JPH0245697B2 - - Google Patents

Info

Publication number
JPH0245697B2
JPH0245697B2 JP56088668A JP8866881A JPH0245697B2 JP H0245697 B2 JPH0245697 B2 JP H0245697B2 JP 56088668 A JP56088668 A JP 56088668A JP 8866881 A JP8866881 A JP 8866881A JP H0245697 B2 JPH0245697 B2 JP H0245697B2
Authority
JP
Japan
Prior art keywords
phase
atmosphere
alloy
emu
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56088668A
Other languages
Japanese (ja)
Other versions
JPS57203751A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56088668A priority Critical patent/JPS57203751A/en
Publication of JPS57203751A publication Critical patent/JPS57203751A/en
Publication of JPH0245697B2 publication Critical patent/JPH0245697B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、HADFIELD'S AUSTENITIC
STEELの呼称で知られるFe−Mn−C合金の改
良に関する。HADFIELD'S AUSTENITIC
STEELは適切な量のMnおよびCと残部は鉄か
ら成る組成の合金で、非磁性材のオーステナイト
相(以下、γ相という)を室温に導入すること
が、容易に可能であり、加工によるマルテンサイ
ト変態(γ相→マルテンサイト相(以下、α相と
いう)が、ほとんど起らない材料である。また、
上記該合金はγ相状態を冷間加工すると、著しく
加工硬化して機械的強度が増大する。しかしなが
ら、熱処理によりγ相母体に強磁性相であるα相
を形成しようとした場合、γ相は低温で安定であ
るため、熱処理を施しても容易にγ→α変態が起
らず、γ→α変態が完全に終了するためには長時
間の熱処理を必要とする。長時間熱処理を必要と
する要因はMnとCが適量添加されていることに
あり、特にCの効果が大きい。この合金はα相と
γ相の中間にα+γ+Fe3Cあるいは、γ+Fe3C
の混合相を形成し、しかもFe3Cは強く結合して
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on HADFIELD'S AUSTENITIC
This invention relates to improvements in the Fe-Mn-C alloy known under the name STEEL. HADFIELD'S AUSTENITIC
STEEL is an alloy with a composition consisting of appropriate amounts of Mn and C with the balance being iron, and it is possible to easily introduce the austenite phase (hereinafter referred to as γ phase) of a non-magnetic material at room temperature, and it is possible to easily introduce martenite phase (hereinafter referred to as γ phase) at room temperature. It is a material in which site transformation (γ phase → martensitic phase (hereinafter referred to as α phase) hardly occurs. Also,
When the above-mentioned alloy is subjected to cold working in the γ phase state, it is significantly work hardened and its mechanical strength increases. However, when an attempt is made to form an α phase, which is a ferromagnetic phase, in a γ phase matrix by heat treatment, the γ phase is stable at low temperatures, so the γ→α transformation does not occur easily even after heat treatment, and the γ→ A long heat treatment is required to complete the α transformation. The reason why the long heat treatment is required is that appropriate amounts of Mn and C are added, and the effect of C is particularly large. This alloy has α+γ+Fe 3 C or γ+Fe 3 C between the α and γ phases.
A mixed phase of Fe 3 C is formed, and Fe 3 C is strongly bound.

以上のように、この合金はγ相を容易に室温に
導入できるという利点とともに磁性材料への応用
を考えた場合、γ→α変態に長時間の熱処理を必
要とするという欠点を持つている。
As described above, this alloy has the advantage that the γ phase can be easily introduced at room temperature, but when considering its application to magnetic materials, it has the disadvantage of requiring a long heat treatment for the γ→α transformation.

本発明は、室温に導入された上記合金のγ相を
短時間の熱処理を施すことにより容易にα相へ変
態させるために、上記従来合金にZrを添加した
ことを特徴とする複合磁性材料用合金に関するも
のであり、上記合金の利点を活かし、上記欠点を
解決して工業的に有効で、応用分野が広く、かつ
生産性の点でも優れた複合磁性材料用合金を提供
するものである。
The present invention provides a composite magnetic material characterized in that Zr is added to the above-mentioned conventional alloy in order to easily transform the γ-phase of the above-mentioned alloy introduced into room temperature into the α-phase by subjecting it to short-time heat treatment. The present invention relates to alloys, and aims to provide an alloy for composite magnetic materials that is industrially effective, has a wide range of applications, and is excellent in terms of productivity by taking advantage of the advantages of the above-mentioned alloys and solving the above-mentioned drawbacks.

本発明の複合磁性材料用合金によれば、レーザ
ービームあるいは電子ビームあるいは赤外線ビー
ム等を用いて材料を焼純することによつて非磁性
材料の表面に任意の深さで、かつ任意のパターン
の磁性相を形成させることが可能となつた。
According to the alloy for composite magnetic materials of the present invention, by annealing the material using a laser beam, an electron beam, an infrared beam, etc., the surface of the non-magnetic material can be formed at an arbitrary depth and in an arbitrary pattern. It became possible to form a magnetic phase.

また、非磁性材料と磁性材料の二体を接着剤あ
るいは機械的方法あるいは熱圧着等で接合させて
一体化した複合磁性材料と比較して、本発明の方
法で製造した複合磁性材料は機械的信頼性の点で
も優れていることがわかつた。
Furthermore, compared to a composite magnetic material that is made by joining a non-magnetic material and a magnetic material together using an adhesive, mechanical method, thermocompression bonding, etc., the composite magnetic material manufactured by the method of the present invention has a mechanical It was also found to be superior in terms of reliability.

以下に本発明における複合磁性材料用合金の化
学成分範囲の限定理由について述べる。
The reason for limiting the range of chemical components of the alloy for composite magnetic material in the present invention will be described below.

Feは本発明における複合磁性材料用合金の主
成分である。Feのγ相は不安定であり、冷却過
程で、どんなに速く急冷してもα相に変態する。
Fe is the main component of the alloy for composite magnetic material in the present invention. The γ phase of Fe is unstable and transforms into the α phase during the cooling process, no matter how quickly it is cooled.

Feのγ相は約2重量%までCを固溶してγ−
域を形成し、安定になるが、高温から急冷してγ
相を室温に導入するためには、2重量%以上の
Mnを添加しなければならなかつた。一方、実用
的に充分な磁化量を有する合金を得るためには、
Mnは20重量%を越えて添加してはならず、最大
20重量%のMnを添加した場合には、0.4重量%以
上のCを添加すれば、容易にγ相を室温に導入す
ることができた。Cを2重量%越えて添加すると
添加したCが全て固溶せず、γ相の母相内に
Mn、ZrあるいはFeとCの結合した化合物が混在
し、室温にγ相を単相を得ることができない。し
たがつて、Cを2重量%越えて添加した本発明の
複合磁性材料用合金は室温で圧延、伸線あるいは
スエージ等の冷間加工が困難である。
The γ phase of Fe contains up to about 2% by weight of C as a solid solution and γ-
However, when rapidly cooled from high temperature, γ
In order to bring the phase to room temperature, more than 2% by weight of
Mn had to be added. On the other hand, in order to obtain an alloy with a practically sufficient amount of magnetization,
Mn must not be added in excess of 20% by weight, and the maximum
When 20% by weight of Mn was added, the γ phase could be easily introduced at room temperature by adding 0.4% by weight or more of C. If more than 2% by weight of C is added, all the added C will not be solidly dissolved and will be incorporated into the matrix of the γ phase.
A compound in which Mn, Zr, or Fe and C are bonded coexists, making it impossible to obtain a single γ phase at room temperature. Therefore, the alloy for composite magnetic materials of the present invention containing more than 2% by weight of C is difficult to cold-work such as rolling, wire drawing or swaging at room temperature.

上記の組成範囲の合金は急冷することでγ相を
室温に導入することができるが、γ→α変態を容
易にするためにZrを0.1〜2.0重量%添加した。0.1
重量%を下まわる添加量ではZr添加の効果が発
揮されず、2.0重量%を越えて添加すると全温度
領域でα相となつた。
The γ phase can be introduced to room temperature by rapidly cooling the alloy in the above composition range, but 0.1 to 2.0% by weight of Zr was added to facilitate the γ→α transformation. 0.1
If the amount added is less than 2.0% by weight, the effect of Zr addition is not exhibited, and if it is added in excess of 2.0% by weight, it becomes an α phase in the entire temperature range.

次に本発明の詳細を実施例に列挙して説明す
る。
Next, the details of the present invention will be described by listing them in Examples.

実施例 1 重量%で(Fe85.8Mn13C1.299.4Zr0.6の組成を有
する合金インゴツトを1100℃の温度で1時間、
Ar雰囲気中で均一化処理した後、10%NaOH水
溶液中で浸して急冷した。この合金インゴツトか
ら小片を切り出し、磁化量を測定すると、σs=
0.02(emu/gm)のγ相であつた。この合金イン
ゴツトは表面酸化膜を除去した後、減面率で50%
の冷間圧延加工を施したところ、磁化量はσs=
0.05(emu/gm)となつた。さらに、この合金イ
ンゴツトの初期の形状から減面率で99%の冷間圧
延加工を更に施したところ、磁化量はσs=0.1
(emu/gm)となつた。また、機械的強度σa2
14BKg/mm2ビツカーズ硬さHv=743であつた。
Example 1 An alloy ingot having the composition (Fe 85.8 Mn 13 C 1.2 ) 99.4 Zr 0.6 in weight % was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NaOH aqueous solution and rapidly cooled. When a small piece is cut out from this alloy ingot and the amount of magnetization is measured, σs=
It was a γ phase of 0.02 (emu/gm). After removing the surface oxide film, this alloy ingot has an area reduction rate of 50%.
When subjected to cold rolling processing, the amount of magnetization is σs=
It became 0.05 (emu/gm). Furthermore, when this alloy ingot was further cold-rolled with an area reduction rate of 99% from its initial shape, the amount of magnetization was reduced to σs = 0.1.
It became (emu/gm). Also, mechanical strength σa 2 =
14BKg/mm 2 Bits hardness Hv = 743.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を550℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果、
磁化量σs=131(emu/gm)、。機械的強度σa2=92
(Kg/gm2)ビツカース硬さHv=518のα相とな
つた。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 550° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. the result,
Magnetization amount σs = 131 (emu/gm). Mechanical strength σa 2 = 92
(Kg/gm 2 ) It became an α phase with a Bitkers hardness of Hv=518.

また、上記50μmの厚さのγ相の板材の表面を
3W連続発振YAGレーザーアニール装置で、1mm
直径のレーザービームを1(mm/ses)の速度で走
行させてAr雰囲気中で焼純した。加熱部の顕微
鏡観察を行なつたところ、板厚方向の全長に渡つ
て約1.1mmの巾でγ相とは異なる相に変態してい
ることを確認し、該相変態部を切り出し、磁化量
を測定したところ、σs=121(emu/gm)のα相
であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1mm with 3W continuous wave YAG laser annealing equipment
A laser beam with a diameter of 1 mm/ses was run at a speed of 1 (mm/ses) to perform annealing and purification in an Ar atmosphere. When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and the phase-transformed part was cut out and the magnetization amount was determined. When measured, it was found to be an α phase with σs=121 (emu/gm).

実施例 2 重量%で(Fe96Mn2C2.098HZr2.0の組成を有す
る合金インゴツトを、1100℃の温度で1時間、
Ar雰囲気中で均一化処理後10%NaOH水溶液中
に浸して急冷した。この合金インゴツトから小片
を切り出し、磁化量を測定するとσs=0.03
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で99%の冷
間圧延加工を施したところ、磁化量σs=0.3
(emu/gm)となつた。また、機械的強度σ0.2
137Kg/mm2、ビツカース硬さHv=653であつた。
Example 2 An alloy ingot having the composition (Fe 96 Mn 2 C 2.0 ) 98 HZr 2.0 in weight % was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NaOH aqueous solution and rapidly cooled. Cutting out a small piece from this alloy ingot and measuring the amount of magnetization, σs = 0.03
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 99%, and the magnetization amount σs = 0.3
It became (emu/gm). Also, mechanical strength σ 0.2 =
The hardness was 137Kg/mm 2 and the Bitkers hardness Hv was 653.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を600℃の温度で5秒間、Ar雰囲気中
で急冷した。その結果、磁化量σs=147(emu/
gm)機械的強度σ0.2=85(Kg/mm2)、ビツカース硬
度Hv=50となつた。
A 50 μm thick γ-phase plate material cold-rolled as described above was rapidly cooled at 600° C. for 5 seconds in an Ar atmosphere. As a result, the amount of magnetization σs = 147 (emu/
gm) Mechanical strength σ 0.2 = 85 (Kg/mm 2 ) and Vickers hardness Hv = 50.

また、上記50μmの厚さのγ相の板材の表面を
3.5W連続発振YAGレーザーアニール装置で、1
mm直径のレーザービームを1.5(mm/ses)の速度
で走行させてAr雰囲気中で焼純した。加熱部の
顕微鏡観察を行なつたところ、板厚方向の全長に
渡つて約1.1mmの巾で、γ相とは異なる相に変態
していることを確認し、この相変態部を切り出
し、磁化量を測定したところ、σs=136(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 3.5W continuous wave YAG laser annealing equipment
A laser beam with a diameter of mm was run at a speed of 1.5 (mm/ses) to perform annealing and purification in an Ar atmosphere. When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out and magnetized. When the amount was measured, σs = 136 (emu/
gm).

実施例 3 重量%で(Fe79.6Mn20C0.499.9Zr0.1の化学成分
を有する合金インゴツトを、1100℃の温度で1時
間、Ar雰囲気中で均一化処理後、10%NaOH水
溶液中に浸して急冷した。この合金インゴツトか
ら小片を切り出し、磁化量を測定するとσs=0.03
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で99%の冷
間圧延加工を施したところ、磁化量σs=0.2
(emu/gm)となつた。また、機械的強度σ0.2
123(Kg/mm2)、ビツカース硬さHv=587であつた。
Example 3 An alloy ingot having a chemical composition of (Fe 79.6 Mn 20 C 0.4 ) 99.9 Zr 0.1 in weight% was homogenized in an Ar atmosphere at a temperature of 1100°C for 1 hour, and then immersed in a 10% NaOH aqueous solution. and cooled quickly. Cutting out a small piece from this alloy ingot and measuring the amount of magnetization, σs = 0.03
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 99%, and the magnetization amount σs = 0.2
It became (emu/gm). Also, mechanical strength σ 0.2 =
123 (Kg/mm 2 ), and Bitkers hardness Hv=587.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を500℃の温度で5秒間、Ar雰囲気中
で焼純し、Ar雰囲気中で急冷した。
A 50 μm thick γ-phase plate material cold-rolled as described above was sintered in an Ar atmosphere at a temperature of 500° C. for 5 seconds, and rapidly cooled in an Ar atmosphere.

その結果、磁化量σs=115(emu/gm)、機械的
強度σ0.2=79(Kg/mm2)、ビツカース硬さHv=491
のα相となつた。
As a result, magnetization amount σs = 115 (emu/gm), mechanical strength σ 0.2 = 79 (Kg/mm 2 ), and Vickers hardness Hv = 491
It became the α phase of

また、上記50μmの厚さのγ相の板材の表面を
2.5W連続発振YAGレーザーアニール装置で、1
mm直径レーザービームを1(mm/sec)の速度で走
行させて、Ar雰囲気中で焼鈍した。加熱部の顕
微鏡観察を行なつたところ、板厚方向の全長に渡
つて、約1.1mmの巾で、γ相とは異なる相に変態
していることを確認し、この相変態部を切り出
し、磁化量を測定したところ、σs=105(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 2.5W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a mm diameter laser beam at a speed of 1 (mm/sec). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out. When we measured the amount of magnetization, σs = 105 (emu/
gm).

実施例 4 実施例1で用いた合金インゴツトを1100℃の温
度で1時間、Ar雰囲気中で均一化処理後、10%
NaOH水溶液中に浸して急冷した。この合金イ
ンゴツトから小片を切り出し、磁化量を測定する
とσs=0.02(emu/gm)のγ相であつた。この合
金インゴツトの表面酸化膜を除去した後、減面率
で99%の冷間圧延加工を施し、50μm厚さの板材
とした。この板材を950℃の温度で5秒間、Ar雰
囲気中で熱処理し、Ar雰囲気中で急冷した。そ
の結果、磁化量σs=0.02(emu/gm)、機械的強
度σ0.2=55(Kg/mm2)、ビツカース硬度Hv=275で
あつた。
Example 4 The alloy ingot used in Example 1 was homogenized at a temperature of 1100°C for 1 hour in an Ar atmosphere, and then 10%
It was quenched by immersing it in a NaOH aqueous solution. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σs = 0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was cold-rolled with an area reduction of 99% to form a plate material with a thickness of 50 μm. This plate material was heat-treated at a temperature of 950° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. As a result, the magnetization amount σs = 0.02 (emu/gm), the mechanical strength σ 0.2 = 55 (Kg/mm 2 ), and the Vickers hardness Hv = 275.

上記熱処理された50μmの厚さのγ相の板材を
550℃の温度で、5秒間、Ar雰囲気中で焼鈍し
Ar雰囲気中で急冷した。その結果、磁化量σs=
117(emu/gm)、機械的強度σ0.2=71(Kg/mm2)、
ビツカース硬さHv=411のα相となつた。
The above heat-treated 50 μm thick γ-phase plate material
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds.
It was quenched in an Ar atmosphere. As a result, the amount of magnetization σs=
117 (emu/gm), mechanical strength σ 0.2 = 71 (Kg/mm 2 ),
It became an α phase with a Bitkers hardness of Hv=411.

また、上記50μmの厚さのγ相の板材の表面を
3W連続発振YAGレーザーアニール装置で、1mm
直径のレーザービームを1(mm/ses)の速度で走
行させてAr雰囲気中で焼鈍した。加熱部の顕微
鏡観察を行なつたところ、板厚方向の全長に渡つ
て約1mmの巾でγ相とは異なる相に変態している
ことを確認し、この相変態部を切り出し、磁化量
を測定したとこころ、σs=109(emu/gm)のα
相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1mm with 3W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of 1 (mm/ses) at a speed of 1 (mm/ses). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out and the amount of magnetization was determined. When measured, α of σs = 109 (emu/gm)
It was a phase.

実施例 5 実施例で用いた組成の合金インゴツトを1100℃
の温度で1時間、Ar雰囲気中で均一化処理した
後10%NaOH水溶液中に浸して急冷した。この
合金インゴツトから小片を切り出し、磁化量を測
定すると、σs=0.02(emu/gm)のγ相であつ
た。この合金インゴツトの表面酸化膜を除去した
後、減面率で75%の冷間圧延加工を施し、再び、
950℃の温度で30分間、Ar雰囲気中で均一化処理
した後、上記溶液中に浸して急冷した。その結
果、磁化量は上記と同様にσs=0.02(emu/gm)
であつた。引き続き、再び減面率で50%の冷間圧
延加工を施し、30μm厚さの板材とした。
Example 5 An alloy ingot having the composition used in the example was heated to 1100°C.
After homogenization treatment in an Ar atmosphere at a temperature of 1 hour, the sample was quenched by immersion in a 10% NaOH aqueous solution. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σs = 0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 75%, and then
After homogenization treatment at a temperature of 950° C. for 30 minutes in an Ar atmosphere, it was immersed in the above solution and rapidly cooled. As a result, the magnetization amount is σs = 0.02 (emu/gm) as above
It was hot. Subsequently, cold rolling was performed again with an area reduction rate of 50% to obtain a plate material with a thickness of 30 μm.

その結果、磁化量σs=0.05(emu/gm)、機械
的強度σ0.2=128(Kg/mm2)、ビツカース硬さHv=
675であつた。
As a result, magnetization amount σs = 0.05 (emu/gm), mechanical strength σ 0.2 = 128 (Kg/mm 2 ), and Vickers hardness Hv =
It was 675.

上記冷間圧延加工された30μm厚さの板材を
550℃の温度で5秒間、Ar雰囲気中で焼鈍し、
Ar雰囲気中で急冷した。その結果、磁化量σs=
128(emu/gm)機械的強度σ0.2=89(Kg/mm2)、ビ
ツカース硬さHv=513のα相となつた。
The above cold-rolled plate material with a thickness of 30 μm is
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds,
It was quenched in an Ar atmosphere. As a result, the amount of magnetization σs=
It became an α phase with a mechanical strength of 128 (emu/gm), σ 0.2 = 89 (Kg/mm 2 ), and a Vickers hardness, Hv = 513.

また、上記30μmの厚さのγ相の板材の表面を
3W連続発振YAGレーザーアニール装置で、1mm
直径のレーザービームを1(mm/sec.)の速度で
走行させて、Ar雰囲気中で焼鈍した。加熱部の
顕微鏡観察を行なつたところ、板厚方向の全長に
渡つて約1.1mmの巾で、γ相とは異なる相に変換
していることを確認し、該変態部を切り出し、磁
化量を測定したところ、σs=119(emu/gm)の
α相であつた。
In addition, the surface of the γ phase plate material with a thickness of 30 μm was
1mm with 3W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of 1 (mm/sec.) at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it was transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and the transformed part was cut out and the magnetization amount was determined. When measured, it was found to be an α phase with σs=119 (emu/gm).

(Fe87.8Mn10C2.299.4Zr0.6のCが2%を越えて
添加された合金を1100℃の温度で1時間Ar雰囲
気中で均一処理した後、10%NaOH水溶液中に
浸して急冷した。この合金をX線測定した結果、
γ相の回折線と他の回折線が測定された。この合
金を冷間圧延すると割れが生じ、薄板への圧延は
不可能であつた。
(Fe 87.8 Mn 10 C 2.2 ) 99.4 Zr 0.6 alloy with more than 2% C added was uniformly treated in an Ar atmosphere at a temperature of 1100°C for 1 hour, and then quenched by immersing it in a 10% NaOH aqueous solution. . As a result of X-ray measurement of this alloy,
The diffraction lines of the γ phase and other diffraction lines were measured. When this alloy was cold rolled, cracks appeared and rolling into thin sheets was impossible.

以上、実施例にもとずいて述べたが、直線状の
磁性パターンのみならず、加熱ビームを所望の任
意の方向に移動させれば、任意の複雑な磁性パタ
ーンを描くことが可能である。また、50μm厚さ
の板材の加熱する面と反対の面を冷却し、実施例
1と同様にレーザービームで焼鈍すると、厚さ方
向の全長に渡つて相変態が起らず、切断面を顕微
鏡観察すると、γ相とは異なる相(α相)に変態
している部分の深さは、約20μmであつた。
Although the above has been described based on the embodiments, it is possible to draw not only a linear magnetic pattern but also any complex magnetic pattern by moving the heating beam in any desired direction. In addition, when the opposite side of a 50 μm thick plate material was cooled and annealed with a laser beam in the same manner as in Example 1, no phase transformation occurred over the entire length in the thickness direction, and the cut surface was observed under a microscope. When observed, the depth of the portion transformed into a phase different from the γ phase (α phase) was approximately 20 μm.

このようにZrを含有するFe−Mn−C系合金
は、その熱処理の容易さから、複合磁性材料用合
金としての工業的有用性は高いといわねばならな
い。
It must be said that Fe--Mn--C alloys containing Zr have high industrial utility as alloys for composite magnetic materials because of their ease of heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 Mn:2〜20重量%、C:0.4〜2重量%、残
部Feからなる組成にZrを0.1〜2重量含有せしめ
たことを特徴とする複合磁性材料用合金。
1. An alloy for a composite magnetic material, characterized in that it contains 0.1 to 2 weight % of Zr in a composition consisting of 2 to 20 weight % Mn, 0.4 to 2 weight % C, and the balance Fe.
JP56088668A 1981-06-09 1981-06-09 Alloy for composite magnetic material Granted JPS57203751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56088668A JPS57203751A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088668A JPS57203751A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Publications (2)

Publication Number Publication Date
JPS57203751A JPS57203751A (en) 1982-12-14
JPH0245697B2 true JPH0245697B2 (en) 1990-10-11

Family

ID=13949193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088668A Granted JPS57203751A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Country Status (1)

Country Link
JP (1) JPS57203751A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61248401A (en) * 1985-04-25 1986-11-05 Mitsubishi Steel Mfg Co Ltd Heat treatment of magnetic material

Also Published As

Publication number Publication date
JPS57203751A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
US4536229A (en) Fe-Ni-Mo magnet alloys and devices
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
Sherman et al. Influence of martensite carbon content on the cyclic properties of dual-phase steel
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0236663B2 (en)
JPH0245697B2 (en)
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0236665B2 (en)
JPH0236668B2 (en)
JPH0236667B2 (en)
JPH0236664B2 (en)
JPH0236666B2 (en)
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JP3271791B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JP3220828B2 (en) Heat treatment method for Fe-Al soft magnetic material
JP3271790B2 (en) Manufacturing method of non-magnetic stainless steel thick plate
JP2776593B2 (en) Grain refinement method for titanium-aluminum intermetallic compound
JP2526225B2 (en) Shape memory Fe-Pd alloy heat treatment method
JPS61117222A (en) Production of ultra-low iron loss grain-oriented electrical steel sheet
JPS6128741B2 (en)
JPS6128017B2 (en)
JPS6128015B2 (en)
JPS5818905A (en) Method of nitriding part of magnetic circuit formed of armco iron
JPS6128014B2 (en)
JPS6128012B2 (en)