolled and then heat treated in order to improve the crystal texture. To!Q5 It is necessary to limit the rolling to only one time.If the obtained alloy is difficult to process and it is preferable to carry out rolling, the multi-layered coating layer ribbon stage before solution treatment. It is also possible to apply rolling and then perform heat treatment that serves as both recrystallization and alloying.

かくして従来技術では、工業的規模での生産が困難ある
いは不可能であった板厚数μm〜100μm程度の極薄
ないし超極薄の薄帯が、工業的規梗で安価にしかも効率
よく製造され得るようになったのである。
In this way, ultra-thin or ultra-thin ribbons with thicknesses of several μm to 100 μm, which were difficult or impossible to produce on an industrial scale using conventional techniques, can now be produced inexpensively and efficiently on an industrial scale. I started getting it.

(実施例) 実施例1 厚み0.6朋、幅500藺、長さ10mのオーステナイ
ト系ステンレス鋼帯をエンドレスベルト状にしてから、
その表面に導電性カーボンブラックを塗布してはく離を
良好にしたものを基板として準備した。ついで第8図に
示したような装置を用いて、第1めっき槽においてスル
ファミン酸ニッケル浴によるNiめつき、また第2めっ
き槽においては硫酸第1鉄および塩化第1鉄の混合浴に
よるFeめつきを行うものとし、上記したエンドレスベ
ルト状の基板にNiめつきとFeめつきとを交互に繰返
し施して、Ni −Feの複合多段めっき層を形成した
。なお各めっき層厚はそれぞれ1.0μmとし、それぞ
れ交互に5回づつ繰返して複合積層し、合計10段、1
02m厚のめつき層とした。
(Example) Example 1 An austenitic stainless steel strip with a thickness of 0.6 mm, a width of 500 mm, and a length of 10 m was made into an endless belt, and then
A substrate was prepared by applying conductive carbon black to the surface to improve peelability. Next, using the apparatus shown in Fig. 8, Ni plating is carried out using a nickel sulfamate bath in the first plating tank, and Fe plating is carried out using a mixed bath of ferrous sulfate and ferrous chloride in the second plating tank. Ni plating and Fe plating were alternately and repeatedly applied to the endless belt-shaped substrate described above to form a Ni-Fe composite multi-stage plating layer. The thickness of each plating layer was 1.0 μm, and composite lamination was performed by repeating each layer alternately 5 times, for a total of 10 layers, 1
The plated layer was 0.2 m thick.

その後この複合多段めっき層からなる薄帯を、基板から
はぎ取り、ついで連続焼鈍炉において、2%H,ガス残
部1rガスからなる雰囲気中で1150”C,10分間
の溶体化処理を施してから急冷し、厚み10μm1幅5
00馴、長さ101nで514Ni −49%Feの組
成になる合金NW!とした。
After that, the thin strip consisting of this composite multi-stage plating layer is peeled off from the substrate, and then subjected to solution treatment in a continuous annealing furnace at 1150"C for 10 minutes in an atmosphere consisting of 2% H and the remainder 1R gas, and then rapidly cooled. and thickness 10 μm 1 width 5
Alloy NW with a composition of 514Ni -49%Fe with a length of 101n and a length of 101n! And so.

得られた合金薄帯の成分バラツキは±1%以内、また板
厚変動は士F3%以内であった。
The variation in composition of the obtained alloy ribbon was within ±1%, and the variation in thickness was within 3%.

実施例3 導電体基板として、板厚1.Qw、幅80c+a、長さ
1mで表面が平滑なオーステナイト系ステンレスZ板に
カーボンブラックを薄く塗布したものを用い、第2図に
示したような装置により、次のようにして多層被覆層を
形成した。
Example 3 As a conductive substrate, a plate thickness of 1. Using an austenitic stainless steel Z plate with a smooth surface Qw, width 80c+a, and length 1m with a thin coating of carbon black, a multilayer coating layer was formed as follows using the equipment shown in Figure 2. did.

すなわち被覆第1層として2.0μm厚のNiめつき、
第2層として0・4μm厚のyeめつきを施したのち、
真空蒸着法によってMOを0.152m厚に積層し、つ
いで第4層として0.4μm厚のyeめつきおよび第5
層として2.0μm厚のN1めっきを施すことにより、
合計厚みで約5μmの多層被覆層とした。なおNiめつ
きおよびF13めっきのめつき浴としては、実施例1と
同じものを使用した。
That is, Ni plating with a thickness of 2.0 μm as the first coating layer,
After applying 0.4 μm thick ye plating as the second layer,
MO was laminated to a thickness of 0.152 m using a vacuum evaporation method, and then a 0.4 μm thick layer of ye plating was applied as the fourth layer and a fifth layer was layered.
By applying 2.0 μm thick N1 plating as a layer,
The multilayer coating had a total thickness of approximately 5 μm. Note that the same plating baths as in Example 1 were used for Ni plating and F13 plating.

その後、この多層被覆層を基板からはく離して得た薄帯
を、焼鈍側板間に20枚積み重ねて溶体化処理を施した
。この積層の際には焼鈍分離剤としてアルミナフラワー
を用いた。また溶体化処理は、バッチ炉を用い、@量の
N3を含むArガス雰囲気中で1250″C,1時間の
焼鈍により行った0得られた厚み5μmという超極薄の
Fe −Ni −MO合金′W7帯の分析結果は、15
 % Fe −80%N1−5%MOの組成であって、
スーパーマロイ(Supermalloy )と呼ばれ
る高透磁率軟磁性材料と同一組成であった。
Thereafter, 20 thin strips obtained by peeling off this multilayer coating layer from the substrate were stacked between annealed side plates and subjected to solution treatment. During this lamination, alumina flour was used as an annealing separator. The solution treatment was performed using a batch furnace and annealing at 1250''C for 1 hour in an Ar gas atmosphere containing @ amount of N3. 'The analysis result of W7 band is 15
%Fe-80%N1-5%MO,
It had the same composition as a high permeability soft magnetic material called Supermalloy.

実施例8 導電体基板としては、厚み0.5!、幅800IIJ1
1長さ100mのオーステナイト糸ステンレス鋼フープ
を用い、その表面に予め導電性カーボンブラックをアル
コールに懸濁させたものを塗布乾燥させて、表面のめつ
き性とはく離とを改善しておいたO めっき工程は、第4図に示したような連続めっき装置を
用いるものとし、 0第1めっき層:硫酸第1鉄と塩敢第1鉄との混合浴、
1reめっき6.0μm厚 0第2めつきJ9j :硫酸コバルト浴COめつき2.
7μm厚 0第8めっき層:スルファミン耐ニッケル浴Niめつき
1.5μm厚 0第4めっき層:硫!l!i5鋼浴Ouめつきo、a 
μm厚のようにそれぞれC4節した。また第2めっき槽
と第8めっき槽との間に、真空蒸着法によってIW層厚
み2.0μmのA!蒸着を掩すべく、連続真空蒸着装置
を組み込んだ。
Example 8 As a conductive substrate, the thickness is 0.5! , width 800IIJ1
1. Using an austenitic thread stainless steel hoop with a length of 100 m, a suspension of conductive carbon black in alcohol was coated on the surface of the hoop and dried to improve the surface's surface plating and peeling. The plating process uses a continuous plating apparatus as shown in Fig. 4.0 First plating layer: a mixed bath of ferrous sulfate and ferrous salt;
1re plating 6.0 μm thickness 0 2nd plating J9j: Cobalt sulfate bath CO plating 2.
7 μm thickness 0 8th plating layer: Sulfamine nickel-resistant bath Ni plating 1.5 μm thickness 0 4th plating layer: Sulfur! l! i5 steel bath o,a
Each C4 section was made to have a thickness of μm. Moreover, between the second plating tank and the eighth plating tank, an IW layer with a thickness of 2.0 μm is formed using a vacuum evaporation method. A continuous vacuum evaporation device was installed to cover the evaporation process.

被グ処理は、第1めっき層から始めて@4めつき槽まで
通板し、電気めっきと真空蒸着とを上記の各被雅厚みま
で施したのち、今度は第4めっき暢から第1めっき槽ま
で逆順に一気めっき、74空恭着を弓度施した。
The coating process begins with the first plating layer and passes through to the 4th plating tank, and then electroplating and vacuum deposition are performed to the above-mentioned thicknesses, and then from the 4th plating layer to the 1st plating tank. I plated it all at once in reverse order and applied 74 kukyogi.

得られた多層被覆層の構成は、第1層から7顎に、Fe
  6.074m  −002,7pm  −A/  
2.0.4m  −Ni  1.5μm  −Ou  
O,6pm  −N11.5  pm  −1112,
0pm  −O。
The structure of the obtained multilayer coating layer was as follows: from the first layer to the seventh layer, Fe
6.074m -002,7pm -A/
2.0.4m -Ni 1.5μm -Ou
O,6pm -N11.5pm -1112,
0pm-O.

2.7μm −B’e a、oμmのとおりであった。It was as follows: 2.7 μm - B'e a, o μm.

この多層被覆層を基板からはく離したのち、焼鈍分阿剤
とし゛Cアルミナフラワーを散布してからコイルに巻取
った。
After this multilayer coating was peeled off from the substrate, C alumina flour was sprinkled as an annealing thickening agent, and the product was wound into a coil.

合金化のための溶体化処理は、バッチ炉を用い微量H8
を含むIr雰囲気中で行ったが、昇温途中でAノの融点
以下の640°Cで10時間保定して、より融点の高い
kl −IJi −Co合金を形成させたのち、Igs
o″Cまで除熱昇温して5時間保定することによって板
厚方向における合金成分の均一化を図るヒートパターン
により実施した。
Solution treatment for alloying uses a batch furnace with a trace amount of H8
During heating, the temperature was maintained at 640°C below the melting point of A for 10 hours to form a kl-IJi-Co alloy with a higher melting point.
The test was carried out using a heat pattern in which the temperature was removed to 0''C and maintained for 5 hours to make the alloy components uniform in the thickness direction of the plate.

かくして得られた合金薄帯は、アルニコ5と呼ばれる永
久磁石成分とほぼ等しい51%1i’e −24%00
−18 % Ni−8%Al−il1%CUの組成を呈
していた。
The alloy ribbon thus obtained has a composition of 51%1i'e -24%00 which is almost equal to the permanent magnet component called Alnico 5.
-18%Ni-8%Al-il1%CU.

なおこの合金薄帯にはより一層の磁気異方性を与えるべ
く、溶体化処理後の冷却過程につき、1200〜900
℃間は急冷し、ついで900〜700”C間は1℃/S
の降温速度で徐冷しつつ2000 oeの磁場を加える
磁界冷却を施すと共に、800°Cに1時間保定して磁
界印荷効果を高める処理も加え、さらに590°Cに1
0時間保定してα用の成長を促すことにより、磁気只方
性に優れたアルニコ系永久磁石の極薄薄帯とした。
In order to give this alloy ribbon even more magnetic anisotropy, the cooling process after the solution treatment was conducted at 1200 to 900
Rapid cooling between ℃ and then 1℃/S between 900 and 700"C
We performed magnetic field cooling by applying a magnetic field of 2,000 oe while gradually cooling at a cooling rate of
By holding for 0 hours to promote the growth of α, an ultra-thin thin strip of alnico permanent magnet with excellent magnetic unidirectionality was obtained.

がかるアルニコ系永久磁石は、従来難加工性材料として
工業的規模での薄帯化は不可能と考えられていたもので
ある。
Alnico permanent magnets are difficult-to-process materials and were thought to be impossible to manufacture into thin strips on an industrial scale.

(発明の効果) かくしてこの発明によれば、従来R帯化が不可能または
困秤とされた難加工性の合金を含めて広汎な成分組成範
囲で、しかも板厚が100μm〜数μmという極薄ない
し餡極薄の合金薄帯を、工業的規模で安価にしかも効率
よく製造することができる。
(Effects of the Invention) Thus, according to the present invention, a wide range of compositions can be used, including difficult-to-process alloys that were conventionally considered impossible or difficult to form into R-bands, and the plate thickness is from 100 μm to several μm. Thin or ultra-thin alloy ribbons can be produced inexpensively and efficiently on an industrial scale.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に従う駒込工程のフローチャート、 第2図〜第4図はそれぞれ、この発明に従う多層被覆層
の形成に用いて好適な被覆装置の模式図である。
FIG. 1 is a flowchart of the Komagome process according to the present invention, and FIGS. 2 to 4 are schematic diagrams of a coating apparatus suitable for use in forming a multilayer coating layer according to the present invention.

Claims (1)

【特許請求の範囲】 1、導電体基板上に2種以上の純金属および/または合
金から成る多層被覆層を形成させたのち、該被覆層を基
板上からはく離し、ついで得られた多層被覆層薄帯に溶
体化処理を施すことを特徴とする合金薄帯の製造方法。 2、導電体基板上に2種以上の純金属および/または合
金から成る多層被覆層を形成させたのち、該被覆層を基
板上からはく離し、ついで得られた多層被覆層薄帯に溶
体化処理を施すに際し、その前または後において圧延お
よび/または熱処理を施すことを特徴とする合金薄帯の
製造方法。 3、多層被覆層の形成手段が、電気めっき法である特許
請求の範囲第1または2項記載の方法。 4、多層被覆層の形成手段が、電気めっき法とその他の
表面被覆法との組合わせになる特許請求の範囲第1また
は2項記載の方法。
[Claims] 1. After forming a multilayer coating layer made of two or more types of pure metals and/or alloys on a conductor substrate, the coating layer is peeled off from the substrate, and then the obtained multilayer coating A method for manufacturing an alloy ribbon, characterized by subjecting the layered ribbon to solution treatment. 2. After forming a multilayer coating layer made of two or more types of pure metals and/or alloys on a conductive substrate, the coating layer is peeled off from the substrate, and then the obtained multilayer coating layer ribbon is formed by solution treatment. A method for producing an alloy ribbon, which comprises rolling and/or heat treatment before or after the treatment. 3. The method according to claim 1 or 2, wherein the means for forming the multilayer coating layer is electroplating. 4. The method according to claim 1 or 2, wherein the means for forming the multilayer coating layer is a combination of electroplating and other surface coating methods.
JP59206981A 1984-10-04 1984-10-04 Production of thin alloy strip Pending JPS6187889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59206981A JPS6187889A (en) 1984-10-04 1984-10-04 Production of thin alloy strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59206981A JPS6187889A (en) 1984-10-04 1984-10-04 Production of thin alloy strip

Publications (1)

Publication Number Publication Date
JPS6187889A true JPS6187889A (en) 1986-05-06

Family

ID=16532196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59206981A Pending JPS6187889A (en) 1984-10-04 1984-10-04 Production of thin alloy strip

Country Status (1)

Country Link
JP (1) JPS6187889A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247590A (en) * 1988-03-30 1989-10-03 Mitsubishi Rayon Co Ltd Amorphous alloy
CN102839398A (en) * 2011-06-23 2012-12-26 加藤聡一郎 Manufacturing method and manufacturing device for metal foil
JP5175992B1 (en) * 2012-07-06 2013-04-03 Jx日鉱日石金属株式会社 Ultrathin copper foil, method for producing the same, and ultrathin copper layer
WO2013057772A1 (en) * 2011-10-17 2013-04-25 株式会社 ベアック Method for producing perforated metal foil
JP5347074B1 (en) * 2013-01-17 2013-11-20 Jx日鉱日石金属株式会社 Ultra-thin copper foil and manufacturing method thereof, ultra-thin copper layer, and printed wiring board

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01247590A (en) * 1988-03-30 1989-10-03 Mitsubishi Rayon Co Ltd Amorphous alloy
CN102839398A (en) * 2011-06-23 2012-12-26 加藤聡一郎 Manufacturing method and manufacturing device for metal foil
WO2012176883A1 (en) * 2011-06-23 2012-12-27 旭技研株式会社 Manufacturing method and manufacturing device for metal foil
JPWO2012176883A1 (en) * 2011-06-23 2015-02-23 旭技研株式会社 Metal foil manufacturing method and manufacturing apparatus
WO2013057772A1 (en) * 2011-10-17 2013-04-25 株式会社 ベアック Method for producing perforated metal foil
WO2013058289A1 (en) * 2011-10-17 2013-04-25 株式会社 ベアック Method for producing perforated metal foil
JP5175992B1 (en) * 2012-07-06 2013-04-03 Jx日鉱日石金属株式会社 Ultrathin copper foil, method for producing the same, and ultrathin copper layer
KR101340828B1 (en) * 2012-07-06 2013-12-11 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Ultra-thin copper foil and method of manufacturing the same, and ultra-thin copper layer
WO2014006781A1 (en) * 2012-07-06 2014-01-09 Jx日鉱日石金属株式会社 Ultrathin copper foil, method for producing same, and ultrathin copper layer
US9930776B2 (en) 2012-07-06 2018-03-27 Jx Nippon Mining & Metals Corporation Ultrathin copper foil and method of manufacturing the same, and ultrathin copper layer
JP5347074B1 (en) * 2013-01-17 2013-11-20 Jx日鉱日石金属株式会社 Ultra-thin copper foil and manufacturing method thereof, ultra-thin copper layer, and printed wiring board

Similar Documents

Publication Publication Date Title
KR101554217B1 (en) 100-- AMORPHOUS Fe100-a-bPaMb ALLOY FOIL AND METHOD FOR ITS PREPARATION
US5435903A (en) Process for the electrodeposition of an amorphous cobalt-iron-phosphorus alloy
US6346181B1 (en) Electroplating process for preparing a Ni layer of biaxial texture
US3512946A (en) Composite material for shielding electrical and magnetic energy
Bennett et al. Magnetic properties of electrodeposited copper-nickel composition-modulated alloys
JPS6187889A (en) Production of thin alloy strip
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
US2792340A (en) Magnetic materials
JPH02129395A (en) Flaw resistant nickel-plated steel sheet and production thereof
JPH01268004A (en) R-tm-b permanent magnet with improved corrosion resistance and manufacture thereof
JP2827861B2 (en) Grain-oriented electrical steel sheet
KR20060002467A (en) Fabrication methods of high silicon-iron sheet by electrodeposition process for electrical applications
JPS62192560A (en) Amorphous alloy foil for magnetic core excellent in space factor and its production
JP2599526B2 (en) Copper-iron-based metal sheet excellent in spring limit value and strength with small characteristic anisotropy and method for producing the same
JP3092930B2 (en) Ni, Cu coated cold rolled steel sheet and method for producing the same
JP3274409B2 (en) Grain-oriented electrical steel sheet with excellent coating adhesion and extremely low iron loss, and method for producing the same
JPH0218996A (en) Amorphous alloy material plated with metal and plating method
KR100406391B1 (en) The method of manufacturing non-oriented electrical steel with better core loss at high frequency
JP2001192863A (en) Copper alloy material and producing method therefor
JP2018508648A (en) Fe-P-Cr alloy sheet and method for producing the same
JPH06132128A (en) Amorphous soft magnetic lamination film
JPS6179722A (en) Manufacture of grain oriented magnetic steel sheet having superior iron loss property and high magnetic flux density
KR20020087290A (en) A Ni-Fe ALLOY COATING STEEL SHEET FOR SHEILDING ELECTROMAGNETIC WAVE AND A MANUFACTURING METHOD THEREFOR
JPH03199391A (en) Amorphous alloy and production thereof
JPS61243119A (en) Manufacture of silicon steel sheet suitable for use as base of printed board