JPS58144429A - Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss - Google Patents

Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss

Info

Publication number
JPS58144429A
JPS58144429A JP2697082A JP2697082A JPS58144429A JP S58144429 A JPS58144429 A JP S58144429A JP 2697082 A JP2697082 A JP 2697082A JP 2697082 A JP2697082 A JP 2697082A JP S58144429 A JPS58144429 A JP S58144429A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
silicon steel
film
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2697082A
Other languages
Japanese (ja)
Inventor
Toshihiko Funabashi
敏彦 船橋
Masao Iguchi
征夫 井口
Toshiro Ichida
市田 敏郎
Isao Ito
伊藤 庸
Hiroshi Shimanaka
嶋中 浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2697082A priority Critical patent/JPS58144429A/en
Publication of JPS58144429A publication Critical patent/JPS58144429A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To manufacture the unidirectional silicon steel sheet whose iron loss is not deteriorated by strain relief annealing, by reducing the total value of S and Se contents in a steel sheet including a forsterite film by acid-pickling before coating it with a phosphate film. CONSTITUTION:An S or Se-contg. silicon steel sheet blank is hot-rolled and then cold-rolled in accompaniment with intermediate annealing into a cold-rolled steel sheet having final thickness. Thereafter, the cold-rolled steel sheet is decarburization-annealed, MgO is applied to the surface of the steel sheet, and then the steel sheet is finally finish annealed. in succession, the total value of analyzed S and Se contents in the steel sheet including a forsterite film formed on its surface is controlled below 0.01% by the step of acid-pickling, and a phosphate film is formed on the forsterite film by coating. The coated steel sheet is then worked and strain-relief annealed, to manufacture the unidirectional silicon steel sheet.

Description

【発明の詳細な説明】 本発明は鉄損劣化のない一方向性珪素鋼板の製造方法に
係り、特に歪取焼鈍による鉄損劣化のない製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a unidirectional silicon steel sheet without deterioration in iron loss, and particularly relates to a method of manufacturing a unidirectional silicon steel sheet without deterioration in iron loss due to strain relief annealing.

一方向性珪素鋼板は主として変圧器その他の電気機器の
鉄心として使用され、磁気特性として磁束密度、鉄損特
性および磁気歪特性が良好であることが要求される。
Unidirectional silicon steel sheets are mainly used as iron cores for transformers and other electrical equipment, and are required to have good magnetic properties such as magnetic flux density, iron loss properties, and magnetostriction properties.

従来の一方向性珪素鋼板の製造方法について説明する。A conventional method for manufacturing a unidirectional silicon steel sheet will be explained.

インヒビターとして添加するSもしくはSeのほか通常
Si:40%以下を含有する珪累鋼塊を熱間圧延し焼鈍
と冷延を繰返し、ji1′終板厚の冷延鋼板とし、冷延
鋼板を脱炭焼鈍し、次に1m&の表面にマグネシャ(M
gO)を塗布して最終仕上焼鈍時の鋼板の焼料を防止す
る。このMgOを塗布した鋼板は箱焼鈍とも称される最
も重要な最終仕上焼鈍工程で処理されるが、これは2次
再結晶段階と最終的に1200℃前後まで昇温する純化
段階とから成り、次の3目的のため実施される。
In addition to S or Se added as an inhibitor, a siliceous steel ingot containing 40% or less of Si is hot-rolled, annealed and cold-rolled repeatedly to obtain a cold-rolled steel sheet with a final thickness of ji1', and the cold-rolled steel sheet is removed. Charcoal annealing, then magnesia (M
gO) is applied to prevent the steel plate from being burnt during final annealing. This MgO-coated steel sheet is subjected to the most important final annealing process, also called box annealing, which consists of a secondary recrystallization stage and a final purification stage where the temperature is raised to around 1200°C. It will be implemented for the following three purposes.

Mlの目的は2次再結晶のためで、脱炭焼鈍後鋼中に微
細に分散した析出相MnS 、 MnSeがインヒビタ
ーとして正常粒成長を抑制する作用をして通常ゴス方位
と称される(110)[:001]結晶組織となり圧延
方向にすぐれた磁気的特性を示す材料となる。
The purpose of Ml is for secondary recrystallization, and the precipitated phases MnS and MnSe finely dispersed in the steel after decarburization annealing act as an inhibitor to suppress normal grain growth, which is usually referred to as Goss orientation (110 )[:001] becomes a crystal structure, resulting in a material that exhibits excellent magnetic properties in the rolling direction.

第2の目的は材料の純化のためで、インヒビターとして
前記の如く作用したMnS 、 MnSeは最終製品と
なった後も鋼中に残留していると磁気特性特に鉄損特性
を劣化させるので、最終仕上段階で1200℃前後まで
昇温し水素中で純化焼鈍を実施し、析出相MnS 、、
MnSeは一部が分解してS、Seの形で気相中に逸散
したり、MnS 、lMnSeの状態でフォルステライ
ト質被膜中にあるいはフォルステライト質被膜と地鉄の
界面に濃縮したりして鋼中から除去される。
The second purpose is to purify the material. MnS and MnSe, which act as inhibitors as described above, will deteriorate the magnetic properties, especially the iron loss properties, if they remain in the steel even after the final product is made. In the finishing stage, the temperature was raised to around 1200°C and purification annealing was carried out in hydrogen, and the precipitated phase MnS,
A part of MnSe decomposes and escapes into the gas phase in the form of S and Se, or it concentrates in the forsterite coating or at the interface between the forsterite coating and the steel base in the form of MnS and lMnSe. removed from the steel.

第3の目的は通常グラス被膜と呼ばれるフォルステライ
ト質(2Mg0. Sin、 )被膜の形成である。
The third purpose is to form a forsterite (2Mg0.Sin, ) film, which is usually called a glass film.

この被膜は脱炭焼鈍中に鋼板表面に形成したS10゜か
らなるサブスケールと仕上焼鈍工程の焼付防止のため塗
布されたマグネシアとの間の固相反応によって絶縁抵抗
を有する被膜を形成したものである。
This coating is formed by a solid phase reaction between the S10° subscale formed on the surface of the steel sheet during decarburization annealing and the magnesia applied to prevent seizure in the final annealing process. be.

最終仕上焼鈍後、鋼板表面の未反応のマグネシアの水洗
が通常行われる。しかし未反応のマグネシアの焼付が甚
しい場合には除去のためりん酸、あるいは硫酸による軽
酸洗が行われる。
After final annealing, unreacted magnesia on the surface of the steel sheet is usually washed with water. However, if unreacted magnesia is severely burned, light pickling with phosphoric acid or sulfuric acid is performed to remove it.

鋼板表面のマグネシア除去後、さらに層間の絶縁抵抗を
増加するため、りん酸塩系のコーティング処理液を塗布
、焼付けて上塗り絶縁コーティングを形成させる。りん
酸塩系コーティングとしては従来から知られているりん
酸マグネシウム系のコーティング以外に、近年開発され
た圧延方向に特に結晶集合組織がよく揃った高磁束密度
方向性珪素鋼板用に適用されている特開昭50−794
42、あるいは特開昭52−25296.特開昭53−
28043に開示されているコロイド状シリカ、りん酸
マグネシウムあるいはりん酸アルミニウム、無水クロム
酸からなる低熱膨張性の張力付加型のりん酸塩系コーテ
ィングがある。
After removing magnesia from the surface of the steel plate, a phosphate-based coating treatment solution is applied and baked to form an overcoat insulation coating in order to further increase the insulation resistance between the layers. Phosphate-based coatings include, in addition to the conventionally known magnesium phosphate-based coatings, which have been developed in recent years and are applied to high magnetic flux density grain-oriented silicon steel sheets with a particularly well-aligned crystal texture in the rolling direction. Japanese Patent Publication No. 50-794
42, or JP-A-52-25296. Japanese Unexamined Patent Publication No. 1973-
No. 28,043 discloses a low thermal expansion, tensioned phosphate-based coating consisting of colloidal silica, magnesium or aluminum phosphate, and chromic anhydride.

上記の工程によってコーティング処理された一方向性珪
素鋼板は通常、電力用変圧器の鉄心として所定の大きさ
に剪断され、積鉄心、あるいは巻鉄心として使用される
。変圧器の鉄心を組立る工程においては不可避的に鋼板
に機械的歪が導入され磁気的特性、特に鉄損特性を劣化
させる。この機械的歪を除去するため通常800℃前後
で歪取焼鈍を行う。積鉄心用の素材は単板にて、巻鉄心
用の素材は曲げ加工した後のコイル状態で焼鈍される。
The unidirectional silicon steel plate coated by the above process is usually sheared into a predetermined size and used as a stacked core or wound core for a power transformer core. In the process of assembling the core of a transformer, mechanical strain is inevitably introduced into the steel plate, which deteriorates the magnetic properties, especially the iron loss properties. In order to remove this mechanical strain, strain relief annealing is usually performed at around 800°C. The material for the stacked core is a single plate, and the material for the wound core is annealed in a coiled state after bending.

しかるにとの歪取焼鈍によって機械的歪を除去しても鉄
損が焼鈍前の素材の特性まで回復しない事態がしばしば
発生している。特に;イル状で長時間焼鈍する巻鉄心の
場合には劣化が大きいことが認められ、この劣化が変圧
器としての素材特性を最大限に発揮できない大きな理由
であり、一方向性珪素鋼板の鉄損特性は近年のエネルギ
ーコストの尚騰の影響による省エネルキーの立場からま
すま″f重要視されるように7よっており、歪取焼鈍に
よる鉄損の劣化は非常に大きな問題となっている。
However, even if mechanical strain is removed by strain relief annealing, it often happens that iron loss does not recover to the properties of the material before annealing. In particular, it has been recognized that there is significant deterioration in the case of wound cores that are coiled and annealed for long periods of time, and this deterioration is a major reason why the material properties as a transformer cannot be maximized. Loss characteristics are becoming increasingly important from the viewpoint of energy conservation due to the recent rise in energy costs, and deterioration of iron loss due to strain relief annealing has become a very serious problem.

本発明の目的は上記従来技術の問題点を解決し、歪取焼
鈍による鉄損劣化のない一方向性珪素鋼板の製造方法を
提供するにある。
An object of the present invention is to solve the problems of the prior art described above and to provide a method for manufacturing a unidirectional silicon steel sheet without deterioration of core loss due to strain relief annealing.

本発明の要旨とするところは次のとおりである。The gist of the present invention is as follows.

すなわち、SもしくはSeを含む珪素鋼板素材を熱間圧
延および中間焼鈍を含み冷間圧延する工程と、前記冷延
鋼板を脱炭焼鈍および最終仕上焼鈍する工程と、前記最
終仕上鋼板表面に形成されたフォルステライト質被膜上
にりん酸塩系被膜を形成するコーティング処理工程と、
前記コーティング処理した鋼板を加工処理した後歪取焼
鈍する工程とを有して成る一方向性珪素鋼板の製造方法
において、前記コーティング処理工程のりん酸塩系の被
膜形成前にフォルステライト質被膜を含む鋼板の8およ
びSeの合計分析値を0.01%以下とする酸洗工程を
有することを特徴とする鉄損劣化のない一方向性珪素鋼
板の製造方法である。
That is, a step of cold rolling a silicon steel sheet material containing S or Se, including hot rolling and intermediate annealing, a step of decarburizing the cold rolled steel sheet and final finish annealing, and a step of decarburizing the cold rolled steel sheet and final finish annealing, and forming a silicon steel sheet material on the surface of the final finished steel sheet. a coating treatment step of forming a phosphate film on the forsterite film;
In the method for producing a unidirectional silicon steel sheet, which comprises the step of processing the coated steel sheet and then subjecting it to strain relief annealing, a forsterite film is applied before forming a phosphate film in the coating treatment step. This is a method for producing a unidirectional silicon steel sheet without iron loss deterioration, characterized by having a pickling step in which the total analysis value of 8 and Se contained in the steel sheet is 0.01% or less.

本発明者らは歪取焼鈍による鉄損劣化の原因を究明する
ため鋭意検討を行い、最終仕上焼鈍時の純化段階におい
て鋼中から除去されたS、Seが歪取焼鈍時に鋼中に戻
っていくことによって鉄損が増大し、かつ歪取焼鈍によ
る鉄損の増大はりん酸塩系コーティングが施されている
場合に限られ、最終焼鈍後の7オルステライト質被膜の
みの場合には認められないことを見出した。
The present inventors conducted intensive studies to investigate the cause of iron loss deterioration due to strain relief annealing, and found that S and Se, which were removed from the steel during the purification stage during final finish annealing, returned to the steel during strain relief annealing. In addition, the increase in iron loss due to stress relief annealing is limited to cases where a phosphate coating is applied, and is not observed when only an orsterite coating is formed after the final annealing. I found out that there is no.

板の最終仕上焼鈍前後のSおよびSeの分析結果を示し
たもので、特にフォルステライト質被膜を含む(以下単
に膜つきと称する)地鉄の分析値である。
This figure shows the analysis results of S and Se before and after the final annealing of the plate, and especially the analysis values of the base steel containing a forsterite film (hereinafter simply referred to as "with film").

第1表から最終仕上焼鈍によって鋼中のS、Seは非常
に低い水準まで純化されるが、膜つき分析値は焼鈍前の
S、Seの80′%程度が残留していることがわかる。
From Table 1, it can be seen that although the final annealing purifies the S and Se in the steel to a very low level, the film analysis value shows that about 80'% of the S and Se before annealing remain.

第1図はSi:2.98%、Mn : 0.06%、S
:0、005%、Se:0.018%、sb : o、
 o 15%の鋼塊を熱間圧延し、通常の工程で0.3
0 mm板厚まで冷間圧延した後、脱炭焼鈍、最終仕上
焼鈍を施したフォルステライト質被膜つき一方向性珪素
鋼板について調査したりん酸塩系コーティングの有無に
よる歪取焼鈍時のS、Seの鋼中侵入の差異を示すもの
である。図中の○印は最終仕上焼鈍をしたもの、Δ印は
最終仕上焼鈍後800℃x;3 Hrの窒素中の歪取焼
鈍をしたもの、X印は最終仕上焼鈍後りん酸塩系コーテ
ィング、800℃X3Hrの窒素中の歪取焼鈍をしたも
のである。なお横軸は100%NaOH溶融塩中におい
てりん酸塩系コーティングおよびフォルステライト質被
膜を除去した後の7オルステライト質被膜直下の地鉄表
面からの化学研磨深さくμ)である。縦軸は各研磨表面
について螢光X線によって測定したS 、 Seの合計
分析値である。
Figure 1 shows Si: 2.98%, Mn: 0.06%, S
: 0,005%, Se: 0.018%, sb: o,
o 15% steel ingot is hot rolled and 0.3
A study was conducted on a unidirectional silicon steel plate with a forsterite coating that was cold rolled to a thickness of 0 mm, then subjected to decarburization annealing and final finish annealing.S, Se during strain relief annealing with and without phosphate coating This shows the difference in penetration into steel. In the figure, ○ marks are those that have undergone final finish annealing, Δ marks are those that have been subjected to strain relief annealing in nitrogen at 800°C x 3 hours after final finish annealing, X marks are phosphate-based coatings after final finish annealing, It was strain relief annealed in nitrogen at 800°C for 3 hours. The horizontal axis is the chemical polishing depth (μ) from the surface of the base steel directly under the 7-orsterite coating after the phosphate coating and forsterite coating were removed in 100% NaOH molten salt. The vertical axis is the total analysis value of S and Se measured by fluorescent X-ray for each polished surface.

第1図からりん酸塩系コーティングをした×印素材の場
合のS、Seの鋼中侵入は明らかであり、8、Seの鋼
中侵入のない最終仕上焼鈍後の○印素材においても、地
鉄光面近くはS、Seがかなり濃化しており、S、Se
が地鉄と7オルステライト質被膜の界面あるいは地鉄表
層部に存在していることを示している。51Seは通常
フォルステライト質被膜と地鉄の界面あるいはその付近
にMnS、MnSeの状態で存在しているとされている
ので、鋼中侵入の場合、第1図に示す如く地鉄表層部で
はかなりS 、 Seが増加することになる。さらにS
、Seの鋼中侵入の場合に限って鉄損劣化が起って、B
す、第1図の×印素材すなわちi&終終止上焼鈍りん酸
塩系コーティング−歪取焼鈍の場合の鉄損劣化けWl)
。表示で0.05 W/kgであった。第1図ではS十
Seの合計分析値を示しているが、′M、終仕」焼鈍後
の単独の膜つき分析値はS−0,003”、>o、5e
−0,017%であり、内部の地鉄のS、Seはいずれ
も0.001%以下であった。
From Figure 1, it is clear that S and Se penetrate into the steel in the case of the phosphate-based coated material marked with x, and even in the material marked with ○ after final finish annealing, in which 8 and Se do not penetrate into the steel. Near the iron light surface, S and Se are considerably concentrated;
It is shown that this exists at the interface between the base steel and the 7-orsterite film or at the surface layer of the base steel. It is said that 51Se normally exists in the form of MnS and MnSe at or near the interface between the forsterite film and the steel base, so when it invades into steel, it is considerably absorbed in the surface layer of the steel, as shown in Figure 1. S and Se will increase. Furthermore, S
, iron loss deterioration occurs only when Se penetrates into the steel, and B
Materials marked with an x in Figure 1 (I & final annealing phosphate-based coating - iron loss deterioration in the case of strain relief annealing Wl)
. The displayed value was 0.05 W/kg. Figure 1 shows the total analysis value of S + Se, but the individual analysis value with film after annealing 'M, final' is S-0,003'', >o, 5e
-0,017%, and the S and Se of the internal steel were both 0.001% or less.

第1図に示した如くりん酸塩系コーチ−(/グがある場
合に限ってS、5eO)@中侵入が発生し鉄損が増大す
る詳細な理由は不明であるが、多分フォルステライト質
被膜直下に存在するMnS、j廂Seがりん酸塩系コー
ティングが存在するとなんらがの理由で分解して鋼中に
S 、 Seが浸入してい(ものと推察される。
As shown in Figure 1, the detailed reason why phosphate-based coach (S, 5eO only when there is /) occurs and iron loss increases is unknown, but it is probably due to forsterite. It is assumed that the MnS and Se that exist directly under the coating decompose for some reason when the phosphate coating is present, causing S and Se to infiltrate into the steel.

次に上記の8 、SeD鋼中侵入防止について考察した
結果最終仕上焼鈍後、りん酸塩系コーティングを施す前
に酸洗によりSもしくはSsの膜つき分析値を0.01
%以下にすることによって歪取焼鈍による鉄損劣化を効
果的に防止できることな見出し本発明を完成した。
Next, as mentioned in 8 above, as a result of considering the prevention of SeD penetration into steel, after final annealing and before applying phosphate coating, the analysis value of S or Ss with a film was reduced to 0.01 by pickling.
% or less, it is possible to effectively prevent iron loss deterioration due to strain relief annealing.

次に酸洗におけるS 十Seの分析値を0.01%以下
に限定した理由について説明する。Si:2.8〜36
2%、Mn : 0.05〜0.07%、S:0.00
4〜0.025%、Se : < 0.001〜0.0
20%、sb : <α001〜0.020 % (1
) 成分Y Iスル多数の珪素銅塊を通常工程で熱延、
冷延な行い最終板厚とした後脱炭焼鈍、最終仕上焼鈍を
施し、次に種々の酸洗条件で酸洗を行い、S + Se
の膜つき分析値の異なる供試材を製造し、特開昭50−
79442に開示されているコロイド状シリカ、りん酸
マグネシウム、無水クロム酸からなるコーティング処理
液を塗布し焼付けた。次に上記供試材を800℃X3H
r、窒素中で命取焼鈍を行い、全敗焼鈍前後の鉄損W1
?15゜の変化を調査し、酸洗後の膜つき分析値との関
係を第2図に示した。第2図から明らかなよ5に膜つき
分析値を0.01%以下に減すことKよって、歪取焼鈍
にょる鉄損の増加を効果的に防止できるので、本発明に
おいては、酸洗におけるSiSeの膜つき分析値をα旧
(11) %以下に限定した。
Next, the reason why the analytical value of S10Se in pickling was limited to 0.01% or less will be explained. Si:2.8~36
2%, Mn: 0.05-0.07%, S: 0.00
4-0.025%, Se: <0.001-0.0
20%, sb: <α001~0.020% (1
) Ingredients
After cold rolling to the final plate thickness, decarburization annealing and final finish annealing were performed, and then pickling was performed under various pickling conditions to achieve S + Se
We manufactured test materials with different analysis values with a film of
A coating treatment solution consisting of colloidal silica, magnesium phosphate, and chromic acid anhydride disclosed in Japanese Patent No. 79442 was applied and baked. Next, the above sample material was heated to 800°C for 3 hours.
r, iron loss W1 before and after complete failure annealing after fatal annealing in nitrogen
? The change in angle of 15° was investigated, and the relationship with the analysis value of the film after pickling is shown in Figure 2. As is clear from Fig. 2, by reducing the film deposition analysis value to 0.01% or less, it is possible to effectively prevent an increase in iron loss caused by strain relief annealing. The SiSe film deposition analysis value was limited to α old (11)% or less.

温 本発明の酸洗は酸の種類、濃度、酸洗浴の養度を限定す
るものではないが、酸洗条件が過度に厳しくなると、フ
ォルステライト質被膜自体も侵食されてコーテイング後
の被膜の密着性が劣化するので被膜の密着性が劣化しな
い範囲で酸洗する必要がある。本発明の目的達成には温
度80℃以下において1〜20%#度のりん酸、硫酸、
硝酸の酸浴中に3〜120秒間鋼板を浸漬するのが望ま
しい。しかし、フォルステライト質被膜の厚さ、構造、
S、Seの含有量によってS、Seの除去性が異なるの
で、前記の酸洗条件に限定されることなく、SとSeの
膜つき分析値を0.01%以下にできる酸洗条件を選定
すべきである。従来から行われていた最終仕上焼鈍後の
酸洗は鋼表向のマグネシャの除去を目的としているのに
対し、本発明の酸洗はSとSeの膜つき分析値が0,0
1%になる如(管理し、歪填焼鈍後の鉄損劣化防止を意
図している。
The pickling process of the present invention is not limited to the type of acid, concentration, or nutrient content of the pickling bath, but if the pickling conditions are too severe, the forsterite coating itself will be eroded and the adhesion of the coating after coating will be reduced. It is necessary to carry out pickling to the extent that the adhesion of the film does not deteriorate. To achieve the purpose of the present invention, 1 to 20% of phosphoric acid, sulfuric acid,
It is desirable to immerse the steel plate in an acid bath of nitric acid for 3 to 120 seconds. However, the thickness and structure of the forsterite film,
Since the removability of S and Se differs depending on the S and Se content, pickling conditions are not limited to the above pickling conditions, but pickling conditions that can reduce the film-attached analysis values of S and Se to 0.01% or less are selected. Should. While the conventional pickling after final finish annealing is aimed at removing magnesia on the surface of the steel, the pickling of the present invention removes S and Se with film analysis values of 0.0.
1% (managed to prevent iron loss deterioration after strain filling annealing).

実施例 r12) @2表に示す化学組成を有する2種類の珪木鋼塊を熱間
圧延した後0.30 mm板厚まで冷間圧延し、脱炭焼
鈍を施した。
Example r12) Two types of Quartzite steel ingots having the chemical compositions shown in Table @2 were hot rolled, then cold rolled to a plate thickness of 0.30 mm, and subjected to decarburization annealing.

第   2   表 この鋼板の表面に主としてMgOから成る焼鈍分離剤を
塗布して最終仕上焼鈍を行い、鋼板表面にフォルステラ
イト質被膜を形成させ次に第3表に示す条件で酸洗を行
った。比較例の一部は酸洗を省略したがこれらの鋼板を
特開昭62−25296に開示せるコロイド状シリカ、
りん酸マグネシウム、無水クロムは系のコーディング処
理液を片面2μの膜になるように塗布し800℃XIM
in窒系中で焼付けた。これらのコーティング処理板を
30mn+X280mmに剪断する加工処理を行い、8
00℃X3Hr窒素中において歪取焼鈍を行った。これ
らの鋼板の酸洗後の8 、、Seの膜つき分析値と、酸
洗後および加工処理、歪取焼鈍後の磁束密度13t。
Table 2 An annealing separator mainly consisting of MgO was applied to the surface of this steel sheet, final annealing was performed to form a forsterite film on the surface of the steel sheet, and then pickling was performed under the conditions shown in Table 3. Some of the comparative examples omitted pickling, but these steel plates were prepared using colloidal silica disclosed in JP-A No. 62-25296.
Magnesium phosphate and anhydrous chromium were coated with a coating treatment solution to form a 2μ film on one side and heated at 800℃XIM.
Baked in nitrogen system. These coated plates were processed by shearing them into 30mm + x 280mm.
Strain relief annealing was performed at 00° C. for 3 hours in nitrogen. The analysis values of these steel plates after pickling are 8.8, Se and the magnetic flux density is 13t after pickling, processing, and strain relief annealing.

および鉄損W17/6゜を同じく第3表に示した。and iron loss W17/6° are also shown in Table 3.

第3表の結果から酸洗によりS、Stの膜つき分析値を
0.01%以下に減少させた本発明の実施例においては
歪取焼鈍によって磁気特性が劣化しないことは明らかで
ある。一方S −) Ssの膜つき分析値が0.01%
を越す比較例においては酸洗の有無を間はず歪取焼鈍に
より磁気特性が劣化している。
From the results in Table 3, it is clear that in the examples of the present invention in which the film-based analysis values of S and St were reduced to 0.01% or less by pickling, the magnetic properties were not deteriorated by strain relief annealing. On the other hand, the analysis value of Ss with film is 0.01%
In Comparative Examples exceeding 10%, the magnetic properties deteriorate due to strain relief annealing with or without pickling.

上記の実施例からも明らかな如く、本発明は最終仕上焼
鈍後、珪素鋼板をS 、 Ssの膜つき分析値が0.0
1%以下になるように酸洗することによって歪取焼鈍に
よる鉄損劣化のない一方向性珪素鋼板を製造することが
可能となり、鉄心内部の発熱を防止し、大きな省エネル
キー効果をおさめることがでさた。
As is clear from the above examples, the present invention provides silicon steel sheets with S and Ss film deposition analysis values of 0.0 after final annealing.
By pickling to a concentration of 1% or less, it is possible to produce unidirectional silicon steel sheets that do not suffer from iron loss deterioration due to stress relief annealing, which prevents heat generation inside the core and achieves a major energy-saving effect. It was.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は珪素鋼板地金の表面深さとS+8eの分析値の
関係を示す相関図、第2図は歪取焼鈍によ(14) る珪素鋼板の鉄損変化と酸洗後のSとSsの膜つき合計
分析値との関係を示す相関図である。 代理人  中 路 武 雄
Figure 1 is a correlation diagram showing the relationship between the surface depth of a silicon steel plate base metal and the analytical value of S+8e, and Figure 2 shows the change in iron loss of a silicon steel plate due to strain relief annealing (14) and S and Ss after pickling. FIG. 3 is a correlation diagram showing the relationship between the total analysis value with a film and the total analysis value with a film. Agent Takeo Nakaji

Claims (1)

【特許請求の範囲】[Claims] (1)SもしくはSeを含む珪素鋼板素材を熱間゛ 工
程と、前記最終仕上鋼板表面に形成されたフォルステラ
イト質被膜上にりん酸塩系被膜を形成するコーティング
処理工程と、前記コーティング処理した鋼板を加工処理
した後歪取焼鈍する工程とを有して成る一方向性珪素鋼
板の製造方法において、前記コーティング処理工程のり
ん酸塩系の被膜形成前に7オルステライト質被膜を含む
鋼板のSおよびSeの合計分析値を0゜01%以下とす
る酸洗工程を有することを%徴とする鉄損劣化のない一
方向性珪素鋼板の製造方法。
(1) A silicon steel sheet material containing S or Se is heated through a hot process, a coating treatment step to form a phosphate film on the forsterite film formed on the surface of the final finished steel sheet, and a coating treatment step to form a phosphate film on the forsterite film formed on the surface of the final finished steel sheet. A method for manufacturing a unidirectional silicon steel sheet comprising the steps of processing a steel sheet and then subjecting it to strain relief annealing, wherein a method of manufacturing a steel sheet containing a 7-orsterite coating before forming a phosphate-based coating in the coating treatment step. A method for producing a unidirectional silicon steel sheet without iron loss deterioration, which includes a pickling process in which the total analysis value of S and Se is 0°01% or less.
JP2697082A 1982-02-22 1982-02-22 Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss Pending JPS58144429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2697082A JPS58144429A (en) 1982-02-22 1982-02-22 Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2697082A JPS58144429A (en) 1982-02-22 1982-02-22 Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss

Publications (1)

Publication Number Publication Date
JPS58144429A true JPS58144429A (en) 1983-08-27

Family

ID=12208008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2697082A Pending JPS58144429A (en) 1982-02-22 1982-02-22 Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss

Country Status (1)

Country Link
JP (1) JPS58144429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230778A (en) * 1988-07-21 1990-02-01 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with excellent electromagnetic characteristic and coating adhesion
JPH02267276A (en) * 1989-04-07 1990-11-01 Nippon Steel Corp Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0230778A (en) * 1988-07-21 1990-02-01 Kawasaki Steel Corp Production of grain-oriented silicon steel sheet with excellent electromagnetic characteristic and coating adhesion
JPH02267276A (en) * 1989-04-07 1990-11-01 Nippon Steel Corp Treatment of insulating film of grain oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH0699812B2 (en) * 1989-04-07 1994-12-07 新日本製鐵株式会社 Insulation coating method for grain-oriented electrical steel sheets with excellent magnetic and coating characteristics

Similar Documents

Publication Publication Date Title
JPH0717960B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
KR102577485B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP2592740B2 (en) Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same
JPS6376819A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
RU2771130C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPS58144429A (en) Manufacture of unidirectional silicon steel sheet free from deterioration of iron loss
JPH0768580B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent iron loss
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JP3148092B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3182666B2 (en) Method for producing ultra-low iron loss unidirectional silicon steel sheet
JP3148096B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JP7311075B1 (en) Method for manufacturing electrical steel sheet with pretreatment liquid and insulation coating
RU2771767C1 (en) Method for producing electrical steel sheet with oriented grain structure
RU2771315C1 (en) Method for producing electrical steel sheet with oriented grain structure
JPH03240922A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property and bendability
JP2647334B2 (en) Manufacturing method of high magnetic flux density, low iron loss grain-oriented electrical steel sheet
JP3148094B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS6319568B2 (en)
JP3300194B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPS58144425A (en) Method of stress-relief annealing unidirectional silicon steel sheet without iron loss
JP2000129357A (en) Manufacture of grain oriented silicon steel sheet excellent in magnetic property
JPS6223984A (en) Very thin tensile film for improving compressive stress characteristic of magnetostriction of grain-oriented silicon steel sheet
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS602674A (en) Production of grain-oriented silicon steel sheet having excellent iron loss characteristic