JPS61133321A - Production of ultra-low iron loss grain oriented electrical steel sheet - Google Patents

Production of ultra-low iron loss grain oriented electrical steel sheet

Info

Publication number
JPS61133321A
JPS61133321A JP25196684A JP25196684A JPS61133321A JP S61133321 A JPS61133321 A JP S61133321A JP 25196684 A JP25196684 A JP 25196684A JP 25196684 A JP25196684 A JP 25196684A JP S61133321 A JPS61133321 A JP S61133321A
Authority
JP
Japan
Prior art keywords
steel sheet
film
oriented electrical
electrical steel
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25196684A
Other languages
Japanese (ja)
Inventor
Toshiya Wada
和田 敏哉
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25196684A priority Critical patent/JPS61133321A/en
Publication of JPS61133321A publication Critical patent/JPS61133321A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To execute magnetic domain segmentation having heat resistance and to produce an ultra-low iron loss grain oriented electrical steel sheet by removing the surface film of the grain oriented electrical steel sheet after finish annealing then straining the steel sheet before or after the formation of the film of an infiltrative material and subjecting the film to a heat treatment. CONSTITUTION:The surface film such as glass film, oxide film and insulating film on the grain oriented electrical steel sheet subjected to finish annealing is removed from the entire surface or at intervals by pickling, grinding, etc. The film of the infiltrative material such as metal, non-metal or salt is formed by coating, etc. on the steel sheet and the steel sheet is strained by an optical means such as laser irradiation or mechanical means such as small balls before and/after the formation of such film, then the film is subjected to the heat treatment at about 500-1,000 deg.C. The infiltrative material consisting of the steel component or different steel structure is thus formed at intervals on the above-mentioned steel sheet, by which the magnetic domain segmentation having the heat resistance is stably executed to a high degree without annihilation by stress relief annealing, etc. The grain oriented electrical steel sheet having the extremely low iron loss is thus obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は低鉄損の方向性電磁鋼板の製造法に係わり、さ
らに詳しく述べるならば熱処理されても鉄損改善効果が
消失しない磁区細分化により鉄損が極めて低い方向性電
磁鋼板を製造する方法に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with low core loss, and more specifically, the present invention relates to a method for producing grain-oriented electrical steel sheets with low core loss. The present invention relates to a method for manufacturing grain-oriented electrical steel sheets with extremely low iron loss.

(従来の技術) 方向性電磁鋼板は主として変圧器、その他、電気機器の
鉄芯材料として使用されるので、励磁特性、鉄損特性が
良好である必要がある。
(Prior Art) Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, so they need to have good excitation characteristics and iron loss characteristics.

この鋼板は2次再結晶現象を利用し、圧延面に(110
)面を、圧延方向に<001>軸をもつ、いわゆるゴス
方位を有する2次再結晶粒が発達している。
This steel plate utilizes the secondary recrystallization phenomenon and has a rolling surface of (110
) plane has a <001> axis in the rolling direction, that is, secondary recrystallized grains having a so-called Goss orientation are developed.

該(110) <001>方位の集積度を高めるととも
に、圧延方向からの偏りを可及的に減少せしめることに
より、励磁特性、鉄損特性等のすぐれたものが製造され
るようになっている。
By increasing the concentration of the (110) <001> orientation and reducing deviation from the rolling direction as much as possible, products with excellent excitation characteristics, iron loss characteristics, etc. are being manufactured. .

ところで、(110) <001>方位の集積度を高め
るにつれて結晶粒は太き(なり、また磁壁が粒界を貫通
するために磁区が大となり、集積度を高めた割りには鉄
損が低くならない現象がある。
By the way, as the degree of integration of the (110) <001> orientation increases, the crystal grains become thicker (and the magnetic domain becomes larger because the domain wall penetrates the grain boundary), and the iron loss is lower compared to the increase in the degree of integration. There is a phenomenon that cannot happen.

上述の現象を解消し、鉄損の低下を図る技術として、例
えば特公昭58−5968号公報がある。
For example, Japanese Patent Publication No. 58-5968 discloses a technique for eliminating the above-mentioned phenomenon and reducing iron loss.

これは最終仕上焼純情の一方向性電磁鋼板の表面に小球
等を押圧して深さ5μ以下の凹みを形成して線状の微小
ひずみを付与することによって磁区の細分化を行い、鉄
損を改善するものである。また、特公昭58−2641
0号公報には、最終仕上焼鈍により生成した2次再結晶
の各結晶粒表面にレーザー照射による痕跡を少なくとも
1個形成せしめて、磁区を細分化し鉄損を低下させるこ
とが提案されている。
This is done by pressing small balls etc. onto the surface of the final finish fired pure unidirectional electromagnetic steel sheet to form dents with a depth of 5μ or less and applying linear minute strain to subdivide the magnetic domains. It is intended to improve losses. In addition, special public service No. 58-2641
Publication No. 0 proposes that at least one trace of laser irradiation is formed on the surface of each crystal grain of secondary recrystallization generated by final finish annealing to subdivide the magnetic domain and reduce iron loss.

これら特公昭58−5968号及び特公昭58−264
10号に示された方法によれば一方向性電磁鋼板表面に
局部的な微小ひずみを付与することで鉄損が改善され、
超低鉄損材料を得ることができる。
These Special Publications No. 58-5968 and Special Publication No. 58-264
According to the method shown in No. 10, iron loss is improved by applying local minute strain to the surface of a unidirectional electrical steel sheet,
Ultra-low core loss material can be obtained.

(発明が解決しようとする問題点) しかしながら、上記の如く得られた超低鉄損材料も焼鈍
すると鉄損の改善効果が失われ、例えば巻鉄心を製造す
る際の歪取り焼鈍では該鉄損改善効果が消失する問題が
ある。
(Problems to be Solved by the Invention) However, when the ultra-low iron loss material obtained as described above is annealed, the effect of improving iron loss is lost. There is a problem that the improvement effect disappears.

本発明は熱処理例えば歪取焼鈍されても鉄損改善効果が
消失しない磁区細分化を行って鉄損の極めて低い方向性
電磁鋼板を安定して得ることを目的とする。
The object of the present invention is to stably obtain grain-oriented electrical steel sheets with extremely low core loss by performing magnetic domain refining that does not eliminate the core loss improving effect even after heat treatment, such as stress relief annealing.

本発明者らは磁区細分化後に歪取焼鈍など例えば700
〜900℃の温度で熱処理されても鉄損改善効果が消失
しない磁区細分化を行ない鉄損の極めて低い方向性電磁
鋼板を製造するため多くの実験を行ない検討した。
The present inventors performed strain relief annealing after magnetic domain refining, for example, at 700°C.
Many experiments were conducted to produce a grain-oriented electrical steel sheet with extremely low core loss through magnetic domain refining that does not lose its core loss improvement effect even when heat treated at temperatures of ~900°C.

(問題点を解決するための手段) その結果、仕上焼鈍された方向性電磁鋼板に、該鋼板の
鋼成分或いは鋼組織と異なった侵入体、例えば鋼板や表
面被膜等との反応による合金層、表面反応生成物、拡散
物等を、間隔をおいて鋼板に入り込ませて形成すると、
該侵入体の両側に磁区の芽が生じ、鋼板が磁化されると
き磁区が細分化され、その後に歪取焼鈍などの熱処理を
施しても磁区細分化による鉄損改善効果は消失せず、鉄
損の極めて低い方向性電磁鋼板が得られることを見出し
た。
(Means for Solving the Problem) As a result, an alloy layer is formed on the finish annealed grain-oriented electrical steel sheet due to a reaction with an intruder different from the steel composition or steel structure of the steel sheet, such as a steel sheet or a surface coating. When surface reaction products, diffused substances, etc. are formed by entering the steel plate at intervals,
Sprouts of magnetic domains occur on both sides of the intruder, and when the steel plate is magnetized, the magnetic domains are fragmented, and even if heat treatment such as stress relief annealing is subsequently performed, the iron loss improvement effect due to magnetic domain fragmentation does not disappear, and the iron loss improvement effect due to magnetic domain fragmentation does not disappear. It has been found that grain-oriented electrical steel sheets with extremely low loss can be obtained.

本発明は、係かる鉄損の極めて低い方向性電磁鋼板をよ
り高度に安定して製造する方法を提供せんとするもので
、その特徴とするところは、仕上焼鈍された方向性電磁
鋼板のグラス被膜、酸化被膜、絶縁被膜等の表面被膜を
除去し、次いで該鋼板に再侵入体の被膜を形成する前お
よび/または後に歪を付与し、熱処理することにより該
鋼板に鋼板地鉄の鋼成分あるいは鋼組織と異なった侵入
体を間隔をおいて形成し、磁区細分化を行うことを特徴
とする超低鉄損方向性電磁鋼板の製造方法にある。
The present invention aims to provide a method for producing grain-oriented electrical steel sheets with extremely low core loss in a more highly stable manner. Surface coatings such as coatings, oxide coatings, and insulating coatings are removed, and then strain is applied to the steel plate before and/or after the re-intrusion body coating is formed on the steel plate, and the steel composition of the base steel is changed to the steel plate by heat treatment. Alternatively, there is a method for manufacturing an ultra-low core loss grain-oriented electrical steel sheet, which is characterized by forming intruders different from the steel structure at intervals to perform magnetic domain refining.

本発明において「侵入体」とは、鋼板上の被膜が、その
もの単独、又は鋼板側成分、さらには雰囲気成分等と結
合した状態で鋼板中に粒又は塊りとなって存在する様子
を表現するものである。
In the present invention, the term "intruder" refers to the state in which a coating on a steel plate is present in the steel plate as particles or lumps, either alone or in combination with components on the steel plate side, atmospheric components, etc. It is something.

「再侵入体」とは侵入体を形成しうる物質を指す。"Reinvader" refers to a substance that can form an invader.

又、本発明において「被膜」とは、鋼板上の少なくとも
一部において機械的な塗装膜、メッキ等の化学的な付着
膜或いは接着、さらに一部が反応層をもつ膜など全てを
含む総称であり、又その厚みについても特定されない。
In addition, in the present invention, the term "coating" is a general term that includes all mechanical coating films, chemical adhesion films such as plating, or adhesives on at least a portion of the steel plate, and films that partially have a reaction layer. Yes, and its thickness is not specified.

又上述の耐熱性のある磁区細分化は次のようにして行え
る。即ち、仕上焼鈍された方向性電磁鋼板に形成されて
いるグラス被膜、酸化被膜、絶縁被膜などの表面被膜を
、酸洗、腐食、ショツトブラスト、研削、切削、化学研
磨、溶剤等により全面的あるいは間隔をおいて除去して
鋼板地鉄を露出させ、次いで該鋼板に、再侵入体例えば
金属、非金属やそれらの混合物、合金、酸化物、リン酸
、ホウ酸、リン酸塩、及びホウ酸塩等さらにはそれらの
混合物の薬剤を塗布、メッキ、蒸着、溶着などの方法で
被膜に形成し、該被膜形成の前および/または後に間隔
をおいて歪を、レーザー照射等の光学的手段、小球、溝
付ロール、ボールペン、ケガキ等による機械的手段など
の方法で付与し、ついで熱処理すると、再侵入体が鋼板
地鉄と直接的に接しているので、再侵入体が鋼板地鉄と
中間介在被膜がない状態でただちに反応し、さらに付与
量によりその反応が助長され、目的とする鋼板中への侵
入体形成ひいては耐熱性ある磁区細分化を高度に安定し
て行ないうる。すなわち再侵入体が鋼板に入り込む際に
介在するグラス被膜等は一種の熱処理により安定化され
ているものであるため、反応活性が高いとは言えず、侵
入抑制作用をもっている。本発明によりグラス被膜等を
除去しておくと、再侵入体は鋼板と直接的に反応し、さ
らに歪付与により反応が促進され、再侵入体が鋼板に入
り込むかたちで鋼成分あるいは鋼組織と異なった侵入体
が間隔をおいてより高度に安定して形成され、耐熱性の
ある磁区細分化が行われる。
Further, the above-mentioned heat-resistant magnetic domain subdivision can be performed as follows. In other words, surface coatings such as glass coatings, oxide coatings, and insulation coatings formed on finish-annealed grain-oriented electrical steel sheets are completely removed by pickling, corrosion, shot blasting, grinding, cutting, chemical polishing, solvents, etc. The steel plate is removed at intervals to expose the steel plate, and then the steel plate is treated with re-invaders such as metals, non-metals and mixtures thereof, alloys, oxides, phosphoric acid, boric acid, phosphates, and boric acid. A chemical agent such as a salt or a mixture thereof is formed into a film by coating, plating, vapor deposition, welding, etc., and strain is applied at intervals before and/or after the film is formed, by optical means such as laser irradiation, When it is applied by mechanical means such as small balls, grooved rolls, ballpoint pens, scribes, etc., and then heat treated, the re-penetrating body is in direct contact with the steel plate base metal, so that the re-penetrating body is in contact with the steel plate base metal. It reacts immediately in the absence of an intervening film, and the reaction is further promoted by the amount applied, so that it is possible to form the target interstitial bodies in the steel sheet and to achieve heat-resistant magnetic domain refining in a highly stable manner. In other words, the glass film or the like that is present when the re-invading body enters the steel plate is stabilized by a kind of heat treatment, so it cannot be said that the reaction activity is high, and it has an intrusion inhibiting effect. When the glass coating etc. are removed according to the present invention, the re-invading bodies react directly with the steel plate, and the reaction is further promoted by applying strain, and the reintruding bodies enter the steel plate in a manner that differs from the steel composition or steel structure. The interstitial bodies are formed at intervals with a higher degree of stability, resulting in heat-resistant magnetic domain refinement.

この結果、侵入体形成程度(深さ等)の制御性、熱処理
条件(温度、時間)の緩和、など種々の魅力あるプロセ
ス上の利点を選択することができるようになるので、グ
ラス被膜除去は工程附加に伴う不都合を補って余りあり
、さらに最適な磁区細分化によってW I?150 <
 0.80 W / kgという超低鉄損も容易に達成
できるようになるなどプロセスおよび/または成品特性
の利点がグラス被膜等の除去により得られる。
As a result, it becomes possible to select various attractive process advantages such as controllability of the degree of intruder formation (depth, etc.), relaxation of heat treatment conditions (temperature, time), etc. This more than compensates for the inconveniences associated with the additional process, and the W I? 150 <
Advantages in the process and/or product properties, such as the ability to easily achieve an ultra-low core loss of 0.80 W/kg, can be obtained by removing the glass coating, etc.

又再侵入体を形成する物質としては、具体的には一例を
後述しているが、熱処理によって鋼板やその雰囲気等と
反応して鋼板に侵入するものであればよい。
A specific example of the substance forming the reintrusion body will be described later, but any substance that reacts with the steel plate, its atmosphere, etc. through heat treatment and invades the steel plate may be used.

以下に本発明を仕上焼鈍された方向性電磁鋼板に、薬剤
を塗布して熱処理する例に基づいて具体的に説明する。
The present invention will be specifically explained below based on an example in which a finish annealed grain-oriented electrical steel sheet is coated with a chemical and heat treated.

本発明では仕上焼鈍された方向性電磁鋼板に、磁区細分
化を行うが、該方向性電磁鋼板の鋼成分、および仕上焼
鈍されるまでの製造条件は特定する必要はなく、例えば
インヒビターとしてAIN。
In the present invention, the finish annealed grain-oriented electrical steel sheet is subjected to magnetic domain refining, but the steel composition of the grain-oriented electrical steel sheet and the manufacturing conditions until finish annealing do not need to be specified; for example, AIN is used as an inhibitor.

MnS、 MnSe、 BN、 Cu、S等が適宜なも
のが用いられ、必要に応じてCu、 Sn+ Cr、 
Ni、 Mo+ sb等の元素が含有され、さらにスラ
ブを熱間圧延し、焼鈍して1回または焼鈍をはさんで2
回以上の冷間圧延により最終板厚とされ、脱炭焼鈍され
、焼鈍分離剤を塗布され仕上焼鈍される一連のプロセス
の条件についても特定する必要はない。
MnS, MnSe, BN, Cu, S, etc. are used as appropriate, and if necessary, Cu, Sn + Cr,
Contains elements such as Ni, Mo+ sb, etc., and further hot-rolls the slab and anneales it once or twice with annealing in between.
There is also no need to specify the conditions of a series of processes in which the sheet is cold-rolled several times or more to reach the final thickness, decarburized, annealed, coated with an annealing separator, and finished annealed.

ところで、仕上焼鈍された方向性電磁鋼板には、前工程
の脱炭焼鈍で形成されたSiO□を含む酸化膜とMgO
を主成分とする焼鈍分離剤との反応によりグラス被膜(
フォルステライト被膜)が形成されている。このグラス
被膜は本発明の適用例で塗布する薬剤と鋼板地鉄との反
応を抑制することがあり、また、その下地にある酸化膜
も上記反応を妨げることがある。これらの弊害を緩和し
、薬剤が鋼板地鉄や熱処理の雰囲気などとの反応を促進
し、鋼板に入り込むかたちで鋼成分あるいは鋼組織と異
なった侵入体を高度に安定して形成せしめるように、鋼
板のグラス被膜、酸化被膜等を、硫酸、塩酸、弗酸、燐
酸等あるいはそれらの混合物にての酸洗、ショツトブラ
スト、研削、切削、化学研磨、溶剤等により全面的ある
いは間隔をおいて除去し、鋼板地鉄を露出させる。この
露出とは酸等の除去媒体が該地鉄の一部に入り込み凹み
を形成することも含む。間隔をおいて除去する場合は局
部酸洗や局部的な研削、切削、溶剤あるいはショツトブ
ラスト等により行われ、1〜3(Inの間隔で除去する
By the way, the finish annealed grain-oriented electrical steel sheet has an oxide film containing SiO□ and MgO formed in the previous decarburization annealing process.
A glass coating (
forsterite film) is formed. This glass coating may inhibit the reaction between the chemical applied in the application example of the present invention and the steel plate substrate, and the underlying oxide film may also inhibit the above reaction. In order to alleviate these adverse effects, the agent promotes the reaction with the steel sheet base and the heat treatment atmosphere, and penetrates into the steel sheet to form a highly stable intruder that differs from the steel composition or steel structure. Removal of glass coatings, oxide coatings, etc. on steel plates, either entirely or at intervals, by pickling with sulfuric acid, hydrochloric acid, hydrofluoric acid, phosphoric acid, etc. or a mixture thereof, shot blasting, grinding, cutting, chemical polishing, solvent, etc. and expose the steel plate base. This exposure also includes the removal medium, such as acid, penetrating a portion of the base metal and forming a depression. When removing at intervals, local pickling, local grinding, cutting, solvent, shot blasting, etc. are used to remove at intervals of 1 to 3 (In).

次いで方向性電磁鋼板に薬剤を全面または間隔をおいて
塗布して被膜を形成する。この例における再侵入体の薬
剤としてはAA、 St、 Ti、 Sb、 Sr。
Next, a chemical is applied to the grain-oriented electrical steel sheet over the entire surface or at intervals to form a film. In this example, the re-invading agents include AA, St, Ti, Sb, and Sr.

Cu、 Sn+ Zn+ Fe+ Nt+ Cr+ M
n、 P 、S+ B等の金属、非金属やそれらの混合
物、酸化物、合金や、リン酸、ホウ酸、リン酸塩、ホウ
酸塩、硫酸塩、硝酸塩、珪酸塩等さらにはそれらの混合
物が用いられ、これをスラリー状あるいは溶液にして塗
布等により被膜が形成される。
Cu, Sn+ Zn+ Fe+ Nt+ Cr+ M
Metals such as n, P, S+ B, nonmetals, mixtures thereof, oxides, alloys, phosphoric acid, boric acid, phosphates, borates, sulfates, nitrates, silicates, etc., and mixtures thereof. is used, and a film is formed by coating it in the form of a slurry or solution.

この被膜は前記グラス被膜などの除去が全面的になされ
ている場合は間隔をおいて形成し、あるいは除去が間隔
をおいてなされている場合は全面的あるいは間隔をおい
て形成するのが好ましい。
This coating is preferably formed at intervals when the glass coating or the like is removed over the entire surface, or preferably formed over the entire surface or at intervals when the removal is performed at intervals.

前記薬剤において金属、非金属、それらの酸化物、合金
は、粉末状にして用いるのが好ましい。
In the drug, metals, nonmetals, oxides and alloys thereof are preferably used in powder form.

金属、非金属或いはその酸化物、合金の粉末をスラリー
として使用する場合は水と懸濁させて塗布するのが作業
性がよいため、水100重量部に対し2〜100重量部
程度の濃度にする。
When using powder of metals, nonmetals, their oxides, or alloys as a slurry, it is easier to apply by suspending it in water, so the concentration should be approximately 2 to 100 parts by weight per 100 parts by weight of water. do.

金属、非金属、或いはそれらの酸化物、合金を酸又は塩
類と混合して使用する際は原液のままか、水で適当な濃
度にうすめて塗布すればよい。
When metals, non-metals, or their oxides or alloys are used in combination with acids or salts, they may be applied as a undiluted solution or diluted with water to an appropriate concentration.

薬剤は前述のように方向性電磁鋼板に塗布され被膜が形
成されるが、該被膜の形成の前に、または後に、あるい
はその前後に、小球、溝付ロール、ケガキ、ボールペン
等の機械的方法やレーザー照射などの光学的方法で歪を
付与すると、後記の侵入体の形成が助長される。
As mentioned above, the chemical is applied to the grain-oriented electrical steel sheet to form a film, but before or after the formation of the film, mechanical treatment such as a small ball, a grooved roll, a scriber, a ballpoint pen, etc. When strain is applied by optical methods such as laser irradiation or laser irradiation, the formation of interstitial bodies described later is promoted.

歪を被膜形成の前に付与する場合は前記グラス被膜など
の表面被膜を除去する前に可侵入体形成予定部の鋼板に
歪を付与してもよい。また被膜形成の後に歪を付与する
場合は被膜が破壊することがあるので、薬剤を塗布する
場合には若干厚目にするとか、あるいは塗布後例えば5
00℃程度の熱処理を行なって被膜を強くする工程を導
入することにより被膜の破壊は解決できる。
When applying strain before forming the film, the strain may be applied to the steel plate in the portion where the penetrant body is to be formed before removing the surface film such as the glass film. In addition, if the film is strained after it is formed, the film may be destroyed, so when applying the chemical, it may be necessary to make it slightly thicker or, for example,
Destruction of the coating can be solved by introducing a step of heat treatment at about 00° C. to strengthen the coating.

この歪の付与は、従来のようにそれ自体によって磁区を
細分化するためでなく、被膜と鋼板地鉄との熱処理時に
おける反応を助長安定して高めて侵入体の形成を促進さ
せるために、鋼板またはその表面被膜に付与されるもの
である。
This strain is applied not to subdivide the magnetic domains by itself as in the past, but to encourage and stably increase the reaction between the coating and the steel sheet base during heat treatment and promote the formation of interstitial bodies. It is applied to steel sheets or their surface coatings.

次いで、薬剤を乾燥後、500〜1200℃の温度で熱
処理すると、その昇温時あるいは保温時において、薬剤
が鋼板地鉄や雰囲気などとの反応が、グラス被膜などが
除去されているので、直接的に起こり、安定して高めら
れ、さらに歪が付与されているのでその反応が助長され
、薬剤が鋼板地鉄に入り込むかたちで、合金層、表面反
応生成物、拡散物などの侵入体が間隔をおいて形成され
る。該侵入体の形成により磁区が細分化される。
Next, after drying the chemical, heat treatment at a temperature of 500 to 1,200°C will prevent the chemical from reacting with the steel substrate or the atmosphere when the temperature is raised or kept, because the glass coating has been removed. The reaction is facilitated by the addition of strain, and the chemical penetrates into the steel sheet steel, causing interstitial bodies such as alloy layers, surface reaction products, and diffused substances to form at intervals. It is formed after The formation of the intruders fragments the magnetic domain.

この熱処理は中性またはH2を含む還元性の雰囲気でな
される。侵入体の一例の顕微鏡組織写真(X100O)
を第1図に示す。この図中でA印を付したものが侵入体
であり、鋼板の板厚方向にシャープに入り込んでいるの
が認められる。
This heat treatment is performed in a neutral or reducing atmosphere containing H2. Microscopic structure photograph of an example of an invader (X100O)
is shown in Figure 1. In this figure, the object marked A is the intruder, and it can be seen that it has entered the steel plate sharply in the thickness direction.

侵入体の組成は鋼成分組成と異なり、また組織も異なっ
て、その−例に磁区の芽が多数つくられ、     ′
鋼板を磁化したとき、該磁区の芽が伸びて、磁区が細分
化されると推察される。
The composition of the intruder is different from that of steel, and the structure is also different, for example, many buds of magnetic domains are created,
It is presumed that when a steel plate is magnetized, the buds of the magnetic domains extend and the magnetic domains become subdivided.

前述の説明ではグラス被膜、酸化被膜を除去した例につ
いて述べたが、これに限らず鋼板にコロイド状シリカ、
リン酸アルミニウム、リン酸マグネシウム、無水クロム
酸、クロム酸塩などを塗布して焼付けされ絶縁被膜が形
成されていれば、該絶縁被膜を除去して、その後、前述
の方法を適用して同様な作用効果が得られる。
In the above explanation, an example was described in which the glass coating and oxide coating were removed, but the invention is not limited to this, and colloidal silica, colloidal silica, etc.
If an insulating film has been formed by applying aluminum phosphate, magnesium phosphate, chromic anhydride, chromate, etc. and baking it, remove the insulating film and then apply the same method as described above. Effects can be obtained.

以下実施例を説明する。Examples will be described below.

実施例1 重量%でC:0.073、Si:3.18 、Mn:0
.06B、^l:0.032 、S:0.023 、C
u:0.07 、Sn:0.10 、残部鉄からなる珪
素鋼スラブを周知の方法によって熱間圧延−焼鈍−冷間
圧延を経て0.225 tm厚の鋼板を最終仕上焼鈍の
各工程を実施した。最終仕上焼鈍後の鋼板を「処理前」
の供試材とした。該鋼板を硫酸、塩酸、弗酸および水と
の混合酸洗液で、グラス被膜および酸化被膜を除去し、
GO! レーザーを照射し圧延方向とほぼ直角方向に5
f1間隔に微小な歪を入れ、次いで第1表に示す薬剤を
塗布乾燥後の重量で0.5g/rrfになるように全面
に塗布して被膜を形成し、炉温400℃で乾燥後積層し
、800℃×10分の熱処理を行なって「処理後」の供
試材とした。この後更に800℃×2時間の歪取焼鈍を
行なって「歪取焼鈍後」の供試材とした。
Example 1 C: 0.073, Si: 3.18, Mn: 0 in weight%
.. 06B, ^l: 0.032, S: 0.023, C
A silicon steel slab consisting of U: 0.07, Sn: 0.10, and the remainder iron was hot rolled, annealed, and cold rolled by a well-known method, and a steel plate with a thickness of 0.225 tm was then subjected to final annealing steps. carried out. Steel plate after final finish annealing “before treatment”
This was used as the sample material. The glass film and oxide film are removed from the steel plate using a pickling solution mixed with sulfuric acid, hydrochloric acid, hydrofluoric acid, and water.
GO! Irradiate the laser and roll it in the direction almost perpendicular to the rolling direction.
A slight strain is introduced in the f1 interval, and then the chemicals shown in Table 1 are applied to the entire surface so that the weight after drying is 0.5 g/rrf, and the film is laminated after being dried at an oven temperature of 400°C. Then, heat treatment was performed at 800° C. for 10 minutes to obtain a “treated” test material. After this, strain relief annealing was further performed at 800° C. for 2 hours to obtain a test material "after strain relief annealing."

以上、「処理前」 「処理後」及び「歪取焼鈍後」のそ
れぞれの供試材の磁気特性を測定した。
As described above, the magnetic properties of each sample material were measured ``before treatment'', ``after treatment'', and ``after strain relief annealing''.

その測定結果を第2表に示す。The measurement results are shown in Table 2.

以下余白 第  1  表 第2表 実施例2 重量%でC:0.085、Si:3.27 、Mn:0
.073、Al:0.028 、S:0.027、N:
0.0082 、残部鉄からなる珪素鋼スラブを周知の
方法によって熱間圧延−焼鈍−冷間圧延を経て0.22
5 m厚の鋼板を得た。
Margin below: Table 1 Table 2 Example 2 Weight %: C: 0.085, Si: 3.27, Mn: 0
.. 073, Al: 0.028, S: 0.027, N:
0.0082, a silicon steel slab consisting of the balance iron is hot rolled, annealed, and cold rolled by a well-known method to give a 0.22
A 5 m thick steel plate was obtained.

次いで更に周知の脱炭焼鈍−MgOを主成分とする焼鈍
分離剤塗布−最終仕上焼鈍の各工程を実施した。
Next, the well-known steps of decarburization annealing, application of an annealing separator mainly composed of MgO, and final finish annealing were carried out.

仕上焼鈍後の鋼板を「処理前」の供試材とした。The steel plate after final annealing was used as the "before treatment" test material.

次いで鋼板のグラス被膜および酸化被膜を研削により1
0龍間隔で除去し、第3表に示すような薬剤を乾燥後の
重量で0.9g/mになるように塗布して被膜を形成し
、次いでレーザー照射し、圧延方向にほぼ直角方向に1
0+*+m間隔に微小な歪を付与した。800℃XIO
分の熱処理を行なって「処理後」の供試材とした。この
後更に800″CX2時間の歪取焼鈍を行なって「歪取
焼鈍後」の供試材とした。
Next, the glass coating and oxide coating of the steel plate are removed by grinding.
The material was removed at intervals of 0,000 mm, and a coating was formed by applying the chemicals shown in Table 3 to a weight of 0.9 g/m after drying. 1
A slight strain was applied at intervals of 0+*+m. 800℃XIO
The specimen was heat-treated for 30 minutes to obtain a "post-treated" test material. After this, strain relief annealing was further performed at 800″C for 2 hours to obtain a “after strain relief annealing” test material.

以上、「処理前」 「処理後」及び「歪取焼鈍後」のそ
れぞれの供試材の磁気特性を測定した。
As described above, the magnetic properties of each sample material were measured ``before treatment'', ``after treatment'', and ``after strain relief annealing''.

第3表 第4表 以上の実施例から明らかな如く磁区細分化後に歪取焼鈍
されても鉄損改善効果は失われず、鉄損の極めて低い方
向性電磁銅板が提供される。
As is clear from the examples shown in Tables 3 and 4, even if strain relief annealing is performed after magnetic domain refining, the iron loss improving effect is not lost, and a oriented electromagnetic copper plate with extremely low iron loss is provided.

(発明の効果) 以上説明したように本発明によれば、該侵入体による磁
区細分化で鋼板の鉄損が低くなるとともに、その後に、
高温に加熱される歪取焼鈍が行われても、鉄損改善効果
が消失しないという、これまでの磁区細分化法に見られ
ないすぐれた特長がある。
(Effects of the Invention) As explained above, according to the present invention, the iron loss of the steel plate is reduced by magnetic domain refining by the intruder, and after that,
It has an excellent feature not seen in previous magnetic domain refining methods, in that the iron loss improvement effect does not disappear even when strain relief annealing is performed at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によって鋼板に形成された侵入体を示す
金属顕微鏡組織写真(xlooo)である。
FIG. 1 is a metal micrograph (xlooo) showing an intruder formed in a steel plate according to the present invention.

Claims (1)

【特許請求の範囲】 1、仕上焼鈍された方向性電磁鋼板のグラス被膜、絶縁
被膜等の表面被膜を除去し次いで該鋼板に可侵入体の被
膜を形成する前また は/および後に歪を付与し、熱処理 することにより該鋼板に鋼成分あるいは鋼組織と異なっ
た侵入体を間隔をおいて形成し、磁区細分化を行うこと
を特徴とする超低鉄損方向性電磁鋼板の製造方法。 2、仕上焼鈍された方向性電磁鋼板のグラス被膜、絶縁
被膜等の表面被膜を間隔をおいて除去し、次いで該鋼板
に可侵入体の被膜を形成する前または/および後に歪を
付与し、熱処理することにより該鋼板に鋼成分あるいは
鋼組織と異なった侵入体を間隔をおいて形成し、磁区細
分化を行うことを特徴とする超低鉄損方向性電磁鋼板の
製造方法。
[Claims] 1. Surface coatings such as glass coatings and insulating coatings are removed from a finish-annealed grain-oriented electrical steel sheet, and strain is applied before and/or after forming a penetrable body coating on the steel plate. 1. A method for producing an ultra-low core loss grain-oriented electrical steel sheet, which comprises heat-treating the steel sheet to form intruders different from the steel composition or steel structure at intervals, thereby refining magnetic domains. 2. Remove surface coatings such as glass coatings and insulating coatings from a finish-annealed grain-oriented electrical steel sheet at intervals, and then apply strain before and/or after forming a penetrable body coating on the steel sheet; A method for producing an ultra-low iron loss grain-oriented electrical steel sheet, which comprises heat-treating the steel sheet to form interstitial bodies having different steel composition or structure at intervals, thereby refining magnetic domains.
JP25196684A 1984-11-30 1984-11-30 Production of ultra-low iron loss grain oriented electrical steel sheet Pending JPS61133321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25196684A JPS61133321A (en) 1984-11-30 1984-11-30 Production of ultra-low iron loss grain oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25196684A JPS61133321A (en) 1984-11-30 1984-11-30 Production of ultra-low iron loss grain oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS61133321A true JPS61133321A (en) 1986-06-20

Family

ID=17230638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25196684A Pending JPS61133321A (en) 1984-11-30 1984-11-30 Production of ultra-low iron loss grain oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS61133321A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4904313A (en) * 1988-06-10 1990-02-27 Allegheny Ludlum Corporation Method of producing stable magnetic domain refinement of electrical steels by metallic contaminants
US4904314A (en) * 1988-06-10 1990-02-27 Allegheny Ludlum Corporation Method of refining magnetic domains of barrier-coated electrical steels using metallic contaminants
US4911766A (en) * 1988-06-10 1990-03-27 Allegheny Ludlum Corporation Method of refining magnetic domains of electrical steels using phosphorus
US4964922A (en) * 1989-07-19 1990-10-23 Allegheny Ludlum Corporation Method for domain refinement of oriented silicon steel by low pressure abrasion scribing
WO1991002823A1 (en) * 1988-02-16 1991-03-07 Nippon Steel Corporation Production method of unidirectional electromagnetic steel sheet having excellent iron loss and high flux density
US5078811A (en) * 1989-09-29 1992-01-07 Allegheny Ludlum Corporation Method for magnetic domain refining of oriented silicon steel
EP0345936B1 (en) * 1988-06-10 1995-08-30 Allegheny Ludlum Corporation Method of refining magnetic domains of electrical steels

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991002823A1 (en) * 1988-02-16 1991-03-07 Nippon Steel Corporation Production method of unidirectional electromagnetic steel sheet having excellent iron loss and high flux density
US4904313A (en) * 1988-06-10 1990-02-27 Allegheny Ludlum Corporation Method of producing stable magnetic domain refinement of electrical steels by metallic contaminants
US4904314A (en) * 1988-06-10 1990-02-27 Allegheny Ludlum Corporation Method of refining magnetic domains of barrier-coated electrical steels using metallic contaminants
US4911766A (en) * 1988-06-10 1990-03-27 Allegheny Ludlum Corporation Method of refining magnetic domains of electrical steels using phosphorus
EP0345937B1 (en) * 1988-06-10 1995-08-16 Allegheny Ludlum Corporation Method of refining magnetic domains of electrical steels
EP0345936B1 (en) * 1988-06-10 1995-08-30 Allegheny Ludlum Corporation Method of refining magnetic domains of electrical steels
US4964922A (en) * 1989-07-19 1990-10-23 Allegheny Ludlum Corporation Method for domain refinement of oriented silicon steel by low pressure abrasion scribing
US5078811A (en) * 1989-09-29 1992-01-07 Allegheny Ludlum Corporation Method for magnetic domain refining of oriented silicon steel

Similar Documents

Publication Publication Date Title
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JPS61284529A (en) Manufacture of grain oriented magnetic steel sheet having extremely low iron loss
JPS637333A (en) Production of low iron loss grain oriented electrical steel sheet having excellent glass film characteristic
US3375144A (en) Process for producing oriented silicon steels in which an annealing separator is used which contains a sodium or potassium, hydroxide or sulfide
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS6330968B2 (en)
JPS61133320A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
JPS61210125A (en) Manufacture of grain-oriented silicon steel sheet having extremely superior magnetic property
JPS61117216A (en) Manufacture of grain oriented magnetic steel plate of ultralow iron loss
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS61139677A (en) Production of low iron loss grain oriented electrical steel sheet
JPS61117217A (en) Manufacture of ultralow iron loss grain oriented magnetic steel plate
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS61133319A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61117220A (en) Production of low-iron loss electrical steel sheet
JPS58144429A (en) Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss
JPH0327634B2 (en)
JPS6319574B2 (en)
JPS61139680A (en) Production of grain oriented electrical steel sheet having excellent magnetic characteristic
JPH0327629B2 (en)
JPS61177364A (en) Directional electromagnetic steel sheet extremely low in iron loss and excellent in building factor