JPS6376819A - Grain-oriented electrical steel sheet having small iron loss and its manufacture - Google Patents

Grain-oriented electrical steel sheet having small iron loss and its manufacture

Info

Publication number
JPS6376819A
JPS6376819A JP21822386A JP21822386A JPS6376819A JP S6376819 A JPS6376819 A JP S6376819A JP 21822386 A JP21822386 A JP 21822386A JP 21822386 A JP21822386 A JP 21822386A JP S6376819 A JPS6376819 A JP S6376819A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
grain
oriented electrical
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21822386A
Other languages
Japanese (ja)
Inventor
Keiji Sato
圭司 佐藤
Bunjiro Fukuda
福田 文二郎
Mototomo Sugiyama
杉山 甫朋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21822386A priority Critical patent/JPS6376819A/en
Publication of JPS6376819A publication Critical patent/JPS6376819A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture an electrical steel sheet having a more significant iron loss reducing effect and causing no deterioration in the iron loss characteristics even by annealing at high temp. by making linear grooves by which groups of fine recrystallized grains are not formed during strain relief annealing in a grain-oriented electrical steel sheet subjected to finish annealing. CONSTITUTION:A grain-oriented electrical steel sheet subjected to finish annealing, contg. 2.0-4.5wt% Si and having a forsterite film on the surface is prepd. The forsterite film on the surface of the steel sheet is linearly removed within the angle range of + or -45 deg. having a base line in a direction perpendicular to the rolling direction under conditions under which <=30% strain is produced in the base iron. The steel sheet is electrolytically or chemically etched through the film to make linear grooves in the base iron. Thus, the desired electrical steel sheet having linear grooves which reach the base iron within the angle range of + or -45 deg. is obtd. High strain parts in which groups of fine recrystallized grains are formed during strain relief annealing are not present around the linear grooves.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、主として変圧器その他の電気機器の鉄心と
して用いられる低鉄損方向性電磁鋼板およびその製造方
法に関し、特に歪取り焼鈍による鉄損特性の劣化防止を
図ったものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a low core loss grain-oriented electrical steel sheet used mainly as an iron core for transformers and other electrical equipment, and a method for manufacturing the same, and in particular to a method for manufacturing the same. This is intended to prevent deterioration of characteristics.

(従来の技術) 方向性電磁鋼板は、主として変圧器その他の電気機器の
鉄心として用いられ、その磁気特性が良好であることが
要求される。特に鉄心として使用した際のエネルギー損
失即ち鉄損が低いことが重要であり、近年のエネルギー
事情の悪化から特に鉄損の低い電磁鋼板に対する要求は
一段と高まりつつある。
(Prior Art) Grain-oriented electrical steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have good magnetic properties. In particular, it is important that the energy loss, that is, iron loss, be low when used as an iron core, and as the energy situation has worsened in recent years, the demand for electrical steel sheets with particularly low iron loss is increasing further.

ところで従来から鉄損を減少させるために、結晶方位を
(110) (001)方位により高度に揃えること、
St含有量を上げそれにより鋼板の電気抵抗を増加させ
ること、そして不純物を低減させることなどが種々試み
られてきた。しかしながら、これらの冶金学的な方法に
よる鉄損の低減は近年の技術の向上によりほぼ限界に達
している。
By the way, conventionally, in order to reduce iron loss, the crystal orientation has been aligned to a higher degree with the (110) (001) orientation.
Various attempts have been made to increase the St content, thereby increasing the electrical resistance of the steel sheet, and to reduce impurities. However, reduction of iron loss by these metallurgical methods has almost reached its limit due to recent technological improvements.

そこで冶金学的な方法以外に鉄損を改善する方法が種々
提案されている。例えば特公昭5B−5968号公報に
は、仕上げ焼鈍済みの方向性電磁鋼板の表面に小球等を
押圧することによって線状の微小歪を導入し、鉄損を低
減させる方法、また特公昭57−2252号公報には、
仕上げ焼鈍済みの鋼板表面にレーザーを照射する方法等
が提案されている。
Therefore, various methods for improving iron loss other than metallurgical methods have been proposed. For example, Japanese Patent Publication No. 5B-5968 describes a method for reducing iron loss by introducing microscopic strain in a line by pressing small balls or the like onto the surface of a grain-oriented electrical steel sheet that has been finish annealed. -2252 publication has the following information:
A method of irradiating the surface of a finished annealed steel plate with a laser has been proposed.

しかしながらこれらの方法は鉄損低域の手段として効果
があるとはいうものの、いずれも歪取り焼鈍により鉄損
の劣化を来すという致命的な欠陥があり、従って歪取り
焼鈍を必須とする巻鉄心用材料としては用いられない。
However, although these methods are effective as a means of reducing iron loss, they all have the fatal flaw that strain relief annealing causes deterioration of iron loss. It is not used as a material for iron cores.

歪取り焼鈍が可能な技術として、特公昭50−3567
9号公報には、鋼板をすいたりひっかいたりすることに
より鉄損を低減、パさせる方法が提案され、また、仕上
げ焼鈍済み鋼板の圧延方向と直角な方向にナイフ等でけ
がきを入れることによって鉄損を低減させることができ
るという知見も開示されている。
Special Publication No. 50-3567 as a technology capable of stress relief annealing
Publication No. 9 proposes a method to reduce and improve iron loss by scratching or scratching the steel plate, and also by scribing with a knife or the like in a direction perpendicular to the rolling direction of the finish annealed steel plate. The knowledge that iron loss can be reduced is also disclosed.

さらに、特開昭56−130454号公報や特開昭61
−117218号公報では、仕上げ焼鈍済み鋼板に歪を
導入して焼鈍することにより生じる微細再結晶粒群を利
用して鉄損の低減化をはかる方法が提案されている。
Furthermore, JP-A-56-130454 and JP-A-61
Japanese Patent No. 117218 proposes a method of reducing iron loss by utilizing fine recrystallized grain groups produced by introducing strain into a finish annealed steel plate and annealing it.

(発明が解決しようとする問題点) 上記の方法は、鋼板に局部的に強い歪を加え、その歪導
入部が800℃程度での焼鈍時に微細再結晶粒群を形成
することを利用するものであるが、この方法では充分満
足のいく程の鉄損低減効果は得られず、しかもかかる微
細再結晶粒群は1000℃以上の高温では粒成長し鉄損
の劣化を招くという不利があった。
(Problems to be Solved by the Invention) The above method utilizes the fact that strong strain is locally applied to the steel plate, and the strain introduced area forms fine recrystallized grain groups during annealing at approximately 800°C. However, this method did not achieve a sufficiently satisfactory iron loss reduction effect, and had the disadvantage that such fine recrystallized grains would grow at high temperatures of 1000°C or higher, leading to deterioration of iron loss. .

ところで巻鉄心は通常、鉄心成形後、加工歪を除くため
700〜900℃程度で歪取り焼鈍が施されるが、場合
によっては局所的に1000℃以上の高温になることも
予想され、したがって1000℃以上の高温焼鈍で特性
が劣化する材料は巻鉄心用材料としては信幀性に欠ける
By the way, wound cores are usually subjected to strain relief annealing at about 700 to 900°C to remove processing strain after forming the core, but in some cases, it is expected that the temperature will locally reach 1000°C or higher, so Materials whose properties deteriorate when annealed at high temperatures of ℃ or higher lack reliability as materials for wound cores.

また鋼板をひっかいたりナイフ等でけがきを導入した場
合にはけかき周辺に激しい凹凸やカエリを生じ、鋼板積
層時に占積率の劣化を招くという問題もある。
Furthermore, if the steel plates are scratched or scribed with a knife or the like, severe unevenness or burrs will occur around the scribes, resulting in a problem of deterioration of the space factor when the steel plates are laminated.

この発明は上記の問題を有利に解決するもので、従来材
に比べ、800℃程度の通常の歪取り焼鈍後の鉄損特性
に研れるのはいうまでもなく、たとえ1000℃以上で
の高温焼鈍を施した場合であっても鉄損特性の劣化を招
くことがない低鉄損方向性電磁鋼板を、その有利な製造
方法と共に提案することを目的とする。
This invention advantageously solves the above problems, and it goes without saying that compared to conventional materials, it is possible to improve the iron loss properties after normal strain relief annealing at about 800℃, and even at high temperatures of 1000℃ or more. The purpose of the present invention is to propose a low core loss grain-oriented electrical steel sheet that does not cause deterioration of core loss characteristics even when annealed, together with an advantageous manufacturing method thereof.

(問題点を解決するための手段) さて、発明者らは、上記の問題を解決すべく鋭意研究を
重ねた結果、仕上げ焼鈍済みの方向性電磁鋼板に対し、
歪取り焼鈍時に微細再結晶粒群を生じさせないような線
状の溝を形成させることにより、一層鉄損低減効果に優
れ、しかも歪取り焼鈍たとえ1000℃以上の高温での
焼鈍後においても特性が劣化しない低鉄損方向性電磁鋼
板が得られることを新たに知見し、この発明を完成する
に到ったのである。
(Means for Solving the Problems) Now, as a result of intensive research to solve the above problems, the inventors found that for finish annealed grain-oriented electrical steel sheets,
By forming linear grooves that do not produce fine recrystallized grain groups during strain relief annealing, the effect of reducing core loss is even more excellent, and the characteristics are maintained even after strain relief annealing at high temperatures of 1000°C or higher. They discovered that it is possible to obtain grain-oriented electrical steel sheets with low core loss that do not deteriorate, and were able to complete this invention.

この発明は、上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明の要旨構成は次のとおりである。That is, the gist of the present invention is as follows.

1、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45″の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在しないことを特徴とする低鉄損方向性電磁鋼
板(第1発明)。
1. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a direction perpendicular to the rolling direction. It has a linear groove that extends to the base iron within an angular range of ±45'' from the reference line, and around this linear groove,
A low core loss grain-oriented electrical steel sheet (first invention), characterized in that there is no high strain introduction part that causes the formation of fine recrystallized grain groups during strain relief annealing.

2、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45″の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在せず、しかもフォルステライト被膜上には、
該被膜と同じ領域にわたって被膜欠損領域を持つ上塗コ
ーティングをそなえることを特徴とする低鉄損方向性電
磁鋼板(第2発明)。
2. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a direction perpendicular to the rolling direction. It has a linear groove that extends to the base iron within an angular range of ±45'' from the reference line, and around this linear groove,
There is no high strain introduction area that causes the formation of fine recrystallized grain groups during strain relief annealing, and furthermore, on the forsterite coating,
A low core loss grain-oriented electrical steel sheet (second invention), characterized in that it is provided with an overcoat coating having a film-deficient region over the same region as the film.

3、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45@の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在せず、しかもフォルステライト被膜上には、
鋼板表面全面にわたって被成した上塗りコーティングを
そなえることを特徴とする低鉄損方向性電磁鋼板(第3
発明)。
3. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a direction perpendicular to the rolling direction. There is a linear groove that extends to the base iron within an angular range of ±45@ as a reference line, and around this linear groove,
There is no high strain introduction area that causes the formation of fine recrystallized grain groups during strain relief annealing, and furthermore, on the forsterite coating,
Low core loss grain-oriented electrical steel sheet (No. 3) characterized by having a top coat applied over the entire surface of the steel sheet.
invention).

4、 重量で2.0〜4.5%のStを含有するけい素
鋼スラブを、熱捕圧延し、ついで1回または中間焼鈍を
はさむ2回の冷間圧延を施して最終板厚としたのち、脱
炭・1次再結晶焼鈍を施し、その後鋼板表面にMgOを
主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼
鈍を施してフォルステライト被膜付きの方向性電磁鋼板
としたのち、該方向性電磁鋼板表面のフォルステライト
被膜を、圧延方向に対し直角の方向を基準線としてその
±45°の角度範囲内で、地鉄に導入される歪量が30
%以下の条件下に線状に除去し、ついで電解または化学
エツチングを施して地鉄に線状の溝を形成させることか
ら成る、低鉄損方向性電磁鋼板の製造方法(第4発明)
4. A silicon steel slab containing 2.0 to 4.5% St by weight was hot-capture rolled and then cold-rolled once or twice with intermediate annealing to obtain the final thickness. After that, decarburization and primary recrystallization annealing were performed, after which an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and final annealing was performed to produce a grain-oriented electrical steel sheet with a forsterite coating. , the amount of strain introduced into the base steel within an angular range of ±45° using the direction perpendicular to the rolling direction as a reference line for the forsterite coating on the surface of the grain-oriented electrical steel sheet is 30.
% or less, and then electrolytically or chemically etched to form linear grooves in the base steel (fourth invention).
.

5、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面に対するMg
Oを主成分とする焼鈍分離剤の塗布に際し、圧延方向に
対し直角の方向を基準線としてその±45°の角度範囲
内で綿状のフォルステライト被膜未形成領域を区画形成
し、ついで最終仕上げ焼鈍を施して線状の被膜欠損領域
を有するフォルステライト被膜付きの方向性電磁t+i
4板としたのち、フォルステライト被膜欠損領域の地鉄
部分に電解または化学エツチングを施して地鉄に線状の
溝を形成させることを特徴とする低鉄損方向性電磁鋼板
の製造方法(第5発明)。
5. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, and then the Mg
When applying the annealing separator mainly composed of O, a cotton-like forsterite film-free area is defined within an angular range of ±45° using the direction perpendicular to the rolling direction as a reference line, and then final finishing is performed. Directional electromagnetic t+i with a forsterite coating that has been annealed and has a linear coating defect area
A method for producing a low core loss grain-oriented electrical steel sheet (No. 5 inventions).

6、 重量で2.0〜4.5%のStを含有するけい素
鋼スラブを、熱間圧延し、ついで1回または中間焼鈍を
はさむ2回の冷間圧延を施して最終板厚としたのち、脱
炭・1次再結晶焼鈍を施し、その後鋼板表面にMgOを
主成分とする焼鈍分離剤を塗布してから、最終仕上げ焼
鈍を施し、ついで上塗りコーティング処理を施してフォ
ルステライト被膜および上塗り絶縁コーティング付きの
方向性電磁鋼板としたのち、該方向性電磁鋼板表面のフ
ォルステライト被膜および上塗り絶縁コーティングを、
圧延方向に対し直角の方向を基準線としてその±45°
の角度範囲内で、地鉄に導入される歪量が30%以下の
条件下に線状に除去し、ついで電解または化学エツチン
グを施して地鉄に線状の溝を形成させることから成る、
低鉄損方向性電磁鋼板の製造方法(第7発明)。
6. A silicon steel slab containing 2.0 to 4.5% St by weight was hot rolled and then cold rolled once or twice with intermediate annealing to obtain the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, after which an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, final annealing is performed, and a top coat is then applied to form a forsterite film and a top coat. After making a grain-oriented electrical steel sheet with an insulating coating, the forsterite coating and top insulation coating on the surface of the grain-oriented electrical steel sheet are
±45° from the reference line perpendicular to the rolling direction
The process consists of linearly removing the grooves within the angular range of 30% or less under the condition that the amount of strain introduced into the base metal is 30% or less, and then applying electrolytic or chemical etching to form linear grooves in the base metal.
A method for manufacturing a grain-oriented electrical steel sheet with low core loss (seventh invention).

7、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施してフォルステライト被膜付きの方向性電磁鋼板と
したのち、該方向性電磁鋼板表面のフォルステライト被
膜を、圧延方向に対し直角の方向を基準線としてその±
45″の角度範囲内で、地鉄に導入される歪量が30%
以下の条件下に線状に除去し、ついで電解または化学エ
ツチングを施して地鉄に線状の溝を形成させ、しかるの
ち鋼板全面に上塗りコーティング処理を施すことから成
る、低鉄損方向性電磁鋼板の製造方法(第7発明)。
7. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. After that, decarburization and primary recrystallization annealing were performed, after which an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and final annealing was performed to produce a grain-oriented electrical steel sheet with a forsterite coating. , the forsterite coating on the surface of the grain-oriented electrical steel sheet is
Within the angle range of 45", the amount of strain introduced into the base steel is 30%
A low core loss directional electromagnetic method consisting of removing the steel in a linear manner under the following conditions, then electrolytically or chemically etching it to form a linear groove in the base steel, and then applying an overcoating treatment to the entire surface of the steel plate. Method for manufacturing a steel plate (seventh invention).

8、 重量で2.0〜4.5%のSiを含有するけい素
鋼スラブを、熱間圧延し、ついで1回または中間焼鈍を
はさむ2回の冷間圧延を施して最終板厚としたのち、脱
炭・1次再結晶焼鈍を施し、その後鋼板表面に対するM
goを主成分とする焼鈍分離剤の塗布に際し、圧延方向
に対し直角の方向を基準線としてその±45″の角度範
囲内で線状のフォルステライト被膜未形成領域を区画形
成し、ついで最終仕上げ焼鈍を施して線状の被膜欠損領
域を有するフォルステライト被膜付きの方向性電磁鋼板
としたのち、フォルステライト被膜欠損領域の地鉄部分
に電解または化学エツチングを施して、地鉄に線状の溝
を形成させ、しかるのち鋼板全面に上塗りコーティング
処理を施すことから成る、低鉄損方向性電磁鋼板の製造
方法(第8発明)。
8. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, and then M
When applying the annealing separator containing go as the main component, a linear forsterite coating-free area is defined within an angular range of ±45'' using the direction perpendicular to the rolling direction as a reference line, and then final finishing is performed. After annealing to produce a grain-oriented electrical steel sheet with a forsterite coating having a linear coating defect area, electrolytic or chemical etching is performed on the base metal part in the forsterite coating defect area to form linear grooves in the base steel. A method for manufacturing a grain-oriented electrical steel sheet with low core loss (eighth invention), which comprises forming a top coat on the entire surface of the steel sheet.

9、重量で2.0〜445%のSiを含有するけい素畑
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施し、ついで上塗りコーティング処理を施してフォル
ステライト被膜および上塗り絶縁コーティング付きの方
向性電磁鋼板としたのち、該方向性電磁鋼板表面のフォ
ルステライト被膜および上塗り絶縁コーティングを、圧
延方向に対し直角の方向を基準線としてその±45″の
角度範囲内で、地鉄に導入される歪量が30%以下の条
件下に線状に除去し、ついで電解または化学エツチング
を施して地鉄に線状の溝を形成させ、しかるのち被膜欠
損領域のみまたはs+vi、全面に、上塗りコーティン
グを再塗布することから成る、低鉄損方向性電磁鋼板の
製造方法(第9発明)。
9. A silicon field slab containing 2.0 to 445% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to obtain the final thickness. Decarburization and primary recrystallization annealing are performed, then an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, final annealing is performed, and then a top coating is applied to form a forsterite film and a top insulating coating. After making a grain-oriented electrical steel sheet, the forsterite coating and the top insulation coating on the surface of the grain-oriented electrical steel sheet are applied to the base steel within an angle range of ±45'' with the direction perpendicular to the rolling direction as a reference line. It is removed in a linear manner under the condition that the amount of strain introduced is 30% or less, and then electrolytic or chemical etching is performed to form a linear groove in the base steel, and then only the coating defect area or s + vi, the entire surface, A method for manufacturing a grain-oriented electrical steel sheet with low core loss, which comprises reapplying a top coat (ninth invention).

以下、この発明を由来するに到った実験結果について説
明する。
Below, the experimental results that led to this invention will be explained.

発明者らは、まず同一成分、同一製造工程で製造した板
厚0.23關、B、o 1.91T 、 14+tys
。0.91讐/kgの仕上げ焼鈍済みの方向性電磁鋼板
のエプスタイン試片2枚を用意し、1枚には次に示す(
alの処理を、他の1枚には(b)の処理をそれぞれ施
した。
The inventors first manufactured a board with a thickness of 0.23cm, B, o 1.91T, 14+tys manufactured using the same ingredients and the same manufacturing process.
. Two Epstein specimens of grain-oriented electrical steel sheets that had been finish annealed at 0.91/kg were prepared, and one specimen had the following (
The other sheet was subjected to the treatment shown in (b).

(alloOJ7cm”のエネルギー密度を有するパル
スレーザ−光を線状に照射し被膜と地鉄の一部を除去し
たのち、酸洗により線状の溝を形成させた。
(A pulsed laser beam having an energy density of 7 cm'' was linearly irradiated to remove a portion of the coating and base metal, and then a linear groove was formed by pickling.

fb)0.8 J/cm”のエネルギー密度を有するパ
ルスレーザ−光を線状に照射して被膜のみを局所的に除
去したのち、酸洗により線状の溝を形成させた。
fb) After linear irradiation with pulsed laser light having an energy density of 0.8 J/cm'' to locally remove only the coating, linear grooves were formed by pickling.

溝の形状はいずれも幅100μm、深さ15μmであり
、圧延方向と直角な方向に7龍間隔で形成した。
The grooves had a width of 100 μm and a depth of 15 μm, and were formed at intervals of 7 grooves in a direction perpendicular to the rolling direction.

次にこれらの試片に、N□中で800℃、3時間の歪取
り焼鈍を施したのち、磁気特性を単板磁気試験機(SS
T)により測定した。
Next, these specimens were subjected to strain relief annealing at 800°C for 3 hours in N
T).

その結果、成分、板厚、B10および溝の形状すべてが
同じであるのにもかかわらず、(a)はMu/S@0.
82W/kg、 (b)は’lht/so 0.15H
/kgでありいずれの試片も溝の形成により鉄損は低減
したものの、山)の処理を施した材料の方がより低い鉄
損値を示すことが判明した。
As a result, although the composition, plate thickness, B10, and groove shape are all the same, (a) is Mu/S@0.
82W/kg, (b) is 'lht/so 0.15H
/kg, and although the iron loss was reduced by forming the grooves in all specimens, it was found that the material treated with the grooves showed a lower iron loss value.

次にこれらの試片にさらに高温で焼鈍を施した場合の焼
鈍温度と一1クツ5゜との関係を第1図に示す。
Next, FIG. 1 shows the relationship between the annealing temperature and 11 shoes 5° when these specimens were annealed at a higher temperature.

(b)の試片は焼鈍温度が高くなっても特性はほとんど
変化しなかったのに対し、(a)の材料は1000℃の
焼鈍で著しく特性が劣化し、1180℃では溝形成前の
特性近くにまで劣化した。
The properties of the specimen in (b) hardly changed even when the annealing temperature was increased, whereas the properties of the material in (a) significantly deteriorated after annealing at 1000°C, and at 1180°C, the properties remained unchanged even when the annealing temperature was increased. It has deteriorated to almost the same level.

そこで発明者らは、このように成分、板厚、8111お
よび溝の形状などが同等であるにもかかわらず、鉄損値
に差異が生じた原因について詳細な調査を加えたところ
、(a)の試片では800℃での歪取り焼鈍後に線状0
溝の周辺に微細再結晶粒群が見られ、しかもそれが焼鈍
温度が高くなるに伴い成長していることが明らかとなっ
た。一方、(a)の試片よりも優れた鉄損値を有し、か
つ1000℃以上の高温焼鈍後も特性の劣化がない(b
)の試片では歪取り焼鈍後にこのような微細再結晶粒群
は観察されなかった。
Therefore, the inventors conducted a detailed investigation into the cause of the difference in iron loss values despite the same composition, plate thickness, 8111, groove shape, etc., and found (a) After strain relief annealing at 800℃, the specimen of
It became clear that fine recrystallized grain groups were observed around the grooves, and that they grew as the annealing temperature increased. On the other hand, it has a better iron loss value than the sample in (a), and there is no deterioration in properties even after high-temperature annealing at 1000°C or higher (b)
) such fine recrystallized grain groups were not observed after strain relief annealing.

上述に準じた実験を他の素材についても数多く行なった
ところ、いずれも同様の結果が得られた。
When experiments similar to those described above were conducted on a number of other materials, similar results were obtained in all cases.

次に発明者は下記に示す板厚0.23mmの2種類の仕
上げ焼鈍済みの方向性電磁鋼板A、Bを用意した・ A;フォルステライト被膜が局所的に無い鋼板。
Next, the inventor prepared two types of finish-annealed grain-oriented electrical steel sheets A and B, each having a thickness of 0.23 mm as shown below. A: Steel sheet with no local forsterite coating.

B;フォルステライト被膜と上塗りコーティングのある
鋼板で局所的にこれらの被膜を除去したもの。
B: A steel plate with a forsterite film and a top coat, from which these films have been locally removed.

鋼板Aは特開昭60−92487号公報に開示されてい
る方法で製造した。すなわち脱炭焼鈍後の鋼板に局所的
に油性ペイントを印刷した後にMgOを主成分とする分
離剤を鋼板全面に塗布することにより製造した。フォル
ステライト被膜の欠損領域は圧延方向に直角方向の線状
領域でその幅は0.1fi、また線状領域の間隔は6鶴
である。
Steel plate A was manufactured by the method disclosed in JP-A-60-92487. That is, it was manufactured by printing an oil-based paint locally on a steel plate after decarburization annealing, and then applying a separating agent containing MgO as a main component to the entire surface of the steel plate. The defective region of the forsterite coating is a linear region in a direction perpendicular to the rolling direction, and its width is 0.1 fi, and the interval between the linear regions is 6 squares.

また鋼板Bは仕上げ焼鈍後の鋼板に上塗りコーティング
を施した鋼板を局所的に溶融NaOHによりフォルステ
ライト被膜及び上塗コーティングを除去したもので、被
膜除去部の方向、幅間隔は鋼板Aのフォルステライト被
膜欠損領域と同一にした1ついでこれら鋼板の磁気特性
を150鶴幅、長さ280鶴の単板磁気試験装置で測定
後、以下に示す電解エツチングを施した。
In addition, steel plate B is a steel plate with a top coat applied to the steel plate after finish annealing, and the forsterite film and top coat are locally removed using molten NaOH. The magnetic properties of these steel plates were then measured using a veneer magnetic testing device with a width of 150 mm and a length of 280 mm, followed by electrolytic etching as described below.

鋼板A、BともそのままNaC1電解液中に入れ、平板
状電極(陰極)と対向させ鋼板を陽極として電解エツチ
ングした。電流密度およびエツチング時間はそれぞれ1
0〜200 A/備’ 、 0.5〜5Sである鋼板A
、Bでは被膜の無い部分だけ電解エツチングされその深
さは約20μmであった。これらの鋼板の磁気特性を測
定した後、さらにNzガス中で800℃、3時間の歪取
り焼鈍を施し、再び磁気測定をした。
Both steel plates A and B were placed in an NaCl electrolyte as they were, faced with a flat electrode (cathode), and electrolytically etched using the steel plate as an anode. Current density and etching time are each 1
Steel plate A that is 0-200 A/bi', 0.5-5S
, B, only the portion without the film was electrolytically etched, and the depth was approximately 20 μm. After measuring the magnetic properties of these steel plates, they were further subjected to strain relief annealing at 800° C. for 3 hours in Nz gas, and the magnetic properties were again measured.

これらの磁気測定の結果を表1にまとめて示すなお同表
には各々の鋼板をそのままN2ガス中で800℃、3時
間の歪取り焼鈍を施して得た比較材についての測定結果
も併記した。
The results of these magnetic measurements are summarized in Table 1. In addition, the same table also lists the measurement results for comparative materials obtained by subjecting each steel plate to stress relief annealing for 3 hours at 800°C in N2 gas. .

巨 [ し w+tzsoは磁束密度1.7T 、 5011zの時
の鉄損(W/kg)いずれの鋼板も電解エツチングによ
り大幅に鉄。  損が向上し、また800℃の焼鈍でも
特性が劣化しなかった。なおこれらの鋼板を顕微鏡で観
察にしたがエツチング部には微細再結晶粒群は観察され
なかった。
Iron loss (W/kg) when the magnetic flux density is 1.7T and 5011z Both steel plates are significantly iron-reinforced by electrolytic etching. The loss was improved, and the properties did not deteriorate even after annealing at 800°C. When these steel plates were observed under a microscope, no fine recrystallized grains were observed in the etched areas.

さらに発明者らはフォルステライト被膜をそなえる鋼板
に上述のようにして溝を形成したのち鋼、  板金面に
わたって上塗り絶縁コーティングを施したものについて
も同様の実験を行なったところ、上述したところと同様
の結果が得られた。
Furthermore, the inventors conducted a similar experiment on a steel plate with a forsterite coating, in which grooves were formed as described above, and then an insulating coating was applied over the surface of the steel and sheet metal. The results were obtained.

上記の各実験結果から、従来にも増して優れた鉄損値を
有し、しかも1000℃以上の高温焼鈍後においても安
定した特性を確保するためには線状の溝の周辺に歪取り
焼鈍時に微細再結晶粒群全生成させないようにすること
が肝要であることが判明した。
From the above experimental results, we found that in order to have an iron loss value that is better than before and to ensure stable characteristics even after high-temperature annealing at 1000°C or more, strain relief annealing is required around the linear grooves. It has been found that sometimes it is important to prevent the formation of all fine recrystallized grain groups.

微細再結晶粒群を含む材料で高温焼鈍後に特性が劣化す
る理由は、微細な再結晶粒は一般に方位がゴス方向から
ずれており、1ooo℃以上での高温焼鈍を施した場合
には、かかる方位のずれた粒が成長するためと考えられ
る。
The reason why properties of materials containing fine recrystallized grains deteriorate after high-temperature annealing is that the orientation of fine recrystallized grains is generally deviated from the Goss direction, and when high-temperature annealing is performed at 100°C or higher, This is thought to be due to the growth of misoriented grains.

次に、歪取り焼鈍時に微細再結晶粒群が生成しないよう
な溝の形成方法について説明を加える。
Next, a method for forming grooves that prevents formation of fine recrystallized grain groups during strain relief annealing will be explained.

溝の形成はまず仕上げ焼鈍済みの方向性電磁鋼板の被膜
をレーザー照射、ナイフによるケガキ等の方法により局
部的に線状に除去したり、予め仕上げ焼鈍後にフォルス
テライト被膜に欠損領域が生じる平文てを施したのち、
エツチングすなわち電解エツチング、化学エツチング等
の方法により行なう。
The grooves are first formed by removing the coating of a grain-oriented electrical steel sheet that has been finish annealed in a localized linear manner by laser irradiation, scribing with a knife, etc. After applying
Etching is carried out using methods such as electrolytic etching and chemical etching.

発明者らは、歪取り焼鈍後、微細再結晶粒群が生成した
材料とそうでない材料について詳細に調査したところ、
被膜除去時に地鉄に加わる歪量が微細再結晶粒群の生成
に関与していることを突き止めた。
The inventors conducted a detailed investigation of materials in which fine recrystallized grain groups were generated and materials in which they were not after strain relief annealing, and found that
It was found that the amount of strain applied to the steel base during coating removal is involved in the formation of fine recrystallized grain groups.

第2図に被膜除去時に地鉄に加わった歪量と歪取り焼鈍
時の微細再結晶粒群発生確率との関係を示す、なお歪量
は透過コツセル装置を用いコツセル回折像のラインブロ
ードニングから求めた(特開昭58−244504号に
開示)。
Figure 2 shows the relationship between the amount of strain applied to the steel base during coating removal and the probability of generating fine recrystallized grain groups during strain relief annealing. (Disclosed in Japanese Patent Application Laid-Open No. 58-244504).

第2図より明らかなように歪量が少なくなるに従って微
細再結晶粒群の発生確率は次第に低下し、歪量が30%
以下の場合には微細再結晶粒群が生成する確率は0%と
なる。
As is clear from Figure 2, as the amount of strain decreases, the probability of occurrence of fine recrystallized grain groups gradually decreases, and when the amount of strain decreases to 30%.
In the following cases, the probability that a fine recrystallized grain group will be generated is 0%.

したがって歪取り焼鈍時に微細再結晶粒群が生じないよ
うにするためには、被膜除去時に地鉄に加わる歪量を3
0%以下に制御することが肝要なわけである。
Therefore, in order to prevent the formation of fine recrystallized grain groups during strain relief annealing, it is necessary to reduce the amount of strain applied to the base steel by 3.
Therefore, it is important to control it to 0% or less.

かかる方法としては、前述したように弱いエネルギー密
度でのパルスレーザ−光によって被膜のみを除去する方
法や、方向性電磁鋼板の製造工程中、焼鈍分離剤の塗布
時に、仕上げ焼鈍後にフォルステライト被膜に欠損領域
が生じるように被膜形成阻止剤や撥水性物質を塗布する
方法などがある。
Such methods include removing only the coating using pulsed laser light with a weak energy density as described above, and removing the forsterite coating after final annealing when applying an annealing separator during the manufacturing process of grain-oriented electrical steel sheets. There is a method of applying a film formation inhibitor or a water repellent substance to create a defective area.

次に導入すべき溝の形状について説明を加える。Next, the shape of the groove to be introduced will be explained.

板厚0.23m1の仕上げ焼鈍済みの方向性電磁鋼板の
エプスタイン試片に0.8 J/cm”のエネルギー密
度を有するパルスレーザ−光を圧延方向と直角な方向に
照射し被膜のみを除去したのち、時間を変えながら酸洗
することにより深さの異なる溝を形成させた。また、レ
ーザー光の焦点をずらすことにより溝の幅を変えた。線
状溝の間隔はいずれも7鶴とした。次にこれらの試片に
Nz中で800℃。
A pulsed laser beam having an energy density of 0.8 J/cm was irradiated on an Epstein specimen of a finish-annealed grain-oriented electrical steel sheet with a thickness of 0.23 m1 in a direction perpendicular to the rolling direction to remove only the coating. Later, grooves with different depths were formed by pickling at different times.Also, the width of the grooves was changed by shifting the focus of the laser beam.The spacing between the linear grooves was set to 7 cranes in each case. Next, these specimens were heated at 800°C in Nz.

3hの歪取り焼鈍を施したのち、単板磁気試験機(SS
T)により測定した。なお、歪取り焼鈍後の試片にはい
ずれも、溝形成部に微細再結晶粒群はみられなかった。
After 3 hours of strain relief annealing, a single plate magnetic testing machine (SS
T). In addition, no fine recrystallized grain group was observed in the groove forming part in any of the specimens after strain relief annealing.

第3図に形成された溝の幅および深さと鉄損改善効果(
Δw、 ?/S。)との関係を示す。
Figure 3 shows the width and depth of the grooves formed and the iron loss improvement effect (
Δw, ? /S. ).

ここにΔ−1./、。は仕上げ焼鈍済み鋼板の鉄損Wl
?150と溝形成後に歪取り焼鈍を施した鋼板の鉄損賀
、、7.。との差である。
Here Δ-1. /,. is the iron loss Wl of the finish annealed steel plate
? 150 and steel sheet steel plate subjected to strain relief annealing after groove formation, 7. . This is the difference between

同図に示したとおり、溝の幅が5μmに満たない場合は
鉄損改善効果に乏しく、一方500μmを超えた場合に
はやはり鉄損が劣化するため、溝の幅は5〜500 u
 rmとするのが良い。
As shown in the figure, if the width of the groove is less than 5 μm, the iron loss improvement effect is poor, while if it exceeds 500 μm, the iron loss will still deteriorate, so the width of the groove should be 5 to 500 μm.
It is better to set it to rm.

また溝の深さについては、100μmを超えると鉄損は
むしろ劣化するため100μm以下好ましくは5〜30
μmとするのが適当である。
In addition, regarding the depth of the groove, if it exceeds 100 μm, the iron loss will deteriorate, so it is preferably 100 μm or less, preferably 5 to 30 μm.
It is appropriate to set it to μm.

さらに溝の形成方向は圧延方向に対し直角な方向を基準
線としてこの基準線から±45″以内、溝の間隔は2〜
30龍程度とするのが好ましい。
Furthermore, the direction in which the grooves are formed is within ±45" from the reference line, with the direction perpendicular to the rolling direction as the reference line, and the groove spacing is 2 to 2".
It is preferable to set it to about 30 dragons.

次にこの発明の製造方法について具体的に説明する。Next, the manufacturing method of the present invention will be specifically explained.

方向性電磁鋼板は、一般にMnS 、 MnSe + 
BNおよびsb等のいわゆるインヒビターを含む熱間圧
延板を、必要に応じて熱処理した後、1回または中間焼
鈍をはさむ2回の冷間圧延により製品板厚にしたのち、
脱炭焼鈍を施し、ついでMgOを主成分とする焼鈍分離
剤を塗布してから約1200℃で仕上げ焼鈍を施すこと
によって製造され、かかる仕上げ焼鈍により鋼板は2次
再結晶しいわゆるゴス方位の鋼板が完成する。
Grain-oriented electrical steel sheets are generally made of MnS, MnSe +
A hot-rolled plate containing so-called inhibitors such as BN and sb is heat-treated as necessary, and then cold-rolled once or twice with intermediate annealing to achieve a product thickness.
It is manufactured by performing decarburization annealing, then applying an annealing separator containing MgO as a main component, and final annealing at approximately 1200°C. The final annealing causes the steel sheet to undergo secondary recrystallization, resulting in a so-called Goss-oriented steel sheet. is completed.

ここに鋼板の5iilが2.0重世%(以下単に%で示
す)に満たないと比抵抗を高め渦電流を低減させる効果
に乏しく、一方4.5%を超えると冷延性に問題を生じ
るため、この発明ではSi含有量は2.0〜4.5%の
範囲に限定した。
Here, if the 5iil of the steel plate is less than 2.0% (hereinafter simply expressed in %), it will have a poor effect of increasing resistivity and reducing eddy current, while if it exceeds 4.5%, problems will occur in cold rollability. Therefore, in this invention, the Si content is limited to a range of 2.0 to 4.5%.

さてこの発明では、溝の形成に先立ち、仕上焼鈍済みの
鋼板表面に被膜の欠損領域を区画形成させておく必要が
あるが、かかる欠損領域の形成手段として、まず鋼板全
面に被成した被膜を局所的に除去する方法について説明
する。
In the present invention, prior to forming the grooves, it is necessary to form a defective region of the coating on the surface of the finish annealed steel sheet. A method for local removal will be explained.

被膜の除去手段としては、レーザー照射やナイフによろ
けかき等何でも構わないが、被膜除去時に鋼板中に導入
される歪量が大きすぎると前述したとおり、歪取り焼鈍
時に微細再結晶粒群が生じてしまいこの発明で所期した
目的が達成されないので、導入歪量は30%以下に抑制
することが肝要であり、そのためにはレーザー照射によ
る場合はおおむね0.01〜IJ/cI11!程度のエ
ネルギー密度で、またナイフなどを利用する場合は50
〜500g程度の加重とすることが望ましい。
The coating can be removed by any means such as laser irradiation or scraping with a knife, but if the amount of strain introduced into the steel sheet during coating removal is too large, fine recrystallized grain groups will occur during strain relief annealing, as mentioned above. Therefore, it is important to suppress the amount of introduced strain to 30% or less, and for this purpose, when using laser irradiation, it is approximately 0.01 to IJ/cI11! The energy density is about 50,000 yen when using a knife etc.
It is desirable that the load be approximately 500 g.

このとき被膜の除去領域は、鋼板の圧延方向とは直角の
方向から±45°の角度範囲内において線状とし、かか
る線状欠損領域の幅は5〜500μm。
At this time, the removed region of the film is linear within an angular range of ±45° from a direction perpendicular to the rolling direction of the steel plate, and the width of the linear defect region is 5 to 500 μm.

間隔は2〜30鰭程度とするのが好ましい。なおこの発
明で線状とは、単に連続した直線のみを指すものではな
く、断続してつながる点の列も含むものとする。
The spacing is preferably about 2 to 30 fins. Note that in this invention, the word "linear" does not simply mean a continuous straight line, but also includes a series of points that are connected intermittently.

次に仕上げ焼鈍時に予めフォルステライト被膜の欠tN
 jJl域を形成させておく手法について述べる。
Next, during final annealing, the forsterite coating is
A method for forming the jJl region will be described.

かかる手法としては以下に述べるような方法がある。Such methods include the following methods.

i)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗布
工程において、該塗布に先立ち、鋼板表面に焼鈍分離剤
との反応を阻害する物質、例えば5ift + AhO
s + Zr0zなどの酸化物やZn 、 AlSn 
+ Ni 、 Peなどの金属を局所的に付着させる方
法。
i) In the step of applying an annealing separator to the surface of the steel sheet after primary recrystallization annealing, prior to the application, a substance that inhibits the reaction with the annealing separator, such as 5ift + AhO, is applied to the surface of the steel sheet.
s + Oxides such as Zr0z, Zn, AlSn
+ A method of locally depositing metals such as Ni and Pe.

1i)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の塗
布工程において、該塗布に先立ち、鋼板表面に油性ペイ
ントやワニスなどのtθ水性物質を局所的に付着させる
方法。
1i) In the step of applying an annealing separator to the surface of the steel sheet after primary recrystallization annealing, a method of locally adhering a tθ aqueous substance such as oil-based paint or varnish to the surface of the steel sheet prior to the application.

1ii)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の
塗布工程において、その塗布に先立ち、鋼板表面に鋼中
のSiの酸化剤となるような物質、例えばFeO、Fe
zO3、Ti1t + MnO、MnO2などの酸化物
、Fe2SiO4などの還元されやすいけい酸塩、Mg
 (OH) zなどの水酸化物を局所的に付着させる方
法。
1ii) In the step of applying an annealing separator to the surface of the steel sheet after primary recrystallization annealing, a substance that acts as an oxidizing agent for Si in the steel, such as FeO, Fe, etc., is applied to the surface of the steel sheet prior to the application.
Oxides such as zO3, Ti1t + MnO, MnO2, silicates that are easily reduced such as Fe2SiO4, Mg
A method of locally depositing hydroxides such as (OH) z.

1v)1次再結晶焼鈍後の鋼板表面への焼鈍分離剤の・
塗布工程において、塗布・乾燥後の焼鈍分離剤を局所的
に除去する方法。
1v) Application of annealing separator to the steel plate surface after primary recrystallization annealing
A method of locally removing the annealing separator after coating and drying in the coating process.

上掲i)〜iv)に掲げたような、焼鈍分離剤の塗布時
にフォルステライト被膜未形成領域を区画形成させる各
方法により、地鉄中に歪を導入することなしに、仕上げ
焼鈍後にフォルステライト被膜の欠損領域を効果的に形
成させることができる。
By each of the methods listed in i) to iv) above, in which the forsterite film-free area is partitioned during application of the annealing separator, forsterite is removed after final annealing without introducing strain into the steel base. Defect areas in the coating can be effectively formed.

次に上述のようにして局所的に被膜を除去した鋼板にエ
ツチングすなわち電解エツチングや酸洗などの化学エツ
チングを施して地鉄に線状の溝を形成する。形成する溝
の深さは100μm以下が好適である。かかる溝の形状
は連続した直線だけでなく非連続な直線あるいは曲線状
であってもかまわないのは前述したとおりである。かか
る溝の形成方法としては、エツチング以外の方法でも構
わないが、溝形成部に凹凸を生じないこと、歪取り焼鈍
時に微細再結晶粒群をもたらすような歪を導入しないこ
とを考慮すると、電解エツチングや化学エツチングが適
している。
Next, the steel plate from which the coating has been locally removed as described above is subjected to etching, that is, chemical etching such as electrolytic etching or pickling, to form linear grooves in the base steel. The depth of the groove to be formed is preferably 100 μm or less. As mentioned above, the shape of the grooves may be not only a continuous straight line but also a discontinuous straight line or a curved line. Although methods other than etching may be used to form such grooves, electrolytic Etching or chemical etching is suitable.

ここに電解エツチングは、平板状の陰極電解を、処理す
べき鋼板と対向させてエツチングするのが一般的であり
、溝深さは、電解液の種類、電流密度および処理時間に
よって種々変動するので、溝深さが100μm以下とな
る条件を選ぶことが肝要である。
In electrolytic etching, a flat cathode electrode is generally etched facing the steel plate to be treated, and the groove depth varies depending on the type of electrolytic solution, current density, and processing time. It is important to select conditions such that the groove depth is 100 μm or less.

また化学エツチングに用いる処理液としては、硫酸や硝
酸などが好適である。
Sulfuric acid, nitric acid, etc. are suitable as the processing liquid used for chemical etching.

さらに仕上げ焼鈍済み鋼板にはりん酸塩系の上塗りコー
ティングが施されていてもいなくても良く、また線状の
溝形成後に、溝形成部または鋼板全面に上塗りコーティ
ングを塗布あるいは再塗布しても良い。
Furthermore, the finish annealed steel sheet may be coated with or without a phosphate-based topcoat, and after forming the linear grooves, a topcoat may be applied or reapplied to the grooved area or the entire surface of the steel sheet. good.

このようにして得られた鋼板は、極めて低い鉄損値を示
し、また通常の歪取り焼鈍によって鉄損が劣化しないば
かりか1000℃以上の高温焼鈍によっても良好な特性
が保持されるため巻鉄心用材料として安定して使用する
ことができる。また一般に歪取り焼鈍を要しない積鉄心
用として使用してもよいことは言うまでもない。
The steel sheet obtained in this way exhibits an extremely low iron loss value, and not only does the iron loss not deteriorate due to normal strain relief annealing, but also maintains good properties even after high-temperature annealing at 1000°C or higher. It can be stably used as a material for industrial use. It goes without saying that it may also be used for stacked iron cores that generally do not require strain relief annealing.

(作 用) この発明に従い地鉄に及ぶ線状の溝を形成することによ
って極めて良好な低鉄損値が得られる理由は、まだ明確
には解明されたわけではないが、溝の周辺に生じる反磁
場効果のために磁区が細分化されることによるものと考
えられる。
(Function) The reason why an extremely low iron loss value can be obtained by forming a linear groove extending over the base metal according to the present invention has not yet been clearly elucidated, but it is due to the reaction generated around the groove. This is thought to be due to the subdivision of magnetic domains due to magnetic field effects.

(実施例) 実施例I Si 3.2%を含み通常の製造方法により製造された
板厚0.23mm、Boo 1.91Tの方向性電磁鋼
板をA。
(Example) Example I A grain-oriented electrical steel sheet with a thickness of 0.23 mm and Boo 1.91T containing 3.2% Si and manufactured by a normal manufacturing method.

Bの2つに分け、鋼板Aについてはエネルギー密度10
0J/cm”のパルスレーザ−光を照射することにより
被膜及び地鉄の一部を線状に除去したのちNaC1電解
液中で電解エツチングすることにより線状の溝を形成し
た。また鋼板Bについてはエネルギー密度0.8 J/
cm”のパルスレーザ−光を照射することにより被膜の
みを局所的に線状に除いたのち、さらに電解エツチング
より溝を形成した。溝の形状は鋼板A、B共に幅100
μm、深さ10μmであり、圧延方向に対し直角な方向
に71m間隔で線状に形成した。また被膜除去時、地鉄
に加わった歪量を透過コツセル装置により測定したとこ
ろAは32%、Bは7%であった。
Divide into two parts B, and the energy density of steel plate A is 10.
A portion of the coating and the base metal were removed in a linear manner by irradiation with a pulsed laser beam of 0 J/cm", and then linear grooves were formed by electrolytic etching in a NaCl electrolyte. Also, regarding steel plate B. has an energy density of 0.8 J/
After the coating was locally removed linearly by irradiation with a pulsed laser beam of 1.5 cm", grooves were formed by electrolytic etching. The grooves had a width of 100 mm for both steel sheets A and B.
micrometers and a depth of 10 micrometers, and were formed linearly at intervals of 71 m in a direction perpendicular to the rolling direction. Furthermore, when the amount of strain applied to the steel base during coating removal was measured using a percolation cell device, it was 32% for A and 7% for B.

次にこれらの鋼板をN2中にて800°C,3hで歪取
り焼鈍したのち、鉄損測定及びマクロ組織観察を行なっ
た。鋼板Aでは溝形成部に微細再結晶粒群が観測された
のに対し、鋼板Bでは観測されなかった。次にこれらの
鋼板をさらに1000℃、 1180℃で3時間焼鈍し
たのち、再び鉄損測定、マクロ組織観察を行なった。各
段階での鉄損特性について調べた結果を表2に示す。
Next, these steel plates were subjected to strain relief annealing in N2 at 800°C for 3 hours, and then iron loss measurements and macrostructure observations were performed. In steel plate A, fine recrystallized grain groups were observed in the groove forming part, whereas in steel plate B, they were not observed. Next, these steel plates were further annealed at 1000°C and 1180°C for 3 hours, and then iron loss measurements and macrostructure observations were performed again. Table 2 shows the results of investigating the iron loss characteristics at each stage.

被膜除去時の歪量が32%であった鋼板Aは溝形成部に
微細再結晶粒群が見られ、1000℃以上の高温焼鈍に
よりかかる微細再結晶粒が成長し特性が劣化したが、歪
量7%の綱板Bでは微細再結晶粒群は見られず800℃
焼鈍で鋼板Aよりも低鉄損値を示し、また1000℃以
上の高温焼鈍後も安定した特性を示した。なお溝形成部
に凹凸やカエリは見られなかった。
Steel plate A, which had a strain of 32% at the time of film removal, had a group of fine recrystallized grains in the groove formation area, and the fine recrystallized grains grew due to high-temperature annealing at 1000°C or higher and the properties deteriorated, but the strain No fine recrystallized grains were observed in steel plate B with a content of 7% at 800°C.
During annealing, it showed a lower iron loss value than Steel Plate A, and also showed stable characteristics even after high temperature annealing at 1000°C or higher. Note that no unevenness or burrs were observed in the groove forming portion.

実施例2 Si3.4%を含み通常の製造方法により製造された板
厚0.27n+、 Boo 1.92Tの方向性電磁鋼
板をC9D2つに分け、鋼板Cについてはナイフの刃先
で1200gの加重を加えながらけがくことにより被膜
及び地鉄の一部を線状に除いたのち、IIN(h酸洗を
施すことにより線状の溝を形成した。一方鋼板りについ
てはナイフの刃先で150gの加重を加えながらけがく
ことにより被膜のみを局所的に線状に除いたのち、さら
にllN0ff酸洗により溝を形成した。
Example 2 A grain-oriented electrical steel sheet containing 3.4% Si and having a thickness of 0.27n+ and Boo 1.92T manufactured by a normal manufacturing method was divided into two C9D parts, and the steel plate C was subjected to a load of 1200g with the edge of a knife. After removing a part of the coating and base iron in a linear manner by scribing while adding, linear grooves were formed by applying IIN (h pickling).Meanwhile, for the steel plate, a load of 150 g was applied with the edge of a knife. After the coating was removed locally in a linear manner by scribing while adding 100% chloride, grooves were further formed by pickling with 11N0ff.

溝の形状は鋼板C,D共に、幅120μm、深さ15μ
mであり、圧延方向に対し直角な方向に51間隔で線状
に導入した。また被膜除去時、地鉄に加わった歪量を透
過コツセル装置により測定したところAは45%、Bは
12%であった。
The shape of the groove is 120μm wide and 15μm deep for both steel plates C and D.
m, and were introduced linearly at intervals of 51 in the direction perpendicular to the rolling direction. Further, when the amount of strain applied to the steel base during coating removal was measured using a percolation cell device, it was 45% for A and 12% for B.

ついでこれらの鋼板を800℃、1000℃、 118
0℃の各温度で3時間焼鈍し、各段階で鉄損測定及びマ
クロ組成観察を行なった。得られた結果を表3に示す。
These steel plates were then heated to 800℃, 1000℃, 118
Annealing was performed at each temperature of 0° C. for 3 hours, and iron loss measurements and macrocomposition observations were performed at each stage. The results obtained are shown in Table 3.

表3 被膜除去時の歪量が45%であった鋼板Cでは、800
℃、3時間焼鈍後、溝形成部に微細再結晶粒群が見られ
、1000℃以上の高温焼鈍によりかかる微細再結晶粒
が成長し特性が劣化した。これに対し、被膜除去時の歪
量が12%であった鋼板りについては微細再結晶粒群が
見られず、800℃の焼鈍で鋼板Aよりも低鉄損値を示
し、また1000℃以上の高温焼鈍後も安定した特性を
示した。さらに鋼板Cでは溝形成部にカエリが見られた
が、鋼板りではカエリもなく良好な形状であった。
Table 3 Steel plate C, which had a strain of 45% when removing the coating, had a strain of 800%.
After annealing at 1000° C. for 3 hours, a group of fine recrystallized grains was observed in the groove forming portion, and the fine recrystallized grains grew due to high-temperature annealing at 1000° C. or higher, resulting in deterioration of characteristics. On the other hand, for the steel sheet whose strain amount was 12% at the time of film removal, no fine recrystallized grain groups were observed, and it showed a lower iron loss value than steel sheet A when annealed at 800℃, and It showed stable properties even after high temperature annealing. Further, in steel plate C, burrs were observed in the groove forming portion, but in steel plate C, there were no burrs and the shape was good.

実施例3 0.23mm厚のフォルステライト被膜付き鋼板(G)
とフォルステライト及び上塗コーティング付き鋼板(H
)に圧延方向と直角方向にエネルギー密度0.5J10
111”のパルスレーザ−を照射し局所的に被膜を除去
した。除去部の幅は50μIで除去部の間隔は5龍であ
る。これらの鋼板をNaC1電解液中で電解エツチング
し、被膜除去部に15μIの溝を形成させた。さらにこ
れらの鋼板表面に上塗りコーティングを施しその後80
0℃、3時間の焼鈍を行った。
Example 3 0.23 mm thick forsterite coated steel plate (G)
and steel plate with forsterite and top coating (H
) has an energy density of 0.5J10 in the direction perpendicular to the rolling direction.
The coating was locally removed by irradiation with a 111" pulsed laser. The width of the removed area was 50 μI, and the interval between the removed areas was 5 mm. These steel plates were electrolytically etched in a NaCl electrolyte to remove the coating. A groove of 15μI was formed on the steel plate.Furthermore, a top coat was applied to the surface of these steel plates, and then 80μI grooves were formed on the surface.
Annealing was performed at 0°C for 3 hours.

鋼板の各段階での磁気特性を、各々の鋼板で電解エツチ
ングを行なわない比較例と共に表4に示す。
The magnetic properties of the steel plates at each stage are shown in Table 4 along with comparative examples in which each steel plate was not subjected to electrolytic etching.

実施例4 St 3.3%を含有するけい素鋼素材を、常法に従っ
て厚み0.30mの冷延鋼板とし、ついで脱炭・1次再
結晶焼鈍を施したのち、鋼板を2分割し、一方はそのま
まMgOを主成分とする焼鈍分離剤を塗布し最終仕上げ
焼鈍を施し鋼板■とした。
Example 4 A silicon steel material containing 3.3% St was made into a cold-rolled steel plate with a thickness of 0.30 m according to a conventional method, and then subjected to decarburization and primary recrystallization annealing, and then divided into two parts, One of the steel plates was coated with an annealing separator containing MgO as a main component and subjected to final annealing to obtain a steel plate (■).

他の一つは鋼板表面に、焼鈍分離剤と鋼板サブスケール
中のSingとの反応阻止剤であるAh(h粉末を、付
着量1.3g/m” 、圧延方向となす角度:90@付
着幅0.2mmそして圧延方向における繰返し間隔:1
0nの条件下に線状に付着させてから、そのうえに焼鈍
分離剤を塗布し最終仕上げ焼鈍を施した。
The other is adhesion of Ah (h powder), which is a reaction inhibitor between the annealing separator and Sing in the steel plate subscale, on the surface of the steel plate at an adhesion amount of 1.3 g/m'' and an angle of 90@adhesion with respect to the rolling direction. Width 0.2mm and repeat interval in rolling direction: 1
After being deposited in a linear manner under 0n conditions, an annealing separating agent was applied thereon and final annealing was performed.

得られた鋼板表面はAl2O!粉末を塗布した領域につ
いてはフォルステライト被膜は形成されていなかった。
The surface of the obtained steel plate is Al2O! No forsterite film was formed in the area where the powder was applied.

この鋼板をさらに2分割し、一方はそのまま鋼板Jとし
た。他の鋼板は10%H,SO,で60℃。
This steel plate was further divided into two parts, one of which was used as steel plate J. Other steel plates were heated at 60°C with 10% H and SO.

30sの酸洗を施し、フォルステライト被膜欠損領域の
地鉄部分を溶解して深さ15μmの溝を形成し、鋼板に
とした。
Pickling was carried out for 30 seconds to dissolve the base iron portion in the forsterite film defective region to form a groove with a depth of 15 μm, and a steel plate was obtained.

これらI、J、にの鋼板表面に更に上塗りコーティング
を施し、その後800℃、3時間の焼鈍を行なった。
A top coating was further applied to the surface of these steel plates I and J, and then annealing was performed at 800°C for 3 hours.

鋼板の格段階での磁気特性を表5に示す。Table 5 shows the magnetic properties of the steel sheets at different grades.

表5 実施例5 Si 3.25%を含有するけい素鋼素材を、常法に従
って厚み0.23mmの冷延鋼板とし、ついで脱炭・1
次再結晶焼鈍を施し、MgOを主成分とする焼鈍分離剤
を塗布したのち鋼板を2分割した。一方はそのまま最終
仕上げ焼鈍を施し鋼板りとした。他の一つは表面の焼鈍
分離剤を線状に除去した。除去幅は0.111m、圧延
方向となす角度:90″′、圧延方向における繰返し間
隔:13mmであった。
Table 5 Example 5 A silicon steel material containing 3.25% Si was made into a cold rolled steel plate with a thickness of 0.23 mm according to a conventional method, and then decarburized and 1
After recrystallization annealing was performed and an annealing separator containing MgO as a main component was applied, the steel plate was divided into two parts. One side was subjected to final annealing and made into a steel plate. In the other one, the annealing separator on the surface was removed linearly. The removal width was 0.111 m, the angle with the rolling direction was 90'', and the repetition interval in the rolling direction was 13 mm.

この鋼板を最終仕上焼鈍したところ、焼鈍分離剤を線状
に除去した部分にはフォルステライト被膜がほとんど形
成していなかった。次いで鋼板を2分割し一方の鋼板は
そのまま鋼板Mとした。他の鋼板は)13PO4−LO
□で20s間化学研磨を行いフォルステライト欠tM 
SI域の地鉄部分を溶解し深さ12μmの溝を形成し、
鋼板Nとした。
When this steel plate was final annealed, almost no forsterite film was formed in the areas where the annealing separator had been linearly removed. Next, the steel plate was divided into two parts, and one of the steel plates was used as steel plate M. Other steel plates are) 13PO4-LO
Chemically polish for 20 seconds with □ to remove forsterite.
The base metal part in the SI area was melted to form a groove with a depth of 12 μm,
Steel plate N was used.

これらり、M、Nの鋼板表面に更に上塗りコーティング
を施し、その後800℃、3時間の焼鈍を行なった。
A top coating was further applied to the surfaces of these M and N steel plates, and then annealing was performed at 800°C for 3 hours.

鋼板の各段階での磁気特性を表6に示す。Table 6 shows the magnetic properties of the steel plate at each stage.

実施例6 0.23龍厚のフォルステライト被膜及びコロイダルシ
リカ100cc 、りん酸マグネシウム100cc 、
無水クロム酸10ccよりなる処理液を塗布、焼付けて
得た張力コーティング被膜を有する鋼板に圧延方向と直
角方向に150gの加重を加えながらナイフの刃先でけ
がくことにより局所的に被膜を除去した除去部の幅は8
0μmで5龍間隔で除去した。
Example 6 Forsterite coating with a thickness of 0.23 mm, 100 cc of colloidal silica, 100 cc of magnesium phosphate,
A treatment solution consisting of 10 cc of chromic anhydride was applied to a steel plate with a tension coating film obtained by baking, and the film was locally removed by scribing with the edge of a knife while applying a load of 150 g in the direction perpendicular to the rolling direction. The width of the section is 8
It was removed at 5-meter intervals at 0 μm.

次にこの鋼板をNaC1電解液中で電解エツチングし被
膜除去部に深さ12μmの溝を形成させた。さらにこれ
らの鋼板を2分割してそれぞれ鋼板P。
Next, this steel plate was electrolytically etched in a NaCl electrolyte to form grooves with a depth of 12 μm in the portion where the film was removed. Furthermore, these steel plates are divided into two, each of which is made into a steel plate P.

Qとし、りん酸マグネシウム60cc、無水クロム酸1
0cc、はう酸5ccよりなる処理液を塗布、焼付けて
得られる通常のコーティングを鋼板Pについては全面に
、一方鋼板Qについては溝形成部のみに施し、その後、
800℃、3時間の焼鈍を行なった。
Q, magnesium phosphate 60cc, chromic anhydride 1
A normal coating obtained by applying and baking a treatment solution consisting of 0 cc and 5 cc of fluoric acid was applied to the entire surface of the steel plate P, while only the groove forming portion of the steel plate Q was applied.
Annealing was performed at 800°C for 3 hours.

鋼板の各段階での磁気特性を同一材料で溝を形成させな
い鋼板と比較して表7に示す。
Table 7 shows the magnetic properties of the steel plate at each stage in comparison with a steel plate made of the same material without grooves.

(発明の効果) かくしてこの発明によれば、方向性電磁鋼板につき、従
来に比しより一層の鉄損の低減を図ることができ、しか
もかかる鉄損特性は通常の温度での歪取り焼鈍において
は勿論のこと、たとえ1000℃以上の高温での焼鈍を
施した場合であっても劣化を招くことがない。
(Effects of the Invention) Thus, according to the present invention, it is possible to further reduce iron loss in grain-oriented electrical steel sheets compared to the conventional one, and furthermore, such iron loss characteristics can be maintained even during strain relief annealing at normal temperatures. Needless to say, even when annealing is performed at a high temperature of 1000° C. or higher, no deterioration occurs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、800℃、3hの歪取り焼鈍後に微細再結晶
粒群の見られた鋼板(alと見られない鋼板(b)につ
いて焼鈍温度と鉄損との関係を示した図、第2図は、被
膜除去時に地鉄に導入された歪量と歪取り焼鈍後に微細
再結晶粒群が生成する確率との関係を示した図、 第3図は、溝の幅および深さと鉄損減少量との関係を示
した図である。 第1図 ff、IL (3h) 第2図 士t(%] 第3図 a損低減高 ΔWtt/so (W/に幻 ・0.10〜 溝t+’PM(〕m)
Figure 1 is a diagram showing the relationship between annealing temperature and iron loss for a steel plate (al) in which fine recrystallized grain groups were observed after strain relief annealing at 800°C for 3 hours, and a steel plate (b) in which no fine recrystallized grains were observed. The figure shows the relationship between the amount of strain introduced into the steel base during coating removal and the probability that fine recrystallized grain groups will be generated after strain relief annealing. Figure 3 shows the relationship between groove width and depth and iron loss reduction. Fig. 1 ff, IL (3h) Fig. 2 t (%) Fig. 3 a Loss reduction height ∆Wtt/so (phantom to W/0.10 ~ Groove t+ 'PM(〕m)

Claims (1)

【特許請求の範囲】 1、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45°の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在しないことを特徴とする低鉄損方向性電磁鋼
板。 2、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45°の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在せず、しかもフォルステライト被膜上には、
該被膜と同じ領域にわたって被膜欠損領域を持つ上塗コ
ーティングをそなえることを特徴とする低鉄損方向性電
磁鋼板。 3、重量で2.0〜4.5%のSiを含有し、表面にフ
ォルステライト被膜をそなえる仕上げ焼鈍済みの方向性
電磁鋼板であって、該鋼板の表面に、圧延方向に対し直
角の方向を基準線としてその±45°の角度範囲内で地
鉄に及ぶ線状の溝を有し、かつこの線状溝の周辺には、
歪取り焼鈍時に微細再結晶粒群の生成をもたらす高歪導
入部が存在せず、しかもフォルステライト被膜上には、
鋼板表面全面にわたって被成した上塗りコーティングを
そなえることを特徴とする低鉄損方向性電磁鋼板。 4、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施してフォルステライト被膜付きの方向性電磁鋼板と
したのち、該方向性電磁鋼板表面のフォルステライト被
膜を、圧延方向に対し直角の方向を基準線としてその±
45°の角度範囲内で、地鉄に導入される歪量が30%
以下の条件下に線状に除去し、ついで電解または化学エ
ッチングを施して地鉄に線状の溝を形成させることから
成る、低鉄損方向性電磁鋼板の製造方法。 5、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面に対するMg
Oを主成分とする焼鈍分離剤の塗布に際し、圧延方向に
対し直角の方向を基準線としてその±45°の角度範囲
内で線状のフォルステライト被膜未形成領域を区画形成
し、ついで最終仕上げ焼鈍を施して線状の被膜欠損領域
を有するフォルステライト被膜付きの方向性電磁鋼板と
したのち、フォルステライト被膜欠損領域の地鉄部分に
電解または化学エッチングを施して地鉄に線状の溝を形
成させることを特徴とする低鉄損方向性電磁鋼板の製造
方法。 6、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施し、ついで上塗りコーティング処理を施してフォル
ステライト被膜および上塗り絶縁コーティング付きの方
向性電磁鋼板としたのち、該方向性電磁鋼板表面のフォ
ルステライト被膜および上塗り絶縁コーティングを、圧
延方向に対し直角の方向を基準線としてその±45°の
角度範囲内で、地鉄に導入される歪量が30%以下の条
件下に線状に除去し、ついで電解または化学エッチング
を施して地鉄に線状の溝を形成させることから成る、低
鉄損方向性電磁鋼板の製造方法。 7、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施してフォルステライト被膜付きの方向性電磁鋼板と
したのち、該方向性電磁鋼板表面のフォルステライト被
膜を、圧延方向に対し直角の方向を基準線としてその±
45°の角度範囲内で、地鉄に導入される歪量が30%
以下の条件下に線状に除去し、ついで電解または化学エ
ッチングを施して地鉄に線状の溝を形成させ、しかるの
ち鋼板全面に上塗りコーティング処理を施すことから成
る、低鉄損方向性電磁鋼板の製造方法。 8、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面に対するMg
Oを主成分とする焼鈍分離剤の塗布に際し、圧延方向に
対し直角の方向を基準線としてその±45°の角度範囲
内で線状のフォルステライト被膜未形成領域を区画形成
し、ついで最終仕上げ焼鈍を施して線状の被膜欠損領域
を有するフォルステライト被膜付きの方向性電磁鋼板と
したのち、フォルステライト被膜欠損領域の地鉄部分に
電解または化学エッチングを施して、地鉄に線状の溝を
形成させ、しかるのち鋼板全面に上塗りコーティング処
理を施すことから成る、低鉄損方向性電磁鋼板の製造方
法。 9、重量で2.0〜4.5%のSiを含有するけい素鋼
スラブを、熱間圧延し、ついで1回または中間焼鈍をは
さむ2回の冷間圧延を施して最終板厚としたのち、脱炭
・1次再結晶焼鈍を施し、その後鋼板表面にMgOを主
成分とする焼鈍分離剤を塗布してから、最終仕上げ焼鈍
を施し、ついで上塗りコーティング処理を施してフォル
ステライト被膜および上塗り絶縁コーティング付きの方
向性電磁鋼板としたのち、該方向性電磁鋼板表面のフォ
ルステライト被膜および上塗り絶縁コーティングを、圧
延方向に対し直角の方向を基準線としてその±45°の
角度範囲内で、地鉄に導入される歪量が30%以下の条
件下に線状に除去し、ついで電解または化学エッチング
を施して地鉄に線状の溝を形成させ、しかるのち被膜欠
損領域のみまたは鋼板全面に、上塗りコーティングを再
塗布することから成る、低鉄損方向性電磁鋼板の製造方
法。
[Claims] 1. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a It has a linear groove that extends to the base iron within an angular range of ±45° with the direction perpendicular to the reference line as the reference line, and around this linear groove,
A grain-oriented electrical steel sheet with low core loss characterized by the absence of a high strain introduction part that causes formation of fine recrystallized grain groups during strain relief annealing. 2. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a direction perpendicular to the rolling direction. It has a linear groove that extends to the base iron within an angle range of ±45° with reference line, and around this linear groove,
There is no high strain introduction area that causes the formation of fine recrystallized grain groups during strain relief annealing, and furthermore, on the forsterite coating,
A low core loss grain-oriented electrical steel sheet, comprising a top coating having a film defect area over the same area as the film. 3. A finish-annealed grain-oriented electrical steel sheet containing 2.0 to 4.5% Si by weight and having a forsterite coating on the surface, the surface of the steel sheet having a direction perpendicular to the rolling direction. It has a linear groove that extends to the base iron within an angle range of ±45° with reference line, and around this linear groove,
There is no high strain introduction area that causes the formation of fine recrystallized grain groups during strain relief annealing, and furthermore, on the forsterite coating,
A low iron loss grain-oriented electrical steel sheet characterized by having a top coat applied over the entire surface of the steel sheet. 4. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. After that, decarburization and primary recrystallization annealing were performed, after which an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and final annealing was performed to produce a grain-oriented electrical steel sheet with a forsterite coating. , the forsterite coating on the surface of the grain-oriented electrical steel sheet is
Within the angle range of 45°, the amount of strain introduced into the base steel is 30%
A method for manufacturing a grain-oriented electrical steel sheet with low core loss, which comprises removing the base metal in a linear manner under the following conditions, and then subjecting it to electrolytic or chemical etching to form a linear groove in the base metal. 5. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, and then the Mg
When applying the annealing separator containing O as the main component, a linear forsterite film-free area is defined within an angular range of ±45° using the direction perpendicular to the rolling direction as a reference line, and then final finishing is performed. After annealing to produce a grain-oriented electrical steel sheet with a forsterite coating having a linear coating defect area, electrolytic or chemical etching is performed on the base metal part in the forsterite coating defect area to form linear grooves in the base metal. 1. A method for manufacturing a grain-oriented electrical steel sheet with low core loss, characterized by forming a grain-oriented electrical steel sheet. 6. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, after which an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, final annealing is performed, and a top coat is then applied to form a forsterite film and a top coat. After making a grain-oriented electrical steel sheet with an insulating coating, the forsterite coating and top insulation coating on the surface of the grain-oriented electrical steel sheet are ground within an angle range of ±45° with the direction perpendicular to the rolling direction as a reference line. A low iron loss grain-oriented electrical steel sheet, which is formed by linearly removing the steel under conditions where the amount of strain introduced into the steel is 30% or less, and then applying electrolytic or chemical etching to form linear grooves in the base steel. manufacturing method. 7. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. After that, decarburization and primary recrystallization annealing were performed, after which an annealing separator mainly composed of MgO was applied to the surface of the steel sheet, and final annealing was performed to produce a grain-oriented electrical steel sheet with a forsterite coating. , the forsterite coating on the surface of the grain-oriented electrical steel sheet is
Within the angle range of 45°, the amount of strain introduced into the base steel is 30%
A low iron loss directional electromagnetic electromagnetic material that consists of removing the steel in a linear manner under the following conditions, then electrolytically or chemically etching it to form a linear groove in the base steel, and then applying an overcoating treatment to the entire surface of the steel plate. Method of manufacturing steel plates. 8. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to obtain the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, and then the Mg
When applying the annealing separator containing O as the main component, a linear forsterite film-free area is defined within an angular range of ±45° using the direction perpendicular to the rolling direction as a reference line, and then final finishing is performed. After annealing to produce a grain-oriented electrical steel sheet with a forsterite coating having a linear coating defect area, electrolytic or chemical etching is performed on the base metal part in the forsterite coating defect area to form linear grooves in the base steel. A method for manufacturing a grain-oriented electrical steel sheet with low iron loss, which comprises forming a gravitational force on the entire surface of the steel sheet, and then applying an overcoating treatment to the entire surface of the steel sheet. 9. A silicon steel slab containing 2.0 to 4.5% Si by weight was hot rolled and then cold rolled once or twice with intermediate annealing to give the final thickness. Afterwards, decarburization and primary recrystallization annealing are performed, after which an annealing separator containing MgO as a main component is applied to the surface of the steel sheet, final annealing is performed, and a top coat is then applied to form a forsterite film and a top coat. After making a grain-oriented electrical steel sheet with an insulating coating, the forsterite coating and top insulation coating on the surface of the grain-oriented electrical steel sheet are ground within an angle range of ±45° with the direction perpendicular to the rolling direction as a reference line. It is removed in a linear manner under the condition that the amount of strain introduced into the steel is 30% or less, and then electrolytic or chemical etching is performed to form linear grooves in the base steel, and then only the coating defect area or the entire surface of the steel plate is removed. , a method for producing a low core loss grain-oriented electrical steel sheet, comprising reapplying a top coating.
JP21822386A 1986-09-18 1986-09-18 Grain-oriented electrical steel sheet having small iron loss and its manufacture Pending JPS6376819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21822386A JPS6376819A (en) 1986-09-18 1986-09-18 Grain-oriented electrical steel sheet having small iron loss and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21822386A JPS6376819A (en) 1986-09-18 1986-09-18 Grain-oriented electrical steel sheet having small iron loss and its manufacture

Publications (1)

Publication Number Publication Date
JPS6376819A true JPS6376819A (en) 1988-04-07

Family

ID=16716541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21822386A Pending JPS6376819A (en) 1986-09-18 1986-09-18 Grain-oriented electrical steel sheet having small iron loss and its manufacture

Country Status (1)

Country Link
JP (1) JPS6376819A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334221A2 (en) * 1988-03-25 1989-09-27 ARMCO Inc. Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement
JPH02133585A (en) * 1988-11-11 1990-05-22 Kawasaki Steel Corp Production of grain-oriented electrical steel sheet having small iron loss
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
US6228182B1 (en) * 1992-08-05 2001-05-08 Kawasaki Steel Corporation Method and low iron loss grain-oriented electromagnetic steel sheet
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
EP3330388A4 (en) * 2015-07-28 2018-08-15 JFE Steel Corporation Linear groove forming method and linear grooves forming apparatus
JP2020514533A (en) * 2016-12-23 2020-05-21 ポスコPosco Grain-oriented electrical steel sheet and its domain miniaturization method
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP4155423A4 (en) * 2020-05-19 2023-10-11 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0334221A2 (en) * 1988-03-25 1989-09-27 ARMCO Inc. Method for treating electrical steel by electroetching and electrical steel having permanent domain refinement
JPH02133585A (en) * 1988-11-11 1990-05-22 Kawasaki Steel Corp Production of grain-oriented electrical steel sheet having small iron loss
JPH05202450A (en) * 1992-01-27 1993-08-10 Nippon Steel Corp Super low iron loss grain-oriented magnetic steel sheet and its manufacture
US6228182B1 (en) * 1992-08-05 2001-05-08 Kawasaki Steel Corporation Method and low iron loss grain-oriented electromagnetic steel sheet
JP2008060353A (en) * 2006-08-31 2008-03-13 Jfe Steel Kk Product iron core transformer and manufacturing method therefor
US10675714B2 (en) 2015-04-20 2020-06-09 Nippon Steel Corporation Grain-oriented electrical steel sheet
EP3330388A4 (en) * 2015-07-28 2018-08-15 JFE Steel Corporation Linear groove forming method and linear grooves forming apparatus
US11045902B2 (en) 2015-07-28 2021-06-29 Jfe Steel Corporation Linear groove formation method and linear groove formation device
JP2020514533A (en) * 2016-12-23 2020-05-21 ポスコPosco Grain-oriented electrical steel sheet and its domain miniaturization method
EP4155423A4 (en) * 2020-05-19 2023-10-11 JFE Steel Corporation Grain-oriented electromagnetic steel sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4960652A (en) Grain-oriented electrical steel sheet having a low watt loss
RU2771318C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP2671076B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
JPH05121224A (en) Grain oriented electromagnetic steel sheet small in iron loss and its production
CN113228204A (en) Oriented electrical steel sheet and method for manufacturing the same
RU2767356C1 (en) Method for producing a sheet of electrotechnical steel with oriented grain structure
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
WO2019182149A1 (en) Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
RU2768905C1 (en) Method of producing electrotechnical steel sheet with oriented grain structure
WO2020149326A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
WO2024111641A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
RU2771315C1 (en) Method for producing electrical steel sheet with oriented grain structure
WO2024111642A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
RU2771767C1 (en) Method for producing electrical steel sheet with oriented grain structure
JP7311075B1 (en) Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating
JPH11310882A (en) Ultralow iron loss grain oriented silicon steel sheet and its production
WO2024214820A1 (en) Grain-oriented electromagnetic steel sheet and method for forming insulating coating film
JPS6319568B2 (en)
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic