JPH0236663B2 - - Google Patents

Info

Publication number
JPH0236663B2
JPH0236663B2 JP56088669A JP8866981A JPH0236663B2 JP H0236663 B2 JPH0236663 B2 JP H0236663B2 JP 56088669 A JP56088669 A JP 56088669A JP 8866981 A JP8866981 A JP 8866981A JP H0236663 B2 JPH0236663 B2 JP H0236663B2
Authority
JP
Japan
Prior art keywords
phase
atmosphere
alloy
emu
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56088669A
Other languages
Japanese (ja)
Other versions
JPS57203748A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56088669A priority Critical patent/JPS57203748A/en
Publication of JPS57203748A publication Critical patent/JPS57203748A/en
Publication of JPH0236663B2 publication Critical patent/JPH0236663B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はHADFIELD′S AUSTENITIC
STEELの呼称で知られるFe−Mn−C合金の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on HADFIELD'S AUSTENITIC
This invention relates to improvements in the Fe-Mn-C alloy known under the name STEEL.

HADFIELD′S AUSTENITIC STEELは適切
な量のMnおよびCと残部は鉄から成る組成の合
金で、非磁性のオーステナイト相(以下、γ相と
いう)を室温に導入することが、容易に可能であ
り、加工によるマルテンサイト変態(γ相→マル
テンサイト相(以下、α相という))がほとんど
起らない材料である。またこの合金はγ相状態を
冷間加工すると、著しく加工硬化して機械的強度
が増大する。しかしながら、熱処理によりγ相母
体に強磁性相であるα相を形成しようとした場
合、γ相は低温で安定であるため、容易にγ→
α1変態が起らず、γ→α変態が完全に終了する
ためには長時間の熱処理を必要とする。長時間熱
処理を必要とする要因はMnとCが適量添加され
ていることにあり、特にCの効果が大きい。この
合金はα相とγ相の中間にα+γ+Fe3Cあるい
は、γ+Fe3Cの混合相を形成し、しかも、Fe3C
は強く結合している。
HADFIELD'S AUSTENITIC STEEL is an alloy with a composition consisting of appropriate amounts of Mn and C and the balance iron, and it is easily possible to introduce a non-magnetic austenite phase (hereinafter referred to as γ phase) at room temperature. This is a material in which martensitic transformation (γ phase → martensitic phase (hereinafter referred to as α phase)) hardly occurs during processing. Furthermore, when this alloy is subjected to cold working in the γ phase state, it undergoes significant work hardening and increases its mechanical strength. However, when an attempt is made to form the ferromagnetic α phase in the γ phase matrix by heat treatment, the γ phase is stable at low temperatures, so γ→
In order for the α1 transformation to not occur and for the γ→α transformation to be completely completed, a long heat treatment is required. The reason why the long heat treatment is required is that appropriate amounts of Mn and C are added, and the effect of C is particularly large. This alloy forms a mixed phase of α+γ+Fe 3 C or γ+Fe 3 C between the α phase and γ phase, and moreover, Fe 3 C
are strongly connected.

以上のように、この合金は、γ相を容易に室温
に導入できるという利点とともに、磁性材料への
応用を考えた場合、γ→α変態に長時間の熱処理
を必要とするという欠点を持つている。
As described above, this alloy has the advantage that the γ phase can be easily introduced at room temperature, but when considering its application to magnetic materials, it has the disadvantage of requiring a long heat treatment for the γ→α transformation. There is.

本発明は、室温に鏡入された上記合金のγ相
を、短時間の熱処理を施すことにより容易にα相
へ変態させるために、上記合金にHfを添加した
ことを特徴とする複合磁性材料用合金であり、上
記合金の利点を活かし、上記欠点を解決して、工
業的に有効で、応用分野が広く、かつ生産性の点
でも優れた複合磁性材料用合金を提供するもので
ある。
The present invention provides a composite magnetic material characterized in that H f is added to the above alloy in order to easily transform the γ phase of the above alloy into the α phase by heat treatment for a short time. This is an alloy for materials, which takes advantage of the advantages of the above alloys and solves the drawbacks mentioned above to provide an alloy for composite magnetic materials that is industrially effective, has a wide range of applications, and is excellent in terms of productivity. .

本発明の複合磁性材料用合金によれば、レーザ
ービームあるいは電子ビームあるいは赤外線ビー
ム等を用いて材料を焼鈍することによつて、非磁
性材料の表面に任意の深さで、かつ任意のパター
ンの磁性相を形成させることが可能となつた。ま
た非磁性材料と磁性材料の二体を接着剤あるいは
機械的方法あるいは熱圧着等で接合させて一体化
した複合磁性材料と比較して、本発明の方法で製
造した複合磁性材料は機械的信頼性の点でも優れ
ていることがわかつた。
According to the alloy for composite magnetic materials of the present invention, by annealing the material using a laser beam, an electron beam, an infrared beam, etc., the surface of a non-magnetic material can be formed at an arbitrary depth and in an arbitrary pattern. It became possible to form a magnetic phase. Furthermore, compared to a composite magnetic material that is made by joining a non-magnetic material and a magnetic material together using an adhesive, mechanical method, thermocompression bonding, etc., the composite magnetic material manufactured by the method of the present invention has mechanical reliability. It was also found that they are superior in terms of sex.

以下に本発明における複合磁性材料用合金の化
学成分範囲の限定理由について述べる。
The reason for limiting the range of chemical components of the alloy for composite magnetic material in the present invention will be described below.

Feは本発明における複合磁性材料用合金の主
成分である。Feのγ相は不安定であり、冷却過
程でどんなに速く急冷してもα相に変態する。
Fe is the main component of the alloy for composite magnetic material in the present invention. The γ phase of Fe is unstable and transforms into the α phase during the cooling process, no matter how quickly it is cooled.

Feのγ相は、約2重量%までCを固溶してγ
−域を形成し安定になるが、高温から急冷してγ
相を室温に導入するためには、2重量%以上の
Mnを添加しなければならなかつた。一方、実用
的に充分な磁化量を有する合金を得るためには、
Mnは20重量%を越えて添加してはならず、最大
20重量%のMnを添加した場合には、0.4重量%以
上のCを添加すれば、容易にγ相を室温に導入す
ることができた。Cを2重量%越えて添加すると
添加したCが全て固溶せず、γ相の母相内に
Mn、HfあるいはFeとCの結合した化合物が混在
し、室温にγ相の単相を得ることができない。し
たがつて、Cを2重量%越えて添加した本発明の
複合磁性材料用合金は室温で圧延、伸線あるいは
スエージ等の冷間加工が困難である。
The γ phase of Fe is formed by solid solution of C up to about 2% by weight.
− region is formed and becomes stable, but when rapidly cooled from high temperature, γ
In order to bring the phase to room temperature, more than 2% by weight of
Mn had to be added. On the other hand, in order to obtain an alloy with a practically sufficient amount of magnetization,
Mn must not be added in excess of 20% by weight, and the maximum
When 20% by weight of Mn was added, the γ phase could be easily introduced at room temperature by adding 0.4% by weight or more of C. If more than 2% by weight of C is added, all the added C will not be solidly dissolved and will be incorporated into the matrix of the γ phase.
A compound in which Mn, Hf, or Fe and C are bonded coexists, and a single γ phase cannot be obtained at room temperature. Therefore, the alloy for composite magnetic materials of the present invention containing more than 2% by weight of C is difficult to cold-work such as rolling, wire drawing or swaging at room temperature.

上記の組成範囲の合金は、急冷することでγ相
を室温に導入することができるが、γ→α変態を
容易にするためにHfを0.1〜2.5重量%添加した。
0.1重量%を下まわる添加量ではHf添加の効果が
発揮されず、2.5重量%を越えて添加すると全温
度領域でα相となつた。
The alloy having the above composition range can be rapidly cooled to introduce the γ phase to room temperature, but 0.1 to 2.5% by weight of Hf was added to facilitate the γ→α transformation.
When the amount added is less than 0.1% by weight, the effect of Hf addition is not exhibited, and when it is added more than 2.5% by weight, it becomes α phase in the entire temperature range.

次に本発明の詳細を実施例を列挙して説明す
る。
Next, the details of the present invention will be explained by listing examples.

実施例 1 重量%で(Fe85.8Mn13C1.298.3Hf1.7の組成を有
する合金インゴツトを1100℃の温度で1時間、
Ar雰囲気中で均一化処理した後、10%NaOH水
溶液中に浸して急冷した。この合金インゴツトか
ら小片を切り出し磁化量を測定すると、σs=0.02
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で50%の冷
間圧延加工を施したところ、磁化量はσs=0.05
(emu/gm)となつた。さらにこの合金インゴツ
トの初期の形状から減面率で99%の冷間圧延加工
を更に施したところ、磁化量はσs=0.1(emu/
gm)となつた。また、機械的強度σ0.2=142Kg/
mm2、ビツカース硬さHv=741であつた。
Example 1 An alloy ingot having a composition of (Fe 85.8 Mn 13 C 1.2 ) 98.3 H f1.7 in weight % was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NaOH aqueous solution and rapidly cooled. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, σs = 0.02
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 50%, and the magnetization amount was σs = 0.05.
It became (emu/gm). Furthermore, when this alloy ingot was further cold-rolled with an area reduction of 99% from its initial shape, the magnetization amount was σs = 0.1 (emu/
gm). Also, mechanical strength σ 0.2 = 142Kg/
mm 2 , and the Vickers hardness Hv=741.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を550℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果、
磁化量σs=120(emu/gm)、機械的強度σ0.2=85
(Kg/gm2)、ビツカース硬さHv=505のα1相とな
つた また、上記50μmの厚さのγ相の板材の表面
を、3W連続発振YAGレーザーアニール装置で1
mm直径のレーザービームを1(mm/sec.)の速度
で走行させてAr雰囲気中で焼鈍した。加熱部の
顕微鏡観察を行なつたところ、板厚方向の全長に
渡つて約1.1mmの巾でγ相とは異なる相に変態し
ていることを確認し、該相変態部を切り出し、磁
化量を測定したところ、σs=110(emu/gm)の
α相であつた。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 550° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. the result,
Magnetization amount σs = 120 (emu/gm), mechanical strength σ 0.2 = 85
(Kg/gm 2 ), with a Bitkers hardness of Hv=505.Also, the surface of the 50μm thick γ-phase plate material was treated with a 3W continuous wave YAG laser annealing device.
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of mm at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and the phase-transformed part was cut out and the magnetization amount was determined. When measured, it was found to be an α phase with σs=110 (emu/gm).

実施例 2 重量%で(Fe96Mn2C2.097.5Hf2.5の組成を有で
る合金インゴツトを、1100℃の温度で1時間、
Ar雰囲気中で均一化処理後、10%NaOH水溶液
中に浸して急冷した。この合金インゴツトから小
片を切り出し、磁化量を測定すると、σs=0.03
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で99%の冷
間圧延加工を施したところ、磁化量σs=0.3
(emu/gm)となつた。また機械的強度σ0.2=130
Kg/mm2、ビツカース硬さHv=639であつた。
Example 2 An alloy ingot having a composition of (Fe 96 Mn 2 C 2.0 ) 97.5 H f2.5 in weight % was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NaOH aqueous solution and rapidly cooled. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, σs = 0.03
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 99%, and the magnetization amount σs = 0.3
It became (emu/gm). Also, mechanical strength σ 0.2 = 130
Kg/mm 2 and Bitkers hardness Hv=639.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を600℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果、
磁化量σs=135(emu/gm)、機械的強度σ0.2=82
(Kg/mm2)、ビツカース硬度Hv=495となつた。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 600° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. the result,
Magnetization amount σs = 135 (emu/gm), mechanical strength σ 0.2 = 82
(Kg/mm 2 ), and the Bitkers hardness was Hv=495.

また、上記50μmの厚さのγ相の板材の表面を
3.5W連続発振YAGレーザーアニール装置で、1
mm直径のレーザービームを1.5(mm/sec)の速度
で走行させて、Ar雰囲気中で焼鈍した。加熱部
の顕微鏡観察を行なつたところ、板厚方向の全長
に渡つて、約1.1mmの巾で、γ相とは異なる相に
変態していることを確認し、この相変態部を切り
出し、磁化量を測定したところ、σs=124(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 3.5W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of mm at a speed of 1.5 (mm/sec). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out. When we measured the amount of magnetization, σs = 124 (emu/
gm).

実施例 3 重量%で(Fe79.6Mn20C0.499.9Hf0.1の化学成分
を有する合金インゴツトを、1100℃の温度で1時
間、Ar雰囲気中で均一化処理後、10%NaOH水
溶液中に浸して急冷した。この合金インゴツトか
ら小片を切り出し、磁化量を測定するとσs=0.03
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で99%の冷
間圧延加工を施したところ、磁化量σs=0.2
(emu/gm)となつた。また機械的強度σ0.2=119
(Kg/mm2)、ビツカース硬さHv=593であつた。
Example 3 An alloy ingot having a chemical composition of (Fe 79.6 Mn 20 C 0.4 ) 99.9 H f0.1 in weight% was homogenized in an Ar atmosphere at a temperature of 1100°C for 1 hour, and then placed in a 10% NaOH aqueous solution. It was soaked in water and quenched. Cutting out a small piece from this alloy ingot and measuring the amount of magnetization, σs = 0.03
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 99%, and the magnetization amount σs = 0.2
It became (emu/gm). Also, mechanical strength σ 0.2 = 119
(Kg/mm 2 ), and the Bitkers hardness Hv was 593.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を500℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果、
磁化量σs=109(emu/gm)、機械的強度σ0.2=76
(Kg/mm2)、ビツカース硬さHv=486のα相となつ
た。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 500° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. the result,
Magnetization amount σs = 109 (emu/gm), mechanical strength σ 0.2 = 76
(Kg/mm 2 ), and became an α phase with a Bitkers hardness of Hv=486.

また、上記50μmの厚さのγ相の板材の表面を
2.5W連続発振YAGレーザーアニール装置で、1
mm直径のレーザービームを1(mm/sec)の速度で
走行させて、Ar雰囲気中で焼鈍した。加熱部の
顕微鏡観察を行なつたところ、板厚方向の全長に
渡つて、約1.1mmの巾で、γ相とは異なる相に変
態していることを確認し、この相変態部を切り出
し、磁化量を測定したところ、σs=98(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 2.5W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of mm at a speed of 1 (mm/sec). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out. When we measured the amount of magnetization, σs = 98 (emu/
gm).

実施例 4 実施例1で用いた合金インゴツトを1100℃の温
度で1時間、Ar雰囲気中で均一化処理後、10%
NaOH水溶液中に浸して急冷した。この合金イ
ンゴツトから小片を切り出し、磁化量を測定する
と、σs=0.02(emu/gm)のγ相であつた。この
合金インゴツトの表面酸化膜を除去した後、減面
率で99%の冷間圧延加工を施し、50μm厚さの板
材とした。この板材を950℃の温度で5秒間、Ar
雰囲気中で熱処理し、Ar雰囲気中で急冷した。
その結果、磁化量σs=0.02(emu/gm)、機械的
速度σ0.2=55(Kg/mm2)、ビツカース硬度Hv=273
であつた。
Example 4 The alloy ingot used in Example 1 was homogenized at a temperature of 1100°C for 1 hour in an Ar atmosphere, and then 10%
It was quenched by immersing it in a NaOH aqueous solution. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σs = 0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was cold-rolled with an area reduction of 99% to form a plate material with a thickness of 50 μm. This plate was heated with Ar at a temperature of 950℃ for 5 seconds.
It was heat treated in an atmosphere and rapidly cooled in an Ar atmosphere.
As a result, magnetization amount σs = 0.02 (emu/gm), mechanical speed σ 0.2 = 55 (Kg/mm 2 ), and Bitkers hardness Hv = 273
It was hot.

上記熱処理された50μmの厚さのγ相の板材を
550℃の温度で5秒間、Ar雰囲気中で焼鈍し、
Ar雰囲気中で急冷した。その結果、磁化量σs=
110(emu/gm)、機械的強度σ0.2=70(Kg/mm2)、
ビツカース硬さHv=404のα相となつた。
The above heat-treated 50 μm thick γ-phase plate material
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds,
It was quenched in an Ar atmosphere. As a result, the amount of magnetization σs=
110 (emu/gm), mechanical strength σ 0.2 = 70 (Kg/mm 2 ),
It became an α phase with a Bitkers hardness of Hv=404.

また、上記50μmの厚さのγ相の板材の表面
を、3W連続発振YAGレーザーアニール装置で、
1mm直径のレーザービームを1(mm/sec.)の速
度で走行させてAr雰囲気中で焼鈍した。加熱部
の顕微鏡観察を行なつたところ、板厚方向の全長
に渡つて、約1mmの巾でγ相とは異なる相に変態
していることを確認し、この相変態部を切り出
し、磁化量を測定したところ、σs=100(emu/
gm)のα相であつた。
In addition, the surface of the above 50 μm thick γ-phase plate material was coated with a 3W continuous wave YAG laser annealing device.
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of 1 mm at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that the entire length in the thickness direction was transformed into a phase different from the γ phase in a width of about 1 mm.This phase transformed part was cut out and the amount of magnetization was determined. When we measured σs=100(emu/
gm).

実施例 5 実施例1で用いた組成の合金インゴツトを1100
℃の温度で1時間、Ar雰囲気中で均一化処理し
た後、10%NaOH水溶液中に浸して急冷した。
この合金インゴツトから小片を切り出し、磁化量
を測定すると、σs=0.02(emu/gm)のγ相であ
つた。この合金インゴツトの表面酸化膜を除去し
た後、減面率で75%の冷間圧延加工を施し、再
び、950℃の温度で30分間、Ar雰囲気中で均一化
処理した後、上記溶液中に浸して急冷した。その
結果、磁化量は上記と同様に、σs=0.02(emu/
gm)であつた。引き続き、再び減面率で50%の
冷間圧延加工を施し、30μm厚さの板材とした。
その結果、磁化量σs=0.055(emu/gm)、機械的
強度σ0.2=122(Kg/mm2)、ビツカース硬さHv=670
であつた。
Example 5 An alloy ingot having the composition used in Example 1 was
After homogenization treatment at a temperature of 1 hour in an Ar atmosphere at a temperature of °C, it was quenched by immersing it in a 10% NaOH aqueous solution.
When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σs = 0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was subjected to cold rolling with an area reduction rate of 75%, and after being homogenized again at a temperature of 950°C for 30 minutes in an Ar atmosphere, it was placed in the above solution. Soaked and cooled quickly. As a result, the magnetization amount is σs=0.02(emu/
gm). Subsequently, cold rolling was performed again with an area reduction rate of 50% to obtain a plate material with a thickness of 30 μm.
As a result, magnetization σs = 0.055 (emu/gm), mechanical strength σ 0.2 = 122 (Kg/mm 2 ), and Vickers hardness Hv = 670.
It was hot.

上記冷間圧延加工された30μm厚さの板材を
550℃の温度で5秒間、Ar雰囲気中で焼鈍し、
Ar雰囲気で急冷した。その結果、磁化量σs=118
(emu/gm)、機械的強度σ0.2=82(Kg/mm2)、ビツ
カース硬さHv=497のα相となつた。
The above cold-rolled plate material with a thickness of 30 μm is
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds,
It was rapidly cooled in an Ar atmosphere. As a result, the amount of magnetization σs = 118
(emu/gm), mechanical strength σ 0.2 = 82 (Kg/mm 2 ), and Vickers hardness Hv = 497.

また、上記30μmの厚さのγ相の板材の表面
を、3W連続発振YAGレーザーアニール装置で、
1mm直径のレーザービームを1(mm/sec.)の速
度で走行させて、Ar雰囲気中で焼鈍した。加熱
部の顕微鏡観察を行なつたところ、板厚方向の全
長に渡つて、約1.1mmの巾で、γ相とは異なる相
に変態していることを確認し、該変態部を切り出
し、磁化量を測定したところ、σs=109(emu/
gm)のα相であつた。
In addition, the surface of the 30 μm thick γ-phase plate material was coated with a 3W continuous wave YAG laser annealing device.
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of 1 mm at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and the transformed part was cut out and magnetized. When the amount was measured, σs = 109 (emu/
gm).

(Fe87.8Mn10C2.298.3Hf1.7のCが2%越えて添
加された合金を1100℃の温度で1時間Ar雰囲気
中で均一処理した後、10%NaOH水溶液中に浸
して急冷した。この合金をX線測定した結果、γ
相の回折線と他の回折線が測定された。この合金
を冷間圧延すると割れが生じ、薄板への圧延は不
可能であつた。
(Fe 87.8 Mn 10 C 2.2 ) 98.3 Hf 1.7 to which more than 2% of C was added was uniformly treated in an Ar atmosphere at a temperature of 1100° C. for 1 hour, and then quenched by immersing it in a 10% NaOH aqueous solution. As a result of X-ray measurement of this alloy, γ
The phase diffraction lines and other diffraction lines were measured. When this alloy was cold rolled, cracks appeared and rolling into thin sheets was impossible.

以上、実施例にもとずいて述べたが、直線状の
磁性パターンのみならず、加熱ビームを所望の任
意の方向に移動させれば、任意の複雑な磁性パタ
ーンを描くことが可能である。また50μm厚さの
板材の加熱する面と反対の面を冷却し、実施例1
と同様にレーザービームで焼鈍すると、厚さ方向
の全長に渡つて相変態が起らず、切断面を顕微鏡
観察すると、γ相とは異なる相(α相)に変態し
ている部分の深さは、約20μmであつた。
Although the above has been described based on the embodiments, it is possible to draw not only a linear magnetic pattern but also any complex magnetic pattern by moving the heating beam in any desired direction. In addition, the surface of the plate material having a thickness of 50 μm opposite to the surface to be heated was cooled.
Similarly, when annealing with a laser beam, no phase transformation occurs over the entire length in the thickness direction, and when the cut surface is observed under a microscope, the depth of the part transformed to a phase different from the γ phase (α phase) can be seen. was approximately 20 μm.

このようにHfを含有するFe−Mn−C系合金
は、その熱処理の容易さから、複合磁性材料用合
金としての工業的有用性は高いといわねばならな
い。
It must be said that Fe--Mn--C alloys containing Hf have high industrial utility as alloys for composite magnetic materials because of their ease of heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 Mn:2〜20重量%、C:0.4〜2重量%、残
部Feからなる組成にHfを0.1〜2.5重量含有せしめ
たことを特徴とする複合磁性材料用合金。
1. An alloy for composite magnetic material, characterized in that it contains 0.1 to 2.5 weight % of H f in a composition consisting of 2 to 20 weight % Mn, 0.4 to 2 weight % C, and the balance Fe.
JP56088669A 1981-06-09 1981-06-09 Alloy for composite magnetic material Granted JPS57203748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56088669A JPS57203748A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088669A JPS57203748A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Publications (2)

Publication Number Publication Date
JPS57203748A JPS57203748A (en) 1982-12-14
JPH0236663B2 true JPH0236663B2 (en) 1990-08-20

Family

ID=13949219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088669A Granted JPS57203748A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Country Status (1)

Country Link
JP (1) JPS57203748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534361A (en) * 2010-12-14 2012-07-04 Tecnalia研究与创新基金 Hadfield steel and method for obtaining the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3684979D1 (en) * 1985-04-03 1992-05-27 Kuraray Co TOOTH RESTORATION MATERIAL.
DE10221800B4 (en) * 2002-05-15 2005-04-07 Federal-Mogul Burscheid Gmbh Method of producing wear layers on jet piston rings

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534361A (en) * 2010-12-14 2012-07-04 Tecnalia研究与创新基金 Hadfield steel and method for obtaining the same

Also Published As

Publication number Publication date
JPS57203748A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH0236663B2 (en)
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0713266B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0236667B2 (en)
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPH0236665B2 (en)
JPH0236668B2 (en)
JPH0245697B2 (en)
JPH0236666B2 (en)
JPH03130322A (en) Production of fe-co-type soft-magnetic material
JPH0236664B2 (en)
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JP3271791B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JP3271790B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JPS6196036A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JPS5884924A (en) Production of electrical steel plate utilizing warm rolling
JPS61117220A (en) Production of low-iron loss electrical steel sheet
JPS63171848A (en) Grain-oriented silicon steel sheet reduced in iron loss
JPS61117216A (en) Manufacture of grain oriented magnetic steel plate of ultralow iron loss
JPS5818905A (en) Method of nitriding part of magnetic circuit formed of armco iron
JPS61130421A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS6128741B2 (en)