JPS61117222A - Production of ultra-low iron loss grain-oriented electrical steel sheet - Google Patents

Production of ultra-low iron loss grain-oriented electrical steel sheet

Info

Publication number
JPS61117222A
JPS61117222A JP59237446A JP23744684A JPS61117222A JP S61117222 A JPS61117222 A JP S61117222A JP 59237446 A JP59237446 A JP 59237446A JP 23744684 A JP23744684 A JP 23744684A JP S61117222 A JPS61117222 A JP S61117222A
Authority
JP
Japan
Prior art keywords
steel sheet
grain
oriented electrical
iron loss
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59237446A
Other languages
Japanese (ja)
Inventor
Toshiya Wada
和田 敏哉
Osamu Tanaka
収 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59237446A priority Critical patent/JPS61117222A/en
Priority to SE8504752A priority patent/SE465128B/en
Priority to IT67867/85A priority patent/IT1182608B/en
Priority to KR1019850007583A priority patent/KR900008852B1/en
Priority to GB08525352A priority patent/GB2167324B/en
Priority to CA000492955A priority patent/CA1249764A/en
Priority to BE0/215728A priority patent/BE903448A/en
Priority to DE19853536737 priority patent/DE3536737A1/en
Priority to FR858515269A priority patent/FR2571884B1/en
Publication of JPS61117222A publication Critical patent/JPS61117222A/en
Priority to US07/002,394 priority patent/US4863531A/en
Priority to US07/470,997 priority patent/US4960652A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce efficiently an ultra-iron loss grain-oriented steel sheet with economized energy by forming a film of an infilterative body to the grain- oriented electrical steel sheet subjected to finish annealing then heating the steel sheet by thermal irradiation and forming the infiltrated body at intervals. CONSTITUTION:The film of the infilterative body of a metal, non-metal, etc. is formed by painting, plating, etc., on the grain-oriented electrical steel sheet subjected to finish annealing. The steel sheet formed with the film is thermally irradiated by a pulse laser, etc. and is intermittently heated after drying of the film. The infilterative body is thereby brought into reaction with the steel sheet or the surface film thereof, etc., and the infiltrated body consisting of the alloy, result product of reaction, diffused body, etc., having the steel component or structure different from the component or structure of ferritic steel sheet is formed at intervals in the form of intruding into the sheet thickness direction. The magnetic domains are thus finely segmented without the loss of the effect of improving the iron loss even after the heat treatment such as stress relief annealing. The grain-oriented electrical steel sheet having extremely low iron loss is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超低鉄損方向性電磁鋼板の製造方法に係わり、
さらに詳しく述べるならば熱処理されても鉄損改善効果
が消失しない磁区細分化により鉄損が極めて低い方向性
電磁鋼板を提供する方法に関する。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing an ultra-low core loss grain-oriented electrical steel sheet.
More specifically, the present invention relates to a method for providing a grain-oriented electrical steel sheet with extremely low core loss through magnetic domain refining that does not lose its core loss improving effect even after heat treatment.

(従来の技術) 方向性電磁鋼板は主として変圧器、その他、電気機器の
鉄芯材料として作用されるので、励磁特性、鉄損特性が
良好である必要がある。
(Prior Art) Grain-oriented electrical steel sheets are mainly used as iron core materials for transformers and other electrical equipment, so they need to have good excitation characteristics and iron loss characteristics.

この方向性電磁鋼板は2次再結晶現象を利用し、圧延面
に(110)面を、圧延方向に<001>軸をもつ、い
わゆるゴス方位を有する2次再結晶粒組織が発達してい
る。該(110)<001>方位の集積度を高めるとと
もに、圧延方向からの偏り゛をできるだけ減少せしめる
ことにより、励磁特性、鉄損特性等のすぐれたものが製
造されるようになっている。
This grain-oriented electrical steel sheet utilizes the secondary recrystallization phenomenon and develops a secondary recrystallized grain structure with the (110) plane on the rolled surface and the <001> axis in the rolling direction, which is the so-called Goss orientation. . By increasing the degree of integration of the (110) <001> orientation and reducing deviation from the rolling direction as much as possible, products with excellent excitation characteristics, iron loss characteristics, etc. can be manufactured.

ところで、(110)<001>方位の集積度を高める
に□つれて結晶粒は大きくなり、また磁壁が粒界を貫通
するために磁区が大となり、集積度を高めた割りには鉄
損が低くならない現象がある。
By the way, as the degree of integration of the (110)<001> orientation increases, the crystal grains become larger, and since the domain wall penetrates the grain boundary, the magnetic domain becomes larger, and the iron loss increases even though the degree of integration increases. There is a phenomenon where it does not get lower.

上述の現象を解消し、鉄損の低下を図る技術として、例
えば特公昭58−5968号がある。これは最終仕上焼
鈍済の一方向性電磁鋼板の表面に小球等を押圧して深さ
5μ以下の凹みを形成して線状の微小ひずみを付与する
ことによって磁区の細分化を行い、鉄損を改善するもの
である。また、特公昭58−26410号には、最終仕
上焼鈍により生成した2次再結晶の各結晶粒表面にレー
ザー照射による痕跡を少なくとも1個形成せしめて、磁
区を細分化し鉄損を低下させることが提案されている。
For example, there is Japanese Patent Publication No. 58-5968 as a technique for eliminating the above-mentioned phenomenon and reducing iron loss. This is done by pressing small balls etc. onto the surface of a unidirectional electrical steel sheet that has undergone final finish annealing to form concavities with a depth of 5μ or less and applying linear microstrain to subdivide the magnetic domains. It is intended to improve losses. Furthermore, Japanese Patent Publication No. 58-26410 discloses a method of forming at least one trace by laser irradiation on the surface of each crystal grain of secondary recrystallization generated by final finish annealing to subdivide the magnetic domain and reduce iron loss. Proposed.

これら特公昭第58−5968号および特公昭第58−
26410号に示された方法によれば一方向性電磁鋼板
表面に局部的な微小ひずみを付与することで鉄損が改善
され、超低鉄損材料を得ることができる。
These Special Publications No. 58-5968 and Special Publication No. 58-
According to the method disclosed in No. 26410, iron loss is improved by applying local minute strain to the surface of a grain-oriented electrical steel sheet, and an ultra-low iron loss material can be obtained.

(発明が解決しようとする問題点) しかしながら、上記の如く得られた超低鉄損材料も焼鈍
すると鉄損の改善効果が失われる。例えば巻鉄心を製造
する際の歪取り焼鈍では該鉄損改善効果が消失する問題
がある。
(Problems to be Solved by the Invention) However, when the ultra-low core loss material obtained as described above is annealed, the effect of improving core loss is lost. For example, there is a problem that the iron loss improving effect disappears in strain relief annealing when manufacturing a wound core.

本発明は熱処理例えば歪取焼鈍されても鉄損改善効果が
消失しない磁区細分化を行ない鉄損の極めて低い方向性
電磁鋼板を能率的にかつ省エネルギー的に得ることを目
的とする。
The object of the present invention is to efficiently and energy-savingly obtain grain-oriented electrical steel sheets with extremely low core loss by performing magnetic domain refining that does not eliminate the core loss improvement effect even after heat treatment, such as stress relief annealing.

本発明者らは磁区細分化後に歪取焼鈍など例えば700
〜900℃の温度で熱処理されても鉄損改善効果が消失
しない磁区細分化を行ない鉄損の極めて低い方向性電磁
鋼板を製造するため多くの実験を行ない検討した。
The present inventors performed strain relief annealing after magnetic domain refining, for example, at 700°C.
Many experiments were conducted to produce a grain-oriented electrical steel sheet with extremely low core loss through magnetic domain refining that does not lose its core loss improvement effect even when heat treated at temperatures of ~900°C.

(問題点を解決するための手段) その結果、仕上焼鈍された方向性電磁鋼板に、該鋼板の
鋼成分或いは鋼組織と異なった侵入体、例えば鋼板や表
面被膜との反応による合金層、表面反応生成物、拡散体
等を、間隔をおいて鋼板に入り込ませて形成すると、そ
の両側に磁区の芽が生じ、鋼板が磁化されるとき磁区が
細分化され、その後に歪取焼鈍などの熱処理を施しても
磁区細分化による鉄損改善効果は消失せず、鉄損の極め
て低い方向性電磁鋼板が得られることを見出した。
(Means for Solving the Problem) As a result, finish-annealed grain-oriented electrical steel sheets have an intruder that differs from the steel composition or structure of the steel sheet, such as an alloy layer or a surface coating due to reaction with the steel sheet or surface coating. When reaction products, diffusers, etc. are formed by entering the steel plate at intervals, magnetic domain buds are generated on both sides, and when the steel plate is magnetized, the magnetic domains are subdivided, and then heat treatment such as strain relief annealing is performed. It has been found that the iron loss improvement effect due to magnetic domain refinement does not disappear even if the magnetic domain refinement is applied, and grain-oriented electrical steel sheets with extremely low iron loss can be obtained.

本発明は係かる超低鉄損の方向性電磁鋼板を能率的にか
つ省エネルギー的に提供する方法に関するものであり、
その特徴とするところは、仕上焼    鈍された方向
性電磁鋼板に、可侵入体の被膜を形成し、ついで該鋼板
を熱的照射して加熱することにより、該綱板に該鋼板地
鉄の鋼成分あるいは鋼組織と         異なっ
た侵入体を間隔をおいて形成し、磁区細分化を行なうこ
とを特徴とする超低鉄損方向性電磁鋼板の製造方法にあ
る。
The present invention relates to a method for efficiently and energy-savingly providing grain-oriented electrical steel sheets with ultra-low core loss.
The feature is that a film of penetrants is formed on a grain-oriented electrical steel sheet that has been finish annealed, and then the steel sheet is heated by thermal irradiation, so that the steel sheet base material is applied to the steel sheet. The present invention provides a method for producing ultra-low iron loss grain-oriented electrical steel sheets, which is characterized by forming intruders different from the steel composition or steel structure at intervals to perform magnetic domain refining.

本発明において「侵入体」とは鋼板上の被膜が、そのも
の単独、又は他の被膜を含む鋼板側成分、さらには雰囲
気成分等と結合した状態で鋼板中に粒又は塊りとなって
存在する様子を表現するものである。可侵入体とは侵入
体を形成しうる物質を指す。
In the present invention, an "intruder" refers to a coating on a steel plate that exists in the steel plate as grains or lumps, either alone or in combination with components on the steel plate including other coatings, and even with atmospheric components. It expresses the situation. A penetrant refers to a substance that can form a penetrant.

本発明において「被膜」とは鋼板上の少なくとも一部に
おいて機械的な塗装膜、メ・ツキ等の化学的な付着膜或
いは接着、さらに一部が反応層をもつ膜など全てを含む
総称であり、又その厚みについても特定されない。
In the present invention, "coating" is a general term that includes all mechanical coating films, chemical adhesion films such as metal coatings, or adhesives on at least a portion of the steel plate, and films that partially have a reaction layer. , and its thickness is also not specified.

この耐熱性のある磁区細分化は次のようにして行える。This heat-resistant magnetic domain subdivision can be performed as follows.

即し、仕上焼鈍された方向性電磁@板に可侵入体例えば
金属、非金属やそれらの混合物、合金、酸化物、リン酸
、ホウ酸、リン酸塩、及びホウ酸塩等さらにはそれらの
混合物の薬剤を塗布、メッキ、蒸着、接着、溶着、腐食
、などの各種の方法で被膜し、次いで該鋼板をレーザー
照射、電子ビーム照射などの熱的照射して加熱すること
により、可侵入体が該銅板やその表面被膜と反応して、
鋼板に入り込むかたちで鋼板地鉄の鋼成分あるいは鋼組
織と異なった侵入体が間隔をおいて形成され耐熱性のあ
る磁区細分化が行われる。又この侵入体を形成する物質
としては、具体的には一例を後述しているが、熱的照射
の加熱によって鋼板やその表面被膜と反応して鋼板に侵
入するものであればよい。
Therefore, the finish annealed directional electromagnetic plate is coated with penetrable substances such as metals, nonmetals, mixtures thereof, alloys, oxides, phosphoric acid, boric acid, phosphates, borates, etc. The chemical mixture is coated by various methods such as coating, plating, vapor deposition, adhesion, welding, and corrosion, and then the steel plate is heated by thermal irradiation such as laser irradiation or electron beam irradiation, thereby eliminating penetrants. reacts with the copper plate and its surface coating,
Intruders that are different from the steel composition or steel structure of the base steel sheet are formed at intervals by penetrating into the steel sheet, resulting in heat-resistant magnetic domain refining. A specific example of the substance forming the intruder will be described later, but any substance that reacts with the steel plate or its surface coating upon heating by thermal irradiation and invades the steel plate may be used.

以下に本発明を仕上焼鈍された方向性電磁鋼板に、薬剤
を塗布し被膜を形成し、次いで熱的照射した例に基づい
て具体的に説明する。
The present invention will be specifically explained below based on an example in which a finish annealed grain-oriented electrical steel sheet is coated with a chemical to form a film, and then thermally irradiated.

本発明では仕上焼鈍された方向性電磁鋼板に、磁区細分
化を行うが、該方向性電磁鋼板の鋼成分、および仕上焼
鈍されるまでの製造条件は特定する必要はなく、例えば
インヒビターとしてAn。
In the present invention, the finish annealed grain-oriented electrical steel sheet is subjected to magnetic domain refining, but the steel composition of the grain-oriented electrical steel sheet and the manufacturing conditions until finish annealing do not need to be specified; for example, An is used as an inhibitor.

M n S + M n S e + B N + C
u t S等の適宜なものが用いられ、必要に応じてC
u + S n + Cr + N i+ M o +
 S b等の元素が含有され、さらにスラブを熱間圧延
し、焼鈍して1回または焼鈍をはさんで2回以上の冷間
圧延により最終板厚とされ、脱炭焼鈍され、焼鈍分離剤
を塗布され仕上焼鈍される一連のプロセスの条件につい
ても特定する必要はない。
M n S + M n S e + B N + C
An appropriate one such as u t S is used, and if necessary, C
u + S n + Cr + N i + Mo +
Sb and other elements are contained, and the slab is further hot-rolled, annealed and cold-rolled once or twice or more with annealing to achieve the final thickness, decarburized annealed, and annealed with an annealing separator. There is no need to specify the conditions for the series of processes in which the material is applied and finish annealed.

ところで、仕上焼鈍された方向性電磁鋼板に、薬剤を全
面あるいは間隔をおいて塗布し被膜を形成するこの例に
おける可侵入体の薬剤としては、All 、  Si、
Ti、 Sb、 Sr、 Cu、 Sn+ Zn、 F
e、Ni+Cr、Mn、S、B等の金属、非金属やそれ
らの混合物、酸化物、合金や、リン酸、ホウ酸、リン酸
塩、ホウ酸塩、硫酸塩、硝酸塩、珪酸塩等さらにはそれ
らの混合物が用いられ、これをスラリー状、あるいは溶
液にして塗布し被膜が形成される。
By the way, in this example, where a chemical is applied to the entire surface or at intervals to form a film on a grain-oriented electrical steel sheet that has been finish annealed, the chemicals for the penetrant include All, Si,
Ti, Sb, Sr, Cu, Sn+ Zn, F
Metals such as e, Ni+Cr, Mn, S, B, nonmetals, mixtures thereof, oxides, alloys, phosphoric acid, boric acid, phosphates, borates, sulfates, nitrates, silicates, etc. A mixture of these is used, and a coating is formed by coating the mixture in the form of a slurry or solution.

前記薬剤において金属、非金属、それらの酸化物、合金
は粉末状にして用いるのが好ましい。金属、非金属或い
はその酸化物、合金の粉末をスラリーとして使用する場
合は水と懸濁させて塗布するのが作業性がよいため、水
100重量部に対し金属等を2〜100重量部程度の濃
度にする。
In the drug, metals, nonmetals, their oxides, and alloys are preferably used in powder form. When using powders of metals, nonmetals, their oxides, or alloys as a slurry, it is easier to apply by suspending them in water, so the amount of metal, etc. should be approximately 2 to 100 parts by weight per 100 parts by weight of water. to a concentration of

金属、非金属或いはそれらの酸化物、合金を酸又は塩類
と混合して使用する際は原液のままか、水で適当な濃度
にうすめて塗布すればよい。
When metals, non-metals, or their oxides or alloys are used in combination with acids or salts, they may be applied as a undiluted solution or diluted with water to an appropriate concentration.

被膜を形成するこれら薬剤の塗布量は鋼板面積当たり0
.1〜50g/ tdの範囲にあればよい。
The amount of these chemicals applied to form the film is 0 per area of the steel plate.
.. It is sufficient if it is in the range of 1 to 50 g/td.

次いで、乾燥後、被膜が形成された方向性電磁鋼板を、
熱的照射して間隔をおいて加熱する熱的照射には例えば
照射エネルギーの大きいパルスレーザ−や電子ビームな
どが用いられ、照射熱エネルギーにより、被膜を構成し
ている薬剤と鋼板やその表面被膜が反応して、該鋼板地
鉄の鋼成分あるいは鋼組織と異なった合金層、表面反応
生成物、拡散体などの侵入体が板厚方向に入り込むかた
ちで間隔をおいて形成される。
Next, after drying, the grain-oriented electrical steel sheet on which the film was formed was
For example, pulsed lasers or electron beams with high irradiation energy are used for thermal irradiation, which heats the steel plate at intervals. As a result of the reaction, intruders such as alloy layers, surface reaction products, and diffusers different from the steel composition or structure of the steel base steel are formed at intervals in the thickness direction of the steel plate.

この熱的照射の間隔は1〜30鶴であり、隣り合う間隔
は等しくてもあるいは異なっていてもよい。
The spacing between these thermal irradiations is 1 to 30, and the spacing between adjacent ones may be equal or different.

本発明は適用により形成された侵入体の1例の顕微鏡U
織写真(X 1000)を第1図に示す。この図中でA
印を符したものが侵入体であり、鋼板の板厚方向に入り
込んでいるのが認められる。
The present invention is an example of an intruder formed by applying a microscope U.
A photograph (X 1000) of the fabric is shown in Figure 1. In this diagram, A
The marked object is the intruder, and it is observed that it has entered the steel plate in the thickness direction.

(実施例) 次に実施例について述べる。(Example) Next, an example will be described.

C: 0.078%、 Si  : 3.27%、 M
n  : 0.073%AJ : 0.029%、 S
 : 0.024%、 Cu  : 0.16%Sn 
 : 0.008%を含む珪素鋼スラブを公知の方法に
より熱延−熱延板焼鈍−冷延により0.225mm厚と
した。
C: 0.078%, Si: 3.27%, M
n: 0.073% AJ: 0.029%, S
: 0.024%, Cu: 0.16%Sn
: A silicon steel slab containing 0.008% was hot-rolled, hot-rolled plate annealed, and cold-rolled to a thickness of 0.225 mm by a known method.

次いで脱炭焼鈍−焼鈍分離剤塗布−最終仕上焼鈍を行っ
たコイルから巾IQcmX長さ50c+++のサンプル
を切出し、800℃×4時間の歪取焼鈍を行い歪とコイ
ルセント除去後、磁気特性を測定した。(曹)この鋼板
に、第1表の各薬剤を10g150mlHzOの割合で
配合した溶液を塗布し乾燥し被膜を形成した。次いで電
子ビームを約20關間隔で照射し加熱作用を与え860
℃×20分間加熱し、磁気特性を測定した。(2) 更に800℃×3時間の歪取焼鈍をし、磁気特性を測定
した。(3) これらの結果を第2表に示す。
Next, a sample with a width of IQ cm and a length of 50 cm was cut out from the coil that had been subjected to decarburization annealing, application of annealing separation agent, and final annealing, and strain relief annealing was performed at 800°C for 4 hours to remove strain and coil cent, and then the magnetic properties were measured. did. (Soda) A solution containing 10 g of each drug listed in Table 1 at a ratio of 150 ml of HzO was applied to this steel plate and dried to form a film. Next, an electron beam is irradiated at intervals of about 20 degrees to give a heating effect.
It was heated for 20 minutes at ℃ and its magnetic properties were measured. (2) Strain relief annealing was further performed at 800° C. for 3 hours, and the magnetic properties were measured. (3) These results are shown in Table 2.

第1表 第2表 以上の実施例から明らかなように磁区細分化後に歪取焼
鈍されても鉄損改善効果は失なわれず、鉄損の極めて低
い方向性電磁鋼板が提供される。
As is clear from the examples shown in Tables 1 and 2, even if strain relief annealing is performed after magnetic domain refining, the iron loss improving effect is not lost, and a grain-oriented electrical steel sheet with extremely low iron loss is provided.

(発明の効果) 以上説明したように本発明によれば、該侵入体による磁
区細分化で鋼板の鉄損が低くなるとともに、その後に、
高温に加熱される歪取焼鈍が行われても鉄損改善効果が
消失しないという、これまでの磁区細分化法に見られな
いすぐれた特長がある。
(Effects of the Invention) As explained above, according to the present invention, the iron loss of the steel plate is reduced by magnetic domain refining by the intruder, and after that,
It has an excellent feature not seen in previous magnetic domain refining methods, in that the iron loss improvement effect does not disappear even when strain relief annealing is performed at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

第、1図は本発明によって鋼板に形成された侵入体を示
す金属顕微鏡組織写真(X100O)である。 ハ
FIG. 1 is a metal micrograph (X100O) showing an intruder formed in a steel plate according to the present invention. Ha

Claims (1)

【特許請求の範囲】 1、仕上焼鈍された方向性電磁鋼板に、可侵入体の被膜
を形成し、ついで該鋼板を熱的照射して加熱することよ
り、該鋼板に、該鋼板地鉄の鋼成分あるいは鋼組織と異
なった侵入体を間隔をおいて形成し、磁区細分化を行う
ことを特徴とする超低鉄損方向性電磁鋼板の製造方法。 2、仕上焼鈍された方向性電磁鋼板に、可侵入体の皮膜
を形成し、ついで該鋼板を熱的照射して間隔をおいて加
熱することにより、該鋼板に該鋼板地鉄の鋼成分あるい
は鋼組織と異なった侵入体を間隔をおいて形成し、磁区
細分化を行うことを特徴とする超低鉄損方向性電磁鋼板
の製造方法。
[Claims] 1. A coating of penetrants is formed on a grain-oriented electrical steel sheet that has been finish annealed, and then the steel sheet is heated by thermal irradiation. A method for producing an ultra-low iron loss grain-oriented electrical steel sheet, characterized by forming interstitial bodies different from the steel composition or steel structure at intervals to refine magnetic domains. 2. A film of penetrants is formed on a finish-annealed grain-oriented electrical steel sheet, and then the steel sheet is thermally irradiated and heated at intervals, so that the steel composition of the base steel or A method for producing an ultra-low iron loss grain-oriented electrical steel sheet, which comprises forming interstitial bodies different from the steel structure at intervals to refine magnetic domains.
JP59237446A 1984-10-15 1984-11-13 Production of ultra-low iron loss grain-oriented electrical steel sheet Pending JPS61117222A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP59237446A JPS61117222A (en) 1984-11-13 1984-11-13 Production of ultra-low iron loss grain-oriented electrical steel sheet
SE8504752A SE465128B (en) 1984-10-15 1985-10-14 CORN-ORIENTED STEEL TUNNER PLATE FOR ELECTRICAL PURPOSES AND PROCEDURES FOR PREPARING THE PLATE
IT67867/85A IT1182608B (en) 1984-10-15 1985-10-14 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW POWER LOSS AND METHOD FOR ITS MANUFACTURE
CA000492955A CA1249764A (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
GB08525352A GB2167324B (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
KR1019850007583A KR900008852B1 (en) 1984-10-15 1985-10-15 Grain-oriented electrical steel sheet having a low watt loss and method for producing same
BE0/215728A BE903448A (en) 1984-10-15 1985-10-15 Grain oriented electrical steel sheet - with magnetic domains subdivided by inclusions
DE19853536737 DE3536737A1 (en) 1984-10-15 1985-10-15 GRAIN-ORIENTED ELECTRO-STEEL SHEET WITH LOW RE-MAGNETIZATION LOSS AND METHOD FOR THE PRODUCTION THEREOF
FR858515269A FR2571884B1 (en) 1984-10-15 1985-10-15 ORIENTED GRAIN ELECTRIC STEEL SHEET WITH LOW ACTIVE ENERGY LOSS AND PROCESS FOR PRODUCING SAME
US07/002,394 US4863531A (en) 1984-10-15 1987-01-09 Method for producing a grain-oriented electrical steel sheet having a low watt loss
US07/470,997 US4960652A (en) 1984-10-15 1990-01-22 Grain-oriented electrical steel sheet having a low watt loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59237446A JPS61117222A (en) 1984-11-13 1984-11-13 Production of ultra-low iron loss grain-oriented electrical steel sheet

Publications (1)

Publication Number Publication Date
JPS61117222A true JPS61117222A (en) 1986-06-04

Family

ID=17015467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59237446A Pending JPS61117222A (en) 1984-10-15 1984-11-13 Production of ultra-low iron loss grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JPS61117222A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10804015B2 (en) 2011-12-29 2020-10-13 Posco Electrical steel sheet and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4960652A (en) Grain-oriented electrical steel sheet having a low watt loss
US4846939A (en) Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61139679A (en) Production of grain oriented electrical steel sheet having low iron loss
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS6330968B2 (en)
JPS61139677A (en) Production of low iron loss grain oriented electrical steel sheet
JPS61117216A (en) Manufacture of grain oriented magnetic steel plate of ultralow iron loss
JPS61210125A (en) Manufacture of grain-oriented silicon steel sheet having extremely superior magnetic property
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
JPH0327634B2 (en)
JPS61133319A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61117217A (en) Manufacture of ultralow iron loss grain oriented magnetic steel plate
JPS61117283A (en) Production of low-iron loss grain-oriented electrical steel sheet
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS61117220A (en) Production of low-iron loss electrical steel sheet
JPH0236663B2 (en)
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JPS62124221A (en) Manufacture of ultralow iron loss grain oriented electrical sheet
JPS61190902A (en) Directional electromagnetic steel plate of very low iron loss
JPS61117219A (en) Production of low-iron loss grain-oriented electrical steel sheet
JPS61133320A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS61117221A (en) Production of low-iron loss grain-oriented electrical steel sheet
JPS6319572B2 (en)
JPS6319574B2 (en)