JPS6179722A - Manufacture of grain oriented magnetic steel sheet having superior iron loss property and high magnetic flux density - Google Patents

Manufacture of grain oriented magnetic steel sheet having superior iron loss property and high magnetic flux density

Info

Publication number
JPS6179722A
JPS6179722A JP59200670A JP20067084A JPS6179722A JP S6179722 A JPS6179722 A JP S6179722A JP 59200670 A JP59200670 A JP 59200670A JP 20067084 A JP20067084 A JP 20067084A JP S6179722 A JPS6179722 A JP S6179722A
Authority
JP
Japan
Prior art keywords
annealing
steel
flux density
magnetic flux
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59200670A
Other languages
Japanese (ja)
Other versions
JPH0663029B2 (en
Inventor
Motoharu Nakamura
中村 元治
Kikuji Hirose
広瀬 喜久司
Masashi Tanida
谷田 雅志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20067084A priority Critical patent/JPH0663029B2/en
Publication of JPS6179722A publication Critical patent/JPS6179722A/en
Publication of JPH0663029B2 publication Critical patent/JPH0663029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain the titled steel sheet, by applying precipitation annealing, cold rolling and decarburization annealing to a hot rolled plate of Si steel having a specified compsn., then finish annealing said sheet by using annealing separator agent composed of MgO having specified B content. CONSTITUTION:The hot rolled plate made of Si steel contg. 0.085% C, 2.0-4.0% Si, 0.03-0.15% Mn, 0.01-0.05% acid soluble Al, 0.005-0.010% N, 0.03-0.5% Sn, 0.02-0.3% Cu is precipitation annealed, next, cold rolled to <=0.23mm the final sheet thickness then decarburization annealed. Successively, annealing separator agent composed mainly of MgO having controlled 400ppm B content is coated on said sheet to finish anneal it. By this method, the titled thin steel sheet having high Goss orientation accumulated degree, fine secondary recrystallized grains and superior surface film is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は鉄損特性の優れた高磁束密度方向性電磁鋼板の
製造方法に関するものでおる。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a high magnetic flux density grain-oriented electrical steel sheet with excellent core loss characteristics.

(従来の技術) 方向性電磁鋼板は軟磁性材料として主にトランス、その
他の電気機器の鉄芯材料として使用されるもので、磁気
特性として励磁特性と鉄損特性が良好でなくてはならな
い。磁気特性の良好な材料゛を得るには (1)stzを増加させて固有抵抗を高める。
(Prior Art) Grain-oriented electrical steel sheets are soft magnetic materials that are mainly used as iron core materials for transformers and other electrical equipment, and must have good magnetic properties in terms of excitation properties and iron loss properties. In order to obtain a material with good magnetic properties, (1) stz is increased to increase the specific resistance.

(2)  製品板厚を薄くする。(2) Reduce the thickness of the product board.

(3)銹板の二次再結晶粒径を小さくする。(3) Reduce the secondary recrystallized grain size of the rust plate.

(4)二次再結晶粒のGoIIg方位年精方位高精度。(4) High precision of GoIIg orientation of secondary recrystallized grains.

等が咲けられる。etc. can bloom.

Goss万位集積度の向上は一回冷間圧延法の開発によ
シ大幅に伸び、現在では磁束密度が理論値の95%を超
えるものまで製造されるようになって来ておシ、これに
伴なって鉄損特性も大幅に向上したがこのGo8s方位
集積度の向上だけではさらに鉄損特性を改善することh
難しく、上記の固有抵抗の増大、二次再結晶粒の微細化
、および製品板厚の薄手化を図る技術が必要となって来
ている。
The improvement in Gossian density has been greatly improved by the development of the single cold rolling method, and now products with magnetic flux density exceeding 95% of the theoretical value are being manufactured. Along with this, the iron loss characteristics also improved significantly, but it is not possible to further improve the iron loss characteristics by simply increasing the Go8s orientation density.
However, it has become necessary to develop techniques for increasing the resistivity, making secondary recrystallized grains finer, and reducing the thickness of product sheets.

これらの中で、二次再結晶粒の微細化は一回冷間圧延法
のようなi&終三下率の高い材料では重要な問題でGa
55万位集積度の向上による鉄損特性の改善も結晶粒径
の増大によυ意外に鉄損特性が向上しないという難点が
おった。
Among these, the refinement of secondary recrystallized grains is an important problem in materials with a high i & final third reduction ratio such as the one-time cold rolling method.
Even though the iron loss characteristics were improved by increasing the degree of integration by 550,000 degrees, there was a problem in that the iron loss characteristics did not improve as expected due to the increase in grain size.

こうした難点を解決するために特開昭53−13472
2号公報に記載きれるような重量のALlfr:含んだ
珪素鋼中にSnを添加する方法が提案はれた。この微量
のAlを含んだ珪素欽中にSnを添加する方法によシ二
次再結晶の微細化の目的は達成されたが、このSnによ
って表面皮膜が劣化し鉄損低減の効果が充分に得られな
いという問題点がわυ、これを解決する技術として特開
昭58−23414号公報に記載される微量のAlとS
nを含んだ珪素鋼溶鋼中にCuを添加する方法が提案さ
れ、微細な二次再結晶粒を有し、かつ優れた表面皮膜を
有する高磁束密度方向性電磁針板の製造が可能とかった
In order to solve these difficulties,
A method was proposed in which Sn was added to silicon steel containing a weight of ALlfr as described in Publication No. 2. Although the purpose of making the secondary recrystallization finer was achieved by adding Sn to the silicon solution containing a small amount of Al, the surface film deteriorated due to this Sn, and the effect of reducing iron loss was not sufficiently achieved. There is a problem that it is not possible to obtain
A method of adding Cu to molten silicon steel containing n was proposed, making it possible to manufacture a high magnetic flux density oriented electromagnetic needle plate with fine secondary recrystallized grains and an excellent surface coating. Ta.

一方、昨今のエネルギコストの急激な高騰からさらに鉄
損特性の優れた高磁束密度方向性電磁鋼板の供給が必要
とされ、この要求に答えるべく製品板厚の薄手化の傾向
が強まり、従来の0.3011mから近年、板厚0.2
3 Inのものまで製造されるようになって来ている。
On the other hand, due to the recent rapid rise in energy costs, there is a need to supply high magnetic flux density grain-oriented electrical steel sheets with even better iron loss characteristics.In order to meet this demand, there is a growing trend toward thinner product sheets, In recent years, the plate thickness has changed from 0.3011m to 0.2m.
Even 3 In products are now being manufactured.

(発明が解決しようとする問題点) ところが上記CuとSnの複合添加された珪素鋼素材に
よシ板厚0.23 fl以下の磁気特性の優れた高磁束
密度方向性!磁鋼板を1造するには、微細な二次再結晶
粒と優れた表面皮膜を得るのにCuとSnの複合添加は
必須であるが、板厚が薄くなるにつれて方向性が低下し
て期待される鉄損特性の向上が充分に得られない場合が
あった。
(Problems to be Solved by the Invention) However, the above-mentioned silicon steel material with a composite addition of Cu and Sn has excellent magnetic properties and high magnetic flux density directionality when the plate thickness is 0.23 fl or less! In order to produce a single magnetic steel sheet, combined addition of Cu and Sn is essential to obtain fine secondary recrystallized grains and an excellent surface film, but as the sheet thickness decreases, the directionality decreases, which is expected. In some cases, the improvement in iron loss characteristics that was desired could not be obtained sufficiently.

不発明は上記CuとSnを複合添加した珪素鋼の問題点
を除去し、製品板厚が0.23 u以下でGosg方位
集積度が高く微細な二次再結晶粒を有しかつ優れた表面
皮膜を有する鉄損特性の優れた高磁束密度方向性を磁鋼
板の製造方法を提供することを目的とするものである。
The invention eliminates the problems of silicon steel with a composite addition of Cu and Sn, and produces a product with a thickness of 0.23 μ or less, a high Gosg orientation concentration, fine secondary recrystallized grains, and an excellent surface. The object of the present invention is to provide a method for manufacturing a magnetic steel sheet having a coating and having high magnetic flux density directionality and excellent iron loss characteristics.

(問題点を解決するための手段) 本発明の基本構成は以下の如くである。(Means for solving problems) The basic configuration of the present invention is as follows.

すなわち、C:01085%以下、 Sl : 2.0
〜4.0jX 、 Mn:0.03〜0.15%、S:
0.01〜0.05%、酸可溶Al:0.01〜0.0
5%、 N : 0.005〜0.010%、 Sn 
: 0.03〜0.5%+Cu:0.02〜0.3%を
含有する珪素鋼素材を熱間圧延して中間厚みの熱延板と
し、前記熱延板に対し析出焼鈍をし、次いで最終板厚を
0.23 u以下とする冷間圧延工程と、脱炭焼鈍工程
、焼鈍分離剤塗布工程および仕上焼鈍工程を施すことか
ら成る一連の高磁束密度方向性電′fJi銀板の製造工
程において、前記焼鈍分離剤塗布工程で硼素含有量を硼
素として400ppm未満にbaしたMgOを主匠分と
する焼鈍分離剤を使用することを特徴とする特許れた高
磁束密度方向性電磁鋼板の製造方法である。
That is, C: 01085% or less, Sl: 2.0
~4.0jX, Mn: 0.03~0.15%, S:
0.01-0.05%, acid-soluble Al: 0.01-0.0
5%, N: 0.005-0.010%, Sn
: A silicon steel material containing 0.03 to 0.5% + Cu: 0.02 to 0.3% is hot-rolled into a hot-rolled plate with an intermediate thickness, and the hot-rolled plate is subjected to precipitation annealing, Next, a series of high magnetic flux density directional electric 'fJi silver plates were prepared by performing a cold rolling process to reduce the final plate thickness to 0.23 u or less, a decarburization annealing process, an annealing separator coating process, and a final annealing process. A patented high-magnetic-flux-density grain-oriented electrical steel sheet characterized in that, in the manufacturing process, an annealing separator whose main component is MgO with a boron content of less than 400 ppm as boron is used in the annealing separator application step. This is a manufacturing method.

次に本発明の方法をさらに詳細に説明する。Next, the method of the present invention will be explained in more detail.

まず、本発明を底すに至った基礎的実験事実について群
間する。
First, the basic experimental facts that led to the conclusion of the present invention will be discussed.

(実験1) 本発明者FiC : 0.067%, Sl : 32
3%, Mn : 0.0 7%。
(Experiment 1) Inventor FiC: 0.067%, Sl: 32
3%, Mn: 0.07%.

S:0.03%,酸可溶Al: 0.03 % 、 N
 : 0.007%,Sn:0.1%. Cu : 0
.09 %  を含む珪素鋼素材を常法により2.0龍
の板厚に熱間圧延し、1100℃で4分間析出焼鈍を施
した後、最終板厚として0.30〜0.081℃mの範
囲で冷間圧延した。次いで、この冷延板を820℃で4
分間湿水素中で脱炭焼鈍した後、該銅板表面に従来よp
使用石れているMgOを主成分とする焼鈍分間4剤スラ
リーを乾燥後の重量で6?/Rとなるよう塗布し、仕上
焼鈍を施した.仕上焼鈍はまず乾燥窒素中600℃で5
時間、脱水のための均熱を施し、次いで20%N2+8
0%H2中、1200℃ まで20℃/Hrで昇温した
後、純水素に雰囲気を切力換えて10時間純化焼鈍を施
し、得られた製品の磁気特性を調べた。この結果を第1
図に示す。
S: 0.03%, acid soluble Al: 0.03%, N
: 0.007%, Sn: 0.1%. Cu: 0
.. A silicon steel material containing 0.09% was hot-rolled to a thickness of 2.0 mm by a conventional method and subjected to precipitation annealing at 1100℃ for 4 minutes, and then a final thickness of 0.30 to 0.081℃m was applied. Cold rolled in the range. Next, this cold-rolled plate was heated at 820°C for 4
After decarburizing annealing in wet hydrogen for minutes, the surface of the copper plate was
The weight of the four-agent slurry used for annealing, which is mainly composed of MgO, after drying is 6? /R, and finish annealing was performed. Finish annealing is first performed at 600℃ in dry nitrogen for 5
soak for dehydration, then 20%N2+8
After raising the temperature to 1200° C. at a rate of 20° C./Hr in 0% H2, the atmosphere was changed to pure hydrogen and purification annealing was performed for 10 hours, and the magnetic properties of the obtained product were examined. This result is the first
As shown in the figure.

(実験2) オた、板厚の差のみてよる鉄損特性の変化を調査するた
めに上記の方法で製造した板厚0.30+wの製品から
磁束密度がB、。で1.95 (T)、鉄損がw171
50で0.95(WAg)のものを採取して、塩酸中で
グラス皮膜を除去し、次いでリン酸−過酸化水素混液中
にて化学研磨して板厚を薄くした後、850 ℃で3分
間湿水素中で鋼板表面に5I02を生成させるために焼
鈍し、この鋼板表面にMgOを主成分とする焼鈍分離剤
を塗布・乾燥した後、グラス皮膜再生のため水素中12
000で5時間焼鈍した。この結果全第1図に(ム)で
示した。
(Experiment 2) Additionally, in order to investigate changes in iron loss characteristics due to differences in plate thickness, a product with a plate thickness of 0.30+W manufactured using the above method had a magnetic flux density of B. 1.95 (T), iron loss w171
50 and 0.95 (WAg) was collected, the glass film was removed in hydrochloric acid, and then chemically polished in a phosphoric acid-hydrogen peroxide mixture to reduce the plate thickness, and then heated at 850 °C for 3 The steel plate surface is annealed in wet hydrogen for 1 minute to generate 5I02, and after applying and drying an annealing separation agent containing MgO as a main component, 12 minutes in hydrogen to regenerate the glass film.
000 for 5 hours. The results are shown in (m) in Figure 1.

第1図よ)、通常工程で板厚の異なる高磁束密度方向性
i磁鋼板を製造した場合、板厚0.30 mから0.2
0 tmまでは板厚が?g−はど鉄損特性は向上するが
、板厚0.20 m以下では板厚が薄すほど鉄損特性が
劣化する。また、磁束密度も板厚0.20閣を境L(板
厚が薄いほど低下し、Goss方位集積度が悪くなるこ
とを示している。
(see Figure 1), when manufacturing high magnetic flux density directional i magnetic steel plates with different plate thicknesses in the normal process, the plate thickness varies from 0.30 m to 0.2 m.
What is the board thickness up to 0 tm? The iron loss characteristics of the g-shaped steel sheet improve, but when the plate thickness is 0.20 m or less, the thinner the plate thickness, the worse the iron loss characteristics. In addition, the magnetic flux density also decreases when the plate thickness reaches 0.20 mm (the thinner the plate is, the worse the Goss orientation integration degree is).

一方、板厚0.30 Kllの製品から化学研磨によっ
て板厚t[<した後、グラス皮膜を再生した場合には板
厚が59 くなるにつれて連続的に鉄損特性が向上して
いることから、二次再結晶が同様に進行した場合、すな
わち、GO811方位集積度、表面皮膜が同等ならば板
厚が薄いほど鉄損特性が良好でめシ、通常工程による板
厚0.2fl以下の製品では二次再結晶挙動が板厚0.
2011J1以上の場合と異なっていることが推足でき
る。そこで、本発明者はこの二次再結晶挙動の板厚によ
る差異の原因を解明するために、焼鈍分離剤塗布工程ま
でを上記と同一条件で実施し、仕上焼鈍の昇温途中で試
料音引き出して鋼中成分の内、インヒビターとして二次
再結晶に大きく寄与するCN)について化学分析を実施
した。
On the other hand, when a product with a thickness of 0.30 Kll was reduced to a thickness of t by chemical polishing and the glass film was regenerated, the iron loss characteristics continuously improved as the thickness increased to 59 mm. If the secondary recrystallization progresses in the same way, that is, if the GO811 orientation integration degree and surface coating are the same, the thinner the plate, the better the iron loss characteristics. In this case, the secondary recrystallization behavior occurs when the plate thickness is 0.
It can be concluded that this is different from the case of 2011J1 or higher. Therefore, in order to elucidate the cause of the difference in secondary recrystallization behavior depending on plate thickness, the present inventor carried out the annealing separation agent application process under the same conditions as above, and extracted the sample sound during the temperature rise during finish annealing. Among the components in the steel, chemical analysis was conducted on CN, which greatly contributes to secondary recrystallization as an inhibitor.

第2図(、)に鋼中のTotal N 、 第2図(b
)に鋼中にA7Nとして析出しているN (N ag 
 ALN)の温度による量的変化を示す。第2図(a)
 、 (b)より仕上焼鈍の昇温3A程において、二次
再結晶開始前の90010前後まではTotal N 
+ Nag ALNともに板厚による差は極めて小さい
が、通常、二次再結晶によるprimryGongが発
生すると考えられている950〜1050℃。
Figure 2 (,) shows the Total N in the steel, Figure 2 (b
) is precipitated in steel as A7N (N ag
Figure 2 shows quantitative changes in ALN) with temperature. Figure 2(a)
, From (b), when the temperature is raised to about 3 A during final annealing, Total N is around 90010 before the start of secondary recrystallization.
+ Nag Although the difference due to plate thickness is extremely small for both ALN, the temperature is usually 950 to 1050°C, where it is thought that primary Gong due to secondary recrystallization occurs.

さらにGosm粒の発達する1050℃以上の温度では
板厚0.23nの場合と比べて板厚が薄いほどTOta
lN、 N Jlll AINともに減少量が大きいこ
とが判明した。よって仕上焼鈍の昇温過程で板厚が薄い
材料はどより低温で、有効な二次再結晶を進行させるた
めに必要な強力なインヒビター気米がAlN C分解に
より失なわれやすいことにより、仕上焼鈍後のGa55
方位集積度が悪くなると考えられ、このインヒビターの
分解を抑えることによ)板厚の薄い素材の磁束V度の向
上が期待できる。
Furthermore, at temperatures above 1050°C where Gosm grains develop, the thinner the plate thickness is, the higher the TOta will be.
It was found that the amount of decrease was large for both IN and NJllAIN. Therefore, during the heating process of finish annealing, the strong inhibitory properties necessary for effective secondary recrystallization to proceed at lower temperatures are likely to be lost due to AlN C decomposition at lower temperatures for thinner materials. Ga55 after annealing
It is thought that the degree of azimuth integration deteriorates, and by suppressing the decomposition of this inhibitor, it is expected that the magnetic flux V degree of the thin material can be improved.

本発明@は上記インヒビターとしてのAlNの分解が板
厚の薄I/1素材はどより低温で起こシやすい原因につ
いて拝細な調査を実施した結果、仕上焼鈍昇温iA程に
おりて同一の温度では板厚の薄い素材はど鋼中のCB)
量が高くなっていることがわかった。第3図は上記実験
で得た試料の1025℃における表面層から深さ方向の
CB)の分布をIMA (イオンマイクログローブアナ
ライザ〕にょシ分析したaiでらシ、縦軸のイオン強f
fは槍出成旺箇1.000倍で求めたもので鋼中の〔B
〕の濃度に相当し、横軸のス・4ツタリング時間は板厚
に対して深さ方向の距離を表わして込る。第3図よう板
厚が0.27咽よシも大きい場合にはCB)はバックグ
ラク/ト。
The present invention@ has conducted a detailed investigation into the reason why the decomposition of AlN as the inhibitor is more likely to occur at low temperatures in thin I/1 material than in thin I/1 material. (CB in steel)
It was found that the quantity was high. Figure 3 shows the distribution of CB) in the depth direction from the surface layer at 1025°C of the sample obtained in the above experiment, analyzed by IMA (ion micro globe analyzer), and the ion intensity f on the vertical axis.
f is calculated by multiplying the weight by 1.000, and the [B
], and the horizontal axis represents the distance in the depth direction with respect to the plate thickness. As shown in Figure 3, if the board thickness is 0.27mm thick, the CB) will have a background.

に近く、鋼中にほとんど拡散して込々いが、板厚が0.
23 mから明確に鋼中への拡散が確認でき、板厚が薄
−tミど〔8〕の鋼中への拡散量が増加し浸入深さも大
きくなっていることが判明した。また、この鋼中のCB
)の形態を第3図に示したと同一の試料表面を非水溶媒
中で定電位!解し、析出物をEDX (エネルイ分散型
X線マイクロアナライザ)によシ同定した結果、BNT
あることが判明した。
It is almost diffused into the steel and is dense, but when the plate thickness is 0.
Diffusion into the steel was clearly confirmed from 23 m onwards, and it was found that the amount of diffusion into the steel with thinner plate thickness (T) [8] increased and the penetration depth also became larger. Also, CB in this steel
) The same sample surface as shown in Figure 3 is held at a constant potential in a non-aqueous solvent! The precipitates were identified using EDX (Enerui dispersive
It turns out that there is something.

以上の事実より、仕上焼鈍中の昇温過程において板厚の
薄い素材はどCB)が鋼中に拡散してBNを形成しやす
ぐ、このBNは AAN (s) + 旦= Al + BN (s)の
反応によシ生成するものと考えられ、二次再結晶を有効
に進行させるためのインヒビタとしての人びの分散析出
相が減少する結果、製品のGo118方位集積度が低下
し、鉄損特性を劣化するものと考えられる。
From the above facts, as soon as the thin material (CB) diffuses into the steel during the temperature rising process during final annealing to form BN, this BN becomes AAN (s) + Dan = Al + BN ( It is thought that this is produced by the reaction of s), and as a result of the decrease in the dispersed precipitated phase, which acts as an inhibitor for the effective progress of secondary recrystallization, the Go118 orientation integration degree of the product decreases, and the iron This is thought to deteriorate the loss characteristics.

上記の如く、高虫束密守方向性電磁鋼板の製造工程にお
いて、仕上焼鈍工程で板厚の1XA素材はど鋼中に〔B
〕が拡散して磁気特性を劣化することが判明したが、熱
間圧延工程から仕上焼鈍工程に至る各工程の内、鋼板表
面にCB)が供給される工程としては、通常、焼鈍分離
塗布工程のみである。
As mentioned above, in the manufacturing process of grain-oriented electrical steel sheets with high insect flux density, in the final annealing process, the 1XA material with a thickness of 1
] has been found to diffuse and deteriorate the magnetic properties, but among the steps from the hot rolling process to the final annealing process, the process in which CB) is supplied to the steel plate surface is usually the annealing separation coating process. Only.

一般Vc燐鈍分離剤として使用されるマグネシアは公知
の如く海水から採取したMg(OH)2を、700〜1
000℃の比較的低温で焼成して製造され仮焼マグネシ
アと呼ばれるものでおる。この仮焼マグネシアはその製
造方法の特徴から不可避不純物としてNa”、 CL、
 F−、So、” l B等を含んでおり、AlNをイ
ンヒビターとしている高磁束密度電磁鋼板では、特に焼
鈍分離剤中のCB〕會有沿を規制しており、たとえば特
公昭46−42298号公報では焼鈍分離剤に硼素ある
いは硼素化合物を添加して仕上焼鈍中IC鋼板に〔B″
lを積極的に拡散させて製品の磁気特性を改善する技術
が開示されているが本発明の如く板厚が0.23+c+
以下の薄い場合には、逆に磁気特性が劣化する。したが
って、上記莢験rn実より鋼材成分としてCu、 Sn
を含む板厚0.23jJ以下の素材でFi焼鈍分離剤中
のCB)を低減することが磁気特性の向上に必須である
ことが判明し、本発明を完成した。
Magnesia, which is used as a general Vc phosphorus dull separator, is a mixture of Mg(OH)2 collected from seawater and 700 to 1
It is produced by firing at a relatively low temperature of 000°C and is called calcined magnesia. Due to the characteristics of its manufacturing method, this calcined magnesia contains unavoidable impurities such as Na'', CL,
For high magnetic flux density electrical steel sheets containing F-, So, "I B, etc., and using AlN as an inhibitor, the presence of CB in the annealing separator is particularly regulated. For example, Japanese Patent Publication No. 46-42298 According to the publication, boron or a boron compound is added to the annealing separator and the IC steel sheet is treated with [B''] during final annealing.
A technique for improving the magnetic properties of products by actively diffusing l is disclosed, but as in the present invention, the plate thickness is 0.23+c+
If it is thinner than below, the magnetic properties will deteriorate on the contrary. Therefore, from the above-mentioned actual results, the steel components include Cu and Sn.
It was found that reducing CB) in the Fi annealing separator in a material with a plate thickness of 0.23 jJ or less that contains CB) is essential for improving magnetic properties, and the present invention was completed.

本発明者は、製品の磁気特性におよぼす焼鈍分離剤中の
CB)量の影響について調査した。まず実験】と同一素
材、同一条件で脱炭焼鈍工程までを施し、次いで焼鈍分
離剤として(B ) traceの細度99.9%Mg
Oスラリーに〔B〕源としてB2O3を[E)として対
MgO重蓋比で0〜11000ppの範囲で配合し、脱
炭焼鈍後の鋼板((乾燥後型iで片面当た96P/ff
1′となるよう塗布、乾燥した。次いで、実験1と同一
条件で、仕上焼鈍を施し、製品の磁気特性を創建した。
The present inventor investigated the influence of the amount of CB in the annealing separator on the magnetic properties of the product. First, the decarburization annealing process was performed using the same material and under the same conditions as in the experiment], and then (B) trace fineness 99.9% Mg was used as an annealing separator.
B2O3 as a [B] source was blended with the O slurry as [E] in a ratio of 0 to 11,000pp to MgO, and the steel plate after decarburization annealing ((96P/ff on one side with type i after drying) was added to the O slurry.
It was coated to give a coating thickness of 1' and dried. Next, finish annealing was performed under the same conditions as in Experiment 1 to improve the magnetic properties of the product.

この結果を第4図に示す。第4図よシ板厚0.27 a
m以上の素材では焼鈍分離剤中のCB)含有量が減少す
るにしたがって磁束密度は若干向上はするが、製品結晶
粒径が増すために、鉄損特性の向上が得られない。−万
、板厚が0.23 Nm以下の場合は焼鈍分離剤中のC
B)含有iが減少するにしたがって、磁束密度が向上す
るとともに鉄損特性が大きく向上し、CB)含有量が4
00 ppmよシ小さい領域で、実」λ2において得ら
れた第1図の結果と同等の鉄損特性が得られることが判
明した。
The results are shown in FIG. Figure 4: Plate thickness 0.27 a
For materials with a diameter of m or more, as the CB) content in the annealing separator decreases, the magnetic flux density improves slightly, but the iron loss characteristics cannot be improved because the product crystal grain size increases. -10,000, C in the annealing separator if the plate thickness is 0.23 Nm or less
B) As the i content decreases, the magnetic flux density improves and the iron loss characteristics greatly improve;
It has been found that in a region as small as 0.00 ppm, iron loss characteristics equivalent to the results shown in FIG. 1 obtained for the actual λ2 can be obtained.

よって、焼鈍分離剤中のCB)fLを400ppm未満
とすることによシはじめて、社中成分としてCu 、 
Snを含有する板厚0.23 PIF、以下の二次再結
晶が有効に進行し、微細かつGa55方位集fR度の商
い二次再結晶粒を有する鉄損特性の優れた高磁束密度方
向性1!ミ鋼板が得られ本発明の目的が連取される。
Therefore, by making CB)fL in the annealing separator less than 400 ppm, Cu,
Plate thickness 0.23 PIF containing Sn, the following secondary recrystallization progresses effectively, and high magnetic flux density directionality with excellent iron loss characteristics has fine secondary recrystallized grains with Ga55 orientation concentration fR degree 1! A steel plate is obtained, and the object of the present invention is achieved continuously.

次に本発明の限定理由について説明する。Next, the reasons for the limitations of the present invention will be explained.

CfdQ、085%を超すと、後工程の脱炭焼鈍に長時
間を要するので好ましくない。
If CfdQ exceeds 085%, it is not preferable because the post-process decarburization annealing takes a long time.

Slは20%未満では本発明の目的である低鉄損が得ら
れなく、−万4.0%を超すと冷延が困難とな9好まし
くない。
If the Sl content is less than 20%, the low iron loss which is the object of the present invention cannot be obtained, and if it exceeds -4.0%, cold rolling becomes difficult9, which is not preferable.

酸可溶Alは本匠分系の基本元素であシ、0.01〜0
05%の範囲上逸脱すると二次再結晶が不安定となる。
Acid-soluble Al is a basic element of Honsho branch system, 0.01~0
If it deviates from the 0.05% range, secondary recrystallization becomes unstable.

MnおよびSはMnSを形成させるために必要な元素で
ちり、Mnの適量は0.03〜0.15 %、好ましく
け0.05〜0.10%の範囲がよい。Sは005%を
超すと純化焼鈍時での脱硫が困難となり好ましくない。
Mn and S are elements necessary to form MnS, and the appropriate amount of Mn is in the range of 0.03 to 0.15%, preferably 0.05 to 0.10%. If S exceeds 0.005%, desulfurization during purification annealing becomes difficult, which is not preferable.

一方、0.01%未満ではインヒビターとしてのMnS
の量が不足する。
On the other hand, at less than 0.01%, MnS acts as an inhibitor.
amount is insufficient.

Snは0.03〜0.5%、好ましくは0.05〜0.
20%、Cuは0.02〜0.3%、好ましくは0.0
5〜0.15%の範囲である。これは二次再結晶粒の微
細化に有効で、このfLは0.03%未満では効果が弱
く、−万0.5%を超すと、Cuとの複合添加でおるこ
ともあって圧延性および酸洗性が劣化する。−万、Cu
はグラス皮膜の形成には優れた元素で、密着性の良い皮
膜が得られるが、単独で添加すると二次再結晶粒が粗大
化するため鉄損特性が劣化する。このCt+の量は0.
02%未満ではグラス皮膜の改善に効果が少なく、−万
、0.3%を超すと磁気特性の面から好ましくない。
Sn is 0.03 to 0.5%, preferably 0.05 to 0.0%.
20%, Cu 0.02-0.3%, preferably 0.0
It is in the range of 5 to 0.15%. This is effective in refining secondary recrystallized grains, and if this fL is less than 0.03%, the effect is weak, and if it exceeds -0.5%, it may be combined with Cu, resulting in poor rolling properties. and the pickling properties deteriorate. -10,000, Cu
is an excellent element for forming a glass film, and a film with good adhesion can be obtained, but when added alone, the secondary recrystallized grains become coarse and the core loss characteristics deteriorate. This amount of Ct+ is 0.
If it is less than 0.02%, it will have little effect on improving the glass film, and if it exceeds 0.3%, it is unfavorable from the viewpoint of magnetic properties.

製品板厚はQ、23+ut以下、好ましくは0.231
Em〜0.10tKが適しておシ、0.23寓翼よシ板
厚が厚いものでは方位(Go■万位集積度)、結晶粒径
を改善後にも現行工程以上の鉄損特性の改善は困難であ
る。
Product board thickness is Q, 23+ut or less, preferably 0.231
Em ~ 0.10 tK is suitable, and for those with a thick plate thickness of 0.23 mm, even after improving the orientation (Go 10,000 degree of integration) and grain size, the iron loss characteristics can be improved more than the current process. It is difficult.

焼鈍分離剤中のCB]含有ftl”t 400 ppm
未満、好1しく l−1300ppm未満が好ましく、
400pprn以上では、二次再結晶粒のQoss方位
集積度が低く板厚減少分による鉄損特性の改善が小さい
ため好ましくない。
CB] content in annealing separator: 400 ppm
less than 1, preferably less than 1300 ppm,
If it is 400 pprn or more, the degree of Qoss orientation integration of the secondary recrystallized grains is low and the improvement in iron loss characteristics due to the reduction in plate thickness is not favorable.

川、上の如く、本発明の目的は製鋼工程におけるmm成
分の組成、冷延工程における板厚、および焼鈍分離剤塗
布工程におけるMgOを主成分とする焼鈍分離剤中の微
量元素を限定することによりはじめて達成されるが、上
記第1発明の方法と仕上焼鈍工程における焼鈍温度、雰
囲り条件との組合せにより、さらに優れた鉄損特性を有
する高磁束密度方向性電磁鋼板の製造が可能であること
を見出した。
As mentioned above, the purpose of the present invention is to limit the composition of the mm component in the steelmaking process, the plate thickness in the cold rolling process, and the trace elements in the annealing separator mainly composed of MgO in the annealing separator coating process. However, by combining the method of the first invention with the annealing temperature and atmospheric conditions in the final annealing step, it is possible to produce a high magnetic flux density grain-oriented electrical steel sheet with even better core loss characteristics. I discovered something.

すなわち、第2発明は、上記、仕上焼鈍工程において二
次再結晶を780〜1000℃の温度範囲内で、かつ、
Sn、 Cuに対して中性の雰囲気中で完了させること
を特徴とする第1発明の方法でおる。
That is, the second invention performs secondary recrystallization in the above-mentioned final annealing step within a temperature range of 780 to 1000°C, and
The method of the first invention is characterized in that the process is completed in an atmosphere that is neutral to Sn and Cu.

本発明の珪素鋼成分であるSn 、 Cu tdいずれ
も二次再結晶を有効に進行させるだめのインヒビター成
分として有用であることは公知である。本発明者はこの
Sn 、 Cuの仕上焼鈍中での挙動について鋭意検討
した結果、仕上焼鈍時に5n)i鋼板内で粒界偏析し、
Cu F′i、Cux Sとして分散析出することによ
り一次再結晶粒のNormal grain grow
thを抑制(インヒビター効果)し、Snは、800〜
900℃近傍で偏析係むが最も犬きくなシ、CuえSは
CuとSの比率によるが、約900〜1000℃で析出
ノーズを有し、したがって、Sn、 CuzS偏析の析
出がえも容易な温度頭載で処理すれi−1′最も強力な
インヒビター効果が得られ、その結果、微細かつGom
s方位集yC夏の高い二次再結晶粒が得られることが判
明した。よって仕上焼鈍は780〜1000℃、好まし
くは800〜950℃が適しておシ、780℃未満では
二次再結晶の開始および二次再結晶粒の成長に長時間を
要し好ましくなく、1000℃を超えるとSnの粒界偏
析効果が消え、二次再結晶粒のGO■方位集積度が低く
力るため良好な鉄損特性が得られない。
It is known that both Sn and Cutd, which are the silicon steel components of the present invention, are useful as inhibitor components for effectively promoting secondary recrystallization. As a result of intensive study on the behavior of Sn and Cu during final annealing, the present inventor found that during final annealing, grain boundary segregation occurs within the 5n)i steel sheet.
Normal grain grow of primary recrystallized grains by dispersing and precipitating Cu F'i and Cux S
th is suppressed (inhibitor effect), Sn is 800~
Cu-S, which is most sensitive to segregation at around 900°C, has a precipitation nose at about 900 to 1000°C, depending on the ratio of Cu and S, and therefore, the precipitation of Sn and CuzS segregation is also easy. The most powerful inhibitor effect is obtained by treatment with temperature overhead, and as a result, fine and Gomu
It was found that secondary recrystallized grains with a high s-orientation concentration yC summer can be obtained. Therefore, the suitable temperature for final annealing is 780 to 1000°C, preferably 800 to 950°C. Below 780°C, it takes a long time to start secondary recrystallization and the growth of secondary recrystallized grains, which is undesirable. If the value exceeds 1, the grain boundary segregation effect of Sn disappears, and the degree of integration of the GO2 orientation of the secondary recrystallized grains becomes low, making it impossible to obtain good iron loss characteristics.

また仕上焼鈍雰囲気は二次再結晶焼鈍の完了する780
〜1000℃の温度範囲をSn 、 Coに対して中性
雰囲気とすることが好ましく、Snあるいl′icuに
対して酸化性の場合は、鋼板表面でSr+ 、 Cuの
酸化物が形匠きれにとにより鋼中でのSnの粒界偏析、
CuxSの分散析出の量的変化のため磁気特性が劣化す
るとともにSn 、 Cuの酸化物によジグラス皮膜形
成性が悪くなり、皮膜特性の劣化が生じるため好ましく
ない。−万、仕上焼鈍雰囲気がSn + Cuに対して
還元性の場合、鋼板表面近傍でのCuxSの分解により
表面層のNormal graln growthが起
こるために、二次再結晶粒が充仔に成長することができ
ず磁気特性が劣化する。
In addition, the final annealing atmosphere is set at 780°C when the secondary recrystallization annealing is completed.
It is preferable to use a temperature range of ~1000°C as a neutral atmosphere with respect to Sn and Co. If Sn or l'icu is oxidizing, the oxides of Sr+ and Cu may be damaged on the surface of the steel sheet. Grain boundary segregation of Sn in steel due to
This is not preferable because the magnetic properties deteriorate due to the quantitative change in the dispersed precipitation of CuxS, and the diglass film formation properties deteriorate due to the oxides of Sn and Cu, resulting in deterioration of the film properties. - If the final annealing atmosphere is reducing to Sn + Cu, normal gran growth of the surface layer occurs due to the decomposition of CuxS near the steel plate surface, so secondary recrystallized grains grow fully. , and the magnetic properties deteriorate.

不発明において、仕上焼鈍での昇温速度は特に限定する
ものではなく、780〜1000℃の範囲内で二次再結
晶が完了するまでは一定温度で保持してもよく、または
1000℃までに二次再結晶が完了するような速度で連
続的に昇温しでもよいが、コイル同外周での温度分布に
差が生じないよう一定温度で保持するか、またはゆっく
りと昇温するのが好ましい。Sn 、 Cuに対して中
性の雰囲気としては焼鈍中の雰囲気の酸素ポテンシャル
が変化しないN2.Ar等の不活性ガスが好ましく、焼
鈍分離剤塗布工程から脣ち込まれる水分の量によ)上記
不活性ガスに若干のH2ガスを混合してもよい。
In the present invention, the temperature increase rate in the final annealing is not particularly limited, and it may be maintained at a constant temperature within the range of 780 to 1000°C until secondary recrystallization is completed, or it may be maintained at a constant temperature within the range of 780 to 1000°C, or up to 1000°C. Although the temperature may be raised continuously at a rate that allows secondary recrystallization to be completed, it is preferable to maintain the temperature at a constant temperature or to raise the temperature slowly so that there is no difference in temperature distribution around the outer circumference of the coil. . As an atmosphere that is neutral to Sn and Cu, N2. An inert gas such as Ar is preferred, and some H2 gas may be mixed with the inert gas (depending on the amount of moisture drawn in from the annealing separator coating step).

さらに、上記発明の焼鈍分離剤塗布工程において、Mg
Oを主成分とする焼鈍分離剤に特定の物質を配合するこ
とによりさらに優れた鉄損特性とグラス皮膜特性を有す
る高磁束密度方向性電磁鋼板の製造が可能であることを
見出した。
Furthermore, in the annealing separator application step of the invention, Mg
We have discovered that by blending a specific substance into an annealing separator containing O as a main component, it is possible to produce a grain-oriented electrical steel sheet with high magnetic flux density that has even better core loss characteristics and glass film characteristics.

すなわち、MgOを主成分とする焼鈍分離剤にW。That is, W is added to the annealing separator whose main component is MgO.

Mo + Sr + Cu + Co + Nl * 
Sbもしくはこれらを含む化合物の中から選ばれる1種
または2種以上を含有ζせることを!Ff徴とすネ第2
発明の方法でらる。
Mo + Sr + Cu + Co + Nl *
Contains one or more selected from Sb or compounds containing these! Ff characteristic and ne 2nd
Inventive method.

上記元素を含む物質としては、金属粉、合金粉末、酸化
物、硫化物、硫酸塩のいずれを使用してもよいが、水に
難溶性の物質の場合は焼鈍分離剤スラリー中での分散性
、仕上焼鈍時の反応性の点から325mesh/4’ス
、好ましくはMgOを主成分とする焼鈍分離剤の粒度と
同等か、それより微細なものもしくはコロイド状のもの
がよい。
Any of metal powder, alloy powder, oxide, sulfide, and sulfate may be used as the substance containing the above elements, but in the case of a substance that is poorly soluble in water, it is difficult to disperse it in the annealing separator slurry. From the viewpoint of reactivity during final annealing, it is preferable to use 325 mesh/4' mesh, preferably particles with a particle size equal to or finer than that of the annealing separator mainly composed of MgO, or particles in the form of a colloid.

(実施例〕 以下、不発明の実施例について説明する。(Example〕 Hereinafter, non-inventive embodiments will be described.

実施例1 重量ノ(−セントでC:0.06%、 Sl : 3.
20%、 Mn :0080%、 S : 0020≦
l酸可溶Al: 0.025%、N:0.0085%、
 Sn : 0.09%、Cu:0.11%を含有する
珪素鋼鋳片を1300℃に加熱後、熱間圧延して2,0
關の熱延板とした。この熱延板を1120℃で4分間均
熱後、酸洗し、次いで冷間圧延により0.230の板厚
とした。この冷延板を820℃で3分間、露点+50℃
の50%N+50%H2の混合ガス気流中で脱炭した。
Example 1 C: 0.06% by weight, Sl: 3.
20%, Mn: 0080%, S: 0020≦
Acid-soluble Al: 0.025%, N: 0.0085%,
A silicon steel slab containing Sn: 0.09% and Cu: 0.11% was heated to 1300°C and then hot rolled to 2.0%.
It was made into a hot-rolled plate. This hot-rolled plate was soaked at 1120° C. for 4 minutes, pickled, and then cold-rolled to a thickness of 0.230. This cold-rolled plate was heated to 820°C for 3 minutes at a dew point of +50°C.
Decarburization was carried out in a mixed gas flow of 50% N + 50% H2.

脱炭焼鈍後の鋼板両面にMgOを主成分とし、[:B)
を対MgO重量比で200ppmK精製した焼鈍分子剤
のスラリーを塗布・乾燥して、片面当たF)6f/rr
/の付Ni′とし、コイル状に巻き取った。これを20
℃/Hrで1200℃壕でN2+H,混合ガス中で昇温
し、次いでH2ガスに切換えて20時間均熱した。
MgO is the main component on both sides of the steel plate after decarburization annealing, [:B)
A slurry of an annealing molecular agent purified by K to 200 ppm in weight ratio to MgO was coated and dried, and one side contact F) 6f/rr
It was marked with / and wound into a coil. 20 of this
The temperature was raised at 1200°C/Hr in a mixed gas of N2+H, and then switched to H2 gas and soaked for 20 hours.

冷却後、未反応の焼鈍分離剤をブラシ水洗して除去し、
コイルよシサンプルを採取して、800℃で2時間、N
2中で歪取焼鈍した後、磁気特性を測定した。この結果
を第1表に示す。
After cooling, unreacted annealing separator is removed by brush washing with water.
A coil sample was taken and heated at 800°C for 2 hours with N.
After strain relief annealing in No. 2, the magnetic properties were measured. The results are shown in Table 1.

実施例2 実施例1と同一組成、同一条件で熱間圧延工程までを施
し、也厚20龍の熱延板を製造し、この熱延板に実施例
1と同一条件で析出焼鈍を施した。
Example 2 The same composition and hot rolling process as in Example 1 were carried out under the same conditions to produce a hot-rolled sheet with a thickness of 20 mm, and this hot-rolled sheet was subjected to precipitation annealing under the same conditions as in Example 1. .

次いで冷間圧延によ、90.15flの板厚とし、脱炭
焼鈍以降の工程を全て実施例1と同一条件とした。
Next, the plate was cold rolled to a thickness of 90.15 fl, and all steps after decarburization annealing were carried out under the same conditions as in Example 1.

この結果を第1表に示す。The results are shown in Table 1.

比較例1 重fr ノ平−セントでC: 0.06%、 Sl :
 3.20%+ Mn :0.080%、 S : 0
.020%、酸′i5′J溶Al:0.025%、N:
0.0085%を含有する珪素鋼鋳片を実施例1と同一
条件で仕上焼鈍までを施した。磁気特性測定結果を第1
表に示す。
Comparative Example 1 C: 0.06%, Sl:
3.20%+Mn: 0.080%, S: 0
.. 020%, acid 'i5'J dissolved Al: 0.025%, N:
A silicon steel slab containing 0.0085% was subjected to final annealing under the same conditions as in Example 1. The first magnetic property measurement results
Shown in the table.

比較例2 比較例1と同一素材を用いて実施例2と同一条件で熱延
以降の工程を施した。この結果を第1表に示す。
Comparative Example 2 The same material as in Comparative Example 1 was used and the steps after hot rolling were performed under the same conditions as in Example 2. The results are shown in Table 1.

比較例3 実施例1と同一素材、同一条件て脱炭焼鈍までを施し、
次いでこの脱炭焼鈍後の鋼板両面に従来よシ使用されて
いるMgOを主成分とする焼鈍分離剤のスラリーを塗布
・乾燥して、6 f/rr?の付xf量としコイル状に
巻取った。焼鈍分離剤中のCB)量を分析した結果、対
MgO重量比で750 ppmであった。次いで、この
コイルを実施例1と同一条件で仕上焼鈍を施した。出仕
測定結果を第1表に示す。
Comparative Example 3 The same material and decarburization annealing were performed under the same conditions as in Example 1.
Next, a slurry of an annealing separator mainly composed of MgO, which is conventionally used, is applied to both sides of the steel plate after decarburization annealing and dried to 6 f/rr? It was wound into a coil shape with an xf amount. As a result of analyzing the amount of CB) in the annealing separator, the weight ratio to MgO was 750 ppm. Next, this coil was subjected to finish annealing under the same conditions as in Example 1. The performance measurement results are shown in Table 1.

第1表 実施例3 重量ノソーセントでC:0.07%、Sl:3.26%
、 Mn :0085%、S:0.023%、酸可溶A
l:0.031%、N:0.0090%、Sn:0.1
0%、Cu:0.08%を含有する珪素鋼鋳片を130
0℃に加熱後、熱間圧延して1.7鶴の熱延板とした。
Table 1 Example 3 Weight: C: 0.07%, Sl: 3.26%
, Mn: 0085%, S: 0.023%, acid soluble A
l: 0.031%, N: 0.0090%, Sn: 0.1
0%, Cu: 0.08% silicon steel slab containing 130%
After heating to 0° C., it was hot-rolled to obtain a 1.7-inch hot-rolled sheet.

この熱延板を1100℃で5分間均熱後、戯洗し、次い
で冷間圧延により0.151JEの板厚とした。この冷
延板を800℃で4分間、露点+40℃の20%H2+
80%N2混合ガス気流中で脱炭した。脱炭焼鈍後の鋼
板両面にMgOを主成分とし、CB)を対MgO重量比
でl OOppm VCn ’JAした焼鈍分離剤のス
ラリーを塗布、乾燥して片面当たシ5.5f/rr/の
付着芹とし、コ・1ル状に巻取った。これを800℃ま
でSn + Cu K対して中性のN +2%H2中で
50℃/Hrで昇温し、続いて800℃×30 Hr 
、N2 十2$H2中で均熱して二次再結晶焼鈍を施し
た。次いで、20℃/Hrで1206℃までH2ガス中
で昇温し20時間均熱した。
This hot-rolled plate was soaked at 1100° C. for 5 minutes, washed, and then cold-rolled to a thickness of 0.151 JE. This cold-rolled plate was heated at 800℃ for 4 minutes to 20% H2+ with a dew point of +40℃.
Decarburization was performed in a stream of 80% N2 mixed gas. After decarburization annealing, a slurry of an annealing separator containing MgO as the main component and CB) at a weight ratio of 1 OOppm VCn'JA to MgO was applied to both sides of the steel plate after decarburization annealing, dried, and applied to one side. It was made into an attached chrysanthemum and rolled up into a coil. This was heated to 800°C in N + 2% H2, which is neutral to Sn + Cu K, at a rate of 50°C/Hr, and then heated to 800°C x 30 Hr.
, N2 and 12$H2 to perform secondary recrystallization annealing. Next, the temperature was raised to 1206°C at 20°C/Hr in H2 gas and soaked for 20 hours.

冷却後、未反応の焼鈍分離剤をブラシ水洗して除去し、
コイルよシサンプルを採取して800℃で2時間、N2
中で歪増焼鈍した後、磁気特性を測定した。この結果を
第2表に示す。
After cooling, unreacted annealing separator is removed by brush washing with water.
Collect a coil sample and heat it at 800℃ for 2 hours with N2.
The magnetic properties were measured after strain-enhancing annealing. The results are shown in Table 2.

実施例4 実庁例3と同一素材、同一条件で焼鈍分離剤塗布工程ま
でを施し、コイル状に巻取った。次いで、これ′t−7
80℃までN2+2%H2混合ガス中50℃/Hrで昇
温し、同じくN2+2%H2CPで900℃苔で3℃/
Hr’T昇温して二次再結晶?完了忌せた後、H2ガス
に切換え1200’C寸で25℃/Hr″″C剖温し、
1200℃X 20 Hr均熱した。冷却後、未反応の
焼鈍分離剤をブラシ水洗して除去し、コイルよシサンプ
ルを採取して800℃で2時間、N2牛で歪取焼鈍した
後、磁気特性を測定した。この結果を第2表に示す。
Example 4 The same material and annealing separation agent application step as in Example 3 were performed under the same conditions, and the product was wound into a coil. Next, this't-7
The temperature was raised to 80°C at 50°C/Hr in a mixed gas of N2 + 2% H2, and then heated to 900°C with moss at 3°C/Hr in N2 + 2% H2CP.
Secondary recrystallization by increasing Hr'T temperature? After completion, switch to H2 gas and incubate at 1200'C at 25°C/Hr''''C.
It was soaked at 1200°C for 20 hours. After cooling, the unreacted annealing separator was removed by brush washing with water, and a coil sample was taken and strain-removed annealed at 800° C. for 2 hours using N2 cows, and then the magnetic properties were measured. The results are shown in Table 2.

第  2  表 実施例5 実元例3と同一素材、同一条件で脱炭焼鈍工程までr施
し、この脱炭焼鈍後の銅板表面に、CB)含有量75p
pmiC精製したMgOを主成分とする焼鈍分離ill
スラリーに第3表に示す物質を配合し、塗布、乾燥して
付着ff 6 P/−とし、コイル状に巻取った。この
コイルに実施例3と同−命件で仕上焼鈍を施した。冷却
後、未反応の焼鈍分離剤を水洗除去し、コイルよシサン
グルを採取して800℃で2時間、N2中で歪取焼鈍し
た後、磁気特性・皮膜特性を測定した。この結果を第3
表に示す。
Table 2 Example 5 The same material and decarburization annealing process as in Example 3 were carried out under the same conditions, and the surface of the copper plate after decarburization annealing had a CB) content of 75p.
Annealing separation ill mainly composed of pmiC purified MgO
The substances shown in Table 3 were blended into the slurry, coated and dried to give an adhesion of ff 6 P/-, and wound into a coil. This coil was subjected to finish annealing according to the same instructions as in Example 3. After cooling, the unreacted annealing separator was removed by washing with water, and the coil and the sample were collected and subjected to strain relief annealing in N2 at 800° C. for 2 hours, and then the magnetic properties and film properties were measured. This result is the third
Shown in the table.

第  3  表 *密着性:絶耐皮膜(リン酸塩+クロム酸4 g / 
m 2塗布 800℃×70秒焼付)処理後、剥離の生
じない最小曲げ 直径(繁) (発明の効果) 従来よシ、高磁束密度方向性電磁鋼板の磁気特性改善を
目的とした技術は多数提案されているが、本発明の如く
製鋼工程での溶鋼成分と冷間圧延工程での板厚および焼
鈍分離剤塗布工程でのMgOを主成分とする焼鈍分離剤
の組成とを組合せることにより、従来、得られなかった
優れた鉄損特性の高磁束!反方向性電磁鋼板の製造が可
能となったことの工朶的意義は大きく、さらに上記発明
と仕上焼鈍工程での二次再結晶焼鈍温度、雰囲気および
、焼鈍分離剤への特定物質の配合とを組合わせることに
よp磁気特性を飛躍的に向上させる如き技術は皆無であ
フ、極めて新規な技術でおる。
Table 3 *Adhesion: Absolutely resistant film (phosphate + chromic acid 4 g /
Minimum bending diameter without peeling after processing (baking at 800℃ x 70 seconds) Although it has been proposed, as in the present invention, by combining the molten steel composition in the steelmaking process, the plate thickness in the cold rolling process, and the composition of the annealing separator mainly composed of MgO in the annealing separator coating process, , high magnetic flux with excellent iron loss characteristics that were previously unobtainable! The fact that it has become possible to manufacture oppositely oriented electrical steel sheets is of great engineering significance, and furthermore, the above invention, the secondary recrystallization annealing temperature and atmosphere in the final annealing process, and the combination of specific substances in the annealing separator There is no technology that dramatically improves the p-magnetic properties by combining the two, and this is an extremely novel technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高磁束密度方向性!磁銅板の板厚と磁気特性の
関係を示す図、第2図(1)は高磁束密度方向性電磁鋼
板の仕上焼鈍の昇温過程における鋼中Total Nの
板厚の差による変化を示す図、第2図(b)は同じく鋼
中N as ALHの板厚の差による変化を示す図、第
3図は鋼中の〔B〕の濃度と板厚に対する深場方向の距
離との関係を示す図、第4図は焼鈍分離剤中のMFCO
の[E)量と磁気%性との関係を示す図でるる、 第1図 V、品汝4 (my)) 第2図(a) 温 度 (°C) 第2図Cb) 品 炭 (°C) スペック1ルブ時間(x fO’ 5ee)第4図
Figure 1 shows high magnetic flux density directionality! A diagram showing the relationship between the plate thickness and magnetic properties of a magnetic copper plate. Figure 2 (1) is a diagram showing the change in Total N in steel due to the difference in plate thickness during the temperature rising process of finish annealing of a high magnetic flux density grain-oriented electrical steel plate. , Figure 2 (b) is a diagram showing the change in Na as ALH in steel due to the difference in plate thickness, and Figure 3 shows the relationship between the concentration of [B] in steel and the distance in the deep field direction with respect to the plate thickness. Figure 4 shows the MFCO in the annealing separator.
This is a diagram showing the relationship between the amount of [E] and the magnetic % property. °C) Spec 1 lube time (x fO' 5ee) Fig. 4

Claims (3)

【特許請求の範囲】[Claims] (1)C:0.085%以下、Si:2.0〜4.0%
、Mn:0.03〜0.15%、S:0.01〜0.0
5%、酸可溶Al:0.01〜0.05%、N:0.0
05〜0.010%、Sn:0.03〜0.5%、Cu
:0.02〜0.3%を含有する珪素鋼素材を熱間圧延
して中間厚みの熱延板とし、前記熱延板に対し析出焼鈍
をし、次いで最終板厚を0.23mm以下とする冷間圧
延工程と脱炭焼鈍工程、焼鈍分離剤塗布工程および仕上
焼鈍工程を施すことから成る一連の高磁束密度方向性電
磁鋼板の製造工程において、前記焼鈍分離剤塗布工程で
硼素含有量を硼素として400ppm未満に精製したM
gOを主成分とする焼鈍分離剤を使用することを特徴と
する鉄損特性の優れた高磁束密度方向性電磁鋼板の製造
方法。
(1) C: 0.085% or less, Si: 2.0-4.0%
, Mn: 0.03-0.15%, S: 0.01-0.0
5%, acid-soluble Al: 0.01-0.05%, N: 0.0
05-0.010%, Sn: 0.03-0.5%, Cu
: A silicon steel material containing 0.02 to 0.3% is hot-rolled into a hot-rolled plate with an intermediate thickness, the hot-rolled plate is subjected to precipitation annealing, and then the final plate thickness is adjusted to 0.23 mm or less. In a series of manufacturing processes for high-magnetic flux density grain-oriented electrical steel sheets, which include a cold rolling process, a decarburization annealing process, an annealing separator coating process, and a final annealing process, the boron content is reduced in the annealing separator coating process. M purified to less than 400 ppm as boron
A method for producing a high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics, characterized by using an annealing separator containing gO as a main component.
(2)上記仕上焼鈍工程において、二次再結晶を780
〜1000℃の温度範囲内で、かつSn、Cuに対して
中性の雰囲気中で完了させることを特徴とする特許請求
の範囲第1項記載の方法。
(2) In the above final annealing process, secondary recrystallization is performed at 780°C.
2. The method according to claim 1, characterized in that the process is completed within a temperature range of ~1000[deg.] C. and in an atmosphere neutral to Sn and Cu.
(3)MgOを主成分とする焼鈍分離剤に、W、Mo、
Br、Cu、Co、Ni、Sbもしくはこれらを含む化
合物の中より選ばれる1種又は2種以上を含有させるこ
とを特徴とする特許請求の範囲第1項または第2項記載
の方法。
(3) W, Mo,
3. The method according to claim 1 or 2, characterized in that one or more selected from Br, Cu, Co, Ni, Sb, or compounds containing these are contained.
JP20067084A 1984-09-27 1984-09-27 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics Expired - Lifetime JPH0663029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20067084A JPH0663029B2 (en) 1984-09-27 1984-09-27 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20067084A JPH0663029B2 (en) 1984-09-27 1984-09-27 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics

Publications (2)

Publication Number Publication Date
JPS6179722A true JPS6179722A (en) 1986-04-23
JPH0663029B2 JPH0663029B2 (en) 1994-08-17

Family

ID=16428279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20067084A Expired - Lifetime JPH0663029B2 (en) 1984-09-27 1984-09-27 Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet with excellent iron loss characteristics

Country Status (1)

Country Link
JP (1) JPH0663029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088244A (en) * 1996-09-12 1998-04-07 Kawasaki Steel Corp Magnesium oxide for separation agent at annealing used fixed at manufacture of grain oriented silicon steel sheet
JP4632775B2 (en) * 2004-12-22 2011-02-16 Jfeスチール株式会社 Method for producing MgO for annealing separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998046802A1 (en) * 1997-04-16 1998-10-22 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs

Also Published As

Publication number Publication date
JPH0663029B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
CN107614725B (en) Grain-oriented electromagnetic steel sheet and method for producing same
KR100442101B1 (en) The method for producing an electromagnetic steel sheet having high magnetic flux density
EP3569726A1 (en) Non-oriented electromagnetic steel sheet and production method of non-oriented electromagnetic steel sheet
JP6915689B2 (en) Directional electrical steel sheet and its manufacturing method
CN113286901A (en) Method for producing grain-oriented electromagnetic steel sheet
US6280534B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR0183408B1 (en) Grain-oriented electrical steel sheet and material having very high magnetic flux density and method of manufacturing the same
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS6179722A (en) Manufacture of grain oriented magnetic steel sheet having superior iron loss property and high magnetic flux density
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JPH09249916A (en) Production of grain-oriented silicon steel sheet and separation agent for annealing
KR102576546B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JPH02294428A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density
JP3312000B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JPS61284529A (en) Manufacture of grain oriented magnetic steel sheet having extremely low iron loss
JP2706039B2 (en) Method for manufacturing mirror-oriented silicon steel sheet
WO2022158541A1 (en) Method for producing grain-oriented electrical steel sheet
JPH05156362A (en) Manufacture of high magnetix flux density grain-oriented silicon steel sheet free from forsterite film
WO2023195518A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2022215709A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating film
WO2022215714A1 (en) Grain-oriented electrical steel sheet and method for forming insulating film
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic