JPH0236665B2 - - Google Patents

Info

Publication number
JPH0236665B2
JPH0236665B2 JP56088670A JP8867081A JPH0236665B2 JP H0236665 B2 JPH0236665 B2 JP H0236665B2 JP 56088670 A JP56088670 A JP 56088670A JP 8867081 A JP8867081 A JP 8867081A JP H0236665 B2 JPH0236665 B2 JP H0236665B2
Authority
JP
Japan
Prior art keywords
phase
alloy
atmosphere
emu
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56088670A
Other languages
Japanese (ja)
Other versions
JPS57203750A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56088670A priority Critical patent/JPS57203750A/en
Publication of JPS57203750A publication Critical patent/JPS57203750A/en
Publication of JPH0236665B2 publication Critical patent/JPH0236665B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はHADFIELD′S AUSTENITIC
STEELの呼称で知られるFe−Mn−C合金の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is based on HADFIELD'S AUSTENITIC
This invention relates to improvements in the Fe-Mn-C alloy known under the name STEEL.

HADFIELD′S AUSTENITIC STEELは適切
な量のMnおよびCと残部は鉄から成る組成の合
金で、非磁性のオーステナイト相(以下、γ相と
いう)を室温に導入することが、容易に可能であ
り、加工によるマルテンサイト変態(γ相→マル
テンサイト相(以下、α相という))。がほとんど
起らない材料である。また。上記合金はγ相状態
を冷間加工すると、著しく加工硬化して機械的強
度が増大する。しかしながら、熱処理によりγ相
母体に強磁性相であるα相を形成しようとした場
合、γ相は低温で安定であるため、熱処理を施し
て容易にγ→α変態が起らず、γ→α変態が完全
に終了するためには長時間の熱処理を必要とす
る。長時間熱処理を必要とする要因はMnとCが
適量添加されていることにあり、特にCの効果が
大きい。この合金はα相とγ相の中間にα+γ+
Fe3Cあるいは、γ+Fe3Cの混合相を形成し、し
かも、Fe3Cは強く結合している。
HADFIELD'S AUSTENITIC STEEL is an alloy with a composition consisting of appropriate amounts of Mn and C and the balance iron, and it is easily possible to introduce a non-magnetic austenite phase (hereinafter referred to as γ phase) at room temperature. Martensitic transformation (γ phase → martensitic phase (hereinafter referred to as α phase)) due to processing. This is a material that rarely causes Also. When the above alloy is subjected to cold working in the γ phase state, it is significantly work hardened and its mechanical strength increases. However, when an attempt is made to form the α phase, which is a ferromagnetic phase, in the γ phase matrix by heat treatment, the γ phase is stable at low temperatures, so the γ→α transformation does not easily occur during the heat treatment, and the γ→α A long heat treatment is required to complete the transformation. The reason why the long heat treatment is required is that appropriate amounts of Mn and C are added, and the effect of C is particularly large. This alloy has α+γ+ between the α and γ phases.
A mixed phase of Fe 3 C or γ+Fe 3 C is formed, and Fe 3 C is strongly bonded.

以上のように、この合金は、γ相を容易に室温
に導入できるという利点とともに、磁性材料への
応用を考えた場合、γ→α変態には長時間熱処理
を必要とするという欠点をもつている。
As described above, this alloy has the advantage that the γ phase can be easily introduced at room temperature, but when considering application to magnetic materials, it has the disadvantage that the γ→α transformation requires long heat treatment. There is.

本発明は、室温に導入された上記合金のγ相を
短時間の熱処理を施すことにより容易にα相へ変
態させるために、上記合金にAhを添加したこと
を特徴とする複合磁性材料用合金に関するもので
あり、上記合金の利点を活かし、上記欠点を解決
して、工業的に有効で、応用分野が広く、かつ生
産性の点でも優れた複合磁性材料用合金を提供す
るものである。
The present invention provides an alloy for composite magnetic materials characterized in that Ah is added to the above alloy in order to easily transform the γ phase of the above alloy introduced into room temperature into the α phase by subjecting it to a short heat treatment. The present invention aims to provide an alloy for composite magnetic materials that is industrially effective, has a wide range of applications, and is excellent in productivity by taking advantage of the advantages of the alloy and solving the drawbacks.

本発明の複合磁性材料用合金によれば、レーザ
ービームあるいは電子ビームあるいは赤外線ビー
ム等を用いて材料を焼鈍することによつて非磁性
材料の表面に任意の深さで、かつ任意のパターン
の磁性相を形成させることが可能となつた。また
非磁性材料と磁性材料の二体を接着剤あるいは機
械的方法あるいは熱圧着等で接合させて一体化し
た複合磁性材料と比較して、本発明の方法で製造
した、複合磁性材料は機械的信頼性の点でも優れ
ていることがわかつた。
According to the alloy for composite magnetic materials of the present invention, by annealing the material using a laser beam, an electron beam, an infrared beam, etc., magnetic properties can be formed on the surface of a non-magnetic material at an arbitrary depth and in an arbitrary pattern. It became possible to form a phase. Furthermore, compared to a composite magnetic material that is made by joining a non-magnetic material and a magnetic material together using an adhesive, mechanical method, thermocompression bonding, etc., the composite magnetic material produced by the method of the present invention has a mechanical It was also found to be superior in terms of reliability.

以下に本発明における複合磁性材料用合金の化
学成分範囲の限定理由について述べる。
The reason for limiting the range of chemical components of the alloy for composite magnetic material in the present invention will be described below.

Feは本発明における複合磁性材料用合金の主
成分である。Feのγ相は不安定であり、冷却過
程でどんなに速く急冷してもα相に変態する。
Fe is the main component of the alloy for composite magnetic material in the present invention. The γ phase of Fe is unstable and transforms into the α phase during the cooling process, no matter how quickly it is cooled.

Feのγ相は、約2重量%までCを固溶して、
γ−域を形成し安定になるが、高温から急冷して
γ相を室温に導入するためには、2重量%以上の
Mnを添加しなければならなかつた。一方、実用
的に充分な磁化量を有する合金を得るためには、
Mnは20重量%を越えて添加してはならず、最大
20重量%のMnを添加した場合には、0.4重量%以
上のCを添加すれば、容易にγ相を室温に導入す
ることができた。Cを2重量%越えて添加すると
添加したCが全て固溶せず、γ相の母相内に
Mn、AlあるいはFeとCの結合した化合物が混在
し、室温にγ相の単相を得ることができない。し
たがつて、Cを2重量%越えて添加した本発明の
複合磁性材料用合金は室温で圧延、伸線あるいは
スエージ等の冷間加工が困難である。
The γ phase of Fe contains up to about 2% by weight of C as a solid solution,
It forms a γ-region and becomes stable, but in order to rapidly cool from a high temperature and introduce the γ phase to room temperature, it is necessary to add 2% by weight or more.
Mn had to be added. On the other hand, in order to obtain an alloy with a practically sufficient amount of magnetization,
Mn must not be added in excess of 20% by weight, and the maximum
When 20% by weight of Mn was added, the γ phase could be easily introduced at room temperature by adding 0.4% by weight or more of C. If more than 2% by weight of C is added, all the added C will not be solidly dissolved and will be incorporated into the matrix of the γ phase.
A compound in which Mn, Al, or Fe and C are bonded coexists, and a single γ phase cannot be obtained at room temperature. Therefore, the alloy for composite magnetic materials of the present invention containing more than 2% by weight of C is difficult to cold-work such as rolling, wire drawing or swaging at room temperature.

上記の組成範囲の合金は、急冷することでγ相
を室温に導入することができるが、γ→α変態を
容易にするためにAlを0.1〜4.0重量%添加した。
0.1重量%を下まわる添加量ではAl添加の効果が
発揮されず、4.0重量%を越えて添加すると全温
度領域でα相となつた。
The alloy having the above composition range can be rapidly cooled to introduce the γ phase to room temperature, but 0.1 to 4.0% by weight of Al was added to facilitate the γ→α transformation.
When the amount added is less than 0.1% by weight, the effect of Al addition is not exhibited, and when it is added more than 4.0% by weight, it becomes an α phase in the entire temperature range.

次に本発明の詳細を実施例を列挙して説明す
る。
Next, the details of the present invention will be explained by listing examples.

実施例 1 重量%で(Fe85.8Mn13C1.2)98Al2.0の組成を有
する合金インゴツトを1100℃の温度で1時間、
Ar雰囲気中で均一化処理した後、10%NaOH水
溶液中に浸して急冷した。この合金インゴツトか
ら小片を切り出し、磁化量を測定すると、σs
0.02(emu/gm)のγ相であつた。この合金イン
ゴツトの表面酸化膜を除去した後、減面率で50%
の冷間圧延加工を施したところ、磁化量はσs
0.05(emu/gm)となつた。さらにこの合金イン
ゴツトの初期の形状から減面率で99%の冷間圧延
加工を更に施したところ、磁化量はσs=0.1
(emu/gm)となつた。また機械的強度σ0.2=150
Kg/mm2、ビツカース硬さHv=750であつた。
Example 1 An alloy ingot having the composition (Fe 85.8 Mn 13 C 1.2 ) 98 Al 2.0 in weight % was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NaOH aqueous solution and rapidly cooled. When a small piece is cut out from this alloy ingot and the amount of magnetization is measured, σ s =
It was a γ phase of 0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, the area reduction rate is 50%.
When subjected to cold rolling processing, the amount of magnetization is σ s =
It became 0.05 (emu/gm). Furthermore, when this alloy ingot was further cold-rolled with an area reduction of 99% from its initial shape, the amount of magnetization was σ s = 0.1.
It became (emu/gm). Also, mechanical strength σ 0.2 = 150
Kg/mm 2 and Bitkers hardness Hv=750.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を550℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果磁
化量σs=135(emu/gm)、機械的強度σ0.2=95
(Kg/gm2)、ビツカース硬さHv=523のα相とな
つた。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 550° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. As a result, magnetization amount σ s = 135 (emu/gm), mechanical strength σ 0.2 = 95
(Kg/gm 2 ), and became an α phase with a Bitkers hardness of Hv=523.

また、上記50μmの厚さのγ相の板材の表面を
3W連続発振YAGレーザーアニール装置で1mm直
径のレーザービームを1(mm/sec.)の速度で走
行させてAr雰囲気中で焼鈍した。加熱部の顕微
鏡観察を行なつたところ、板厚方向の全長に渡つ
て約1.1mmの巾でγ相とは異なる相に変態してい
ることを確認し、該相変態部を切り出し、磁化量
を測定したところ、σs=125(emu/gm)のα相
であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
Annealing was performed in an Ar atmosphere using a 3W continuous wave YAG laser annealing device with a laser beam of 1 mm diameter traveling at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and the phase-transformed part was cut out and the magnetization amount was determined. When measured, it was found to be an α phase with σs=125 (emu/gm).

実施例 2 重量%で(Fe96Mn2C2.0)96Al4.0の組成を有す
る合金インゴツトを、1100℃の温度で1時間、
Ar雰囲気中で均一化処理後、10%NsOH水溶液
中に浸して急冷した。この合金インゴツトから小
片を切り出し、磁化量を測定すると、σs=0.03
(emu/gm)のγ相であつた。この合金インゴツ
トの表面酸化膜を除去した後、減面率で99%の冷
間圧延加工を施したところ、磁化量σs=0.3
(emu/gm)となつた。また機械的強度σ0.2=140
Kg/mm2、ビツカース硬さHv=650であつた。
Example 2 An alloy ingot having the composition (Fe 96 Mn 2 C 2.0 ) 96 Al 4.0 in weight percent was heated at a temperature of 1100° C. for 1 hour.
After homogenization treatment in an Ar atmosphere, it was immersed in a 10% NsOH aqueous solution and rapidly cooled. When a small piece is cut out from this alloy ingot and the amount of magnetization is measured, σ s = 0.03.
(emu/gm). After removing the surface oxide film of this alloy ingot, it was cold rolled with an area reduction rate of 99%, and the magnetization amount σ s = 0.3
It became (emu/gm). Also, mechanical strength σ 0.2 = 140
Kg/mm 2 and Bitkers hardness Hv=650.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を600℃の温度で5秒間、Ar雰囲気中
で焼鈍し、Ar雰囲気中で急冷した。その結果磁
化量σs=153(emu/gm)、機械的強度σ0.2=87
(Kg/mm2)、ビツカース硬度Hv=505となつた。
A 50 μm thick γ-phase plate material cold-rolled as described above was annealed at 600° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. As a result, magnetization amount σ s = 153 (emu/gm), mechanical strength σ 0.2 = 87
(Kg/mm 2 ), and the Bitkers hardness was Hv=505.

また、上記50μmの厚さのγ相の板材の表面を
3.5W連続発振YAGレーザーアニール装置で、1
mm直径のレーザービームを1.5(mm/sec)の速度
で走行させて、Ar雰囲気中で焼鈍した。加熱部
の顕微鏡観察を行なつたところ、板厚方向の全長
に渡つて、約1.1mmの巾で、γ相とは異なる相に
変態していることを確認し、この相変態部を切り
出し、磁化量を測定したところ、σs=140(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 3.5W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of mm at a speed of 1.5 (mm/sec). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out. When we measured the amount of magnetization, σ s = 140 (emu/
gm).

実施例 3 重量%で(Fe79.6Mn20C0.4)99.9Al0.1の化学成
分を有する合金インゴツトを、1100℃の温度で1
時間、Ar雰囲気中で均一化処理後、10%NsOH
水溶液中に浸して急冷した。この合金インゴツト
から小片を切り出し、磁化量を測定するとσs
0.03(emu/gm)のγ相であつた。この合金イン
ゴツトの表面酸化膜を除去した後、減面率で99%
の冷間圧延加工を施したところ、磁化量σs=0.2
(emu/gm)となつた。また機械的強度σ0.2=125
(Kg/mm2)、ビツカース硬さHv=590であつた。
Example 3 An alloy ingot having a chemical composition of (Fe 79.6 Mn 20 C 0.4 ) 99.9 Al 0.1 in weight % was heated at a temperature of 1100°C.
time, 10% NsOH after homogenization treatment in Ar atmosphere
It was quenched by immersing it in an aqueous solution. When a small piece is cut out from this alloy ingot and the amount of magnetization is measured, σ s =
It was a γ phase of 0.03 (emu/gm). After removing the surface oxide film of this alloy ingot, the area reduction rate is 99%.
When subjected to cold rolling processing, the amount of magnetization σ s = 0.2
It became (emu/gm). Also, mechanical strength σ 0.2 = 125
(Kg/mm 2 ) and Bitkers hardness Hv=590.

上記の如く冷間圧延加工された50μmの厚さの
γ相の板材を500℃の温度で5秒間、Ar雰囲気中
で急冷した。その結果、磁化量σs=1181(emu/
gm)、機械的強度σ0.2=81(Kg/mm2)、ビツカース
硬さHv=495のα相となつた。
The 50 μm thick γ phase plate material cold rolled as described above was rapidly cooled at 500° C. for 5 seconds in an Ar atmosphere. As a result, the magnetization amount σ s = 1181 (emu/
gm), mechanical strength σ 0.2 = 81 (Kg/mm 2 ), and Vickers hardness Hv = 495.

また、上記50μmの厚さのγ相の板材の表面を
2.5W連続発振YAGレーザーアニール装置で、1
mm直径のレーザービームを1(mm/sec.)の速度
で走行させて、Ar雰囲気中で焼鈍した。加熱部
の顕微鏡観察を行なつたところ、板厚方向の全長
に渡つて、約1.1mmの巾でγ相とは異なる相に変
態していることを確認し、この相変態部を切り出
し、磁化量を測定したところ、σs=109(emu/
gm)のα相であつた。
In addition, the surface of the γ phase plate material with a thickness of 50 μm was
1 with 2.5W continuous wave YAG laser annealing equipment
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of mm at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it had transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction, and this phase-transformed part was cut out and magnetized. When the amount was measured, σ s = 109 (emu/
gm).

実施例 4 実施例1で用いた合金インゴツトを1100℃の温
度で1時間、Ar雰囲気中で均一化処理後、10%
NaOH水溶液中に浸して急冷した。この合金イ
ンゴツトから小片を切り出し、磁化量を測定する
とσs=0.02(emu/gm)のγ相であつた。この合
金インゴツトの表面酸化膜を除去した後、減面率
で99%の冷間圧延加工を施し、50μm厚さの板材
とした。この板材を950℃の温度で5秒間、Ar雰
囲気中で熱処理し、Ar雰囲気中で急冷した。そ
の結果、磁化量σs=0.02(emu/gm)、機械的強
度σ0.2=58(Kg/mm2)、ビツカース硬度Hv=280で
あつた。
Example 4 The alloy ingot used in Example 1 was homogenized at a temperature of 1100°C for 1 hour in an Ar atmosphere, and then 10%
It was quenched by immersing it in a NaOH aqueous solution. When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σ s =0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was cold-rolled with an area reduction of 99% to form a plate material with a thickness of 50 μm. This plate material was heat-treated at a temperature of 950° C. for 5 seconds in an Ar atmosphere, and then rapidly cooled in an Ar atmosphere. As a result, the magnetization amount σ s =0.02 (emu/gm), the mechanical strength σ 0.2 =58 (Kg/mm 2 ), and the Vickers hardness Hv = 280.

上記熱処理された50μmの厚さのγ相の板材を
550℃の温度で5秒間、Ar雰囲気中で焼鈍し、
Ar雰囲気中で急冷した。その結果、磁化量σs
121(emu/gm)、機械的強度σ0.2=75(Kg/mm2)、
ビツカース硬さHv=420のα相となつた。また、
上記50μmの厚さのγ相の板材の表面を、3W連
続発振YAGレーザーアニール装置で、1mm直径
のレーザービームを1(mm/sec.)の速度で走行
させてAr雰囲気中で焼鈍した。加熱部の顕微鏡
観察を行なつたところ、板厚方向の全長に渡つ
て、約1mmの巾でγ相とは異なる相に変態してい
ることを確認し、この相変態部を切り出し、磁化
量を測定したところ、σs=111(emu/gm)のα
相であつた。
The above heat-treated 50 μm thick γ-phase plate material
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds,
It was quenched in an Ar atmosphere. As a result, the amount of magnetization σ s =
121 (emu/gm), mechanical strength σ 0.2 = 75 (Kg/mm 2 ),
It became an α phase with a Bitkers hardness of Hv=420. Also,
The surface of the 50 μm thick γ-phase plate material was annealed in an Ar atmosphere using a 3W continuous wave YAG laser annealing device with a 1 mm diameter laser beam traveling at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that the entire length in the thickness direction was transformed into a phase different from the γ phase in a width of about 1 mm.This phase transformed part was cut out and the amount of magnetization was determined. was measured, α of σ s = 111 (emu/gm)
It was a phase.

実施例 5 実施例1で用いた組成合金インゴツトを1100℃
の温度で1時間、Ar雰囲気中で均一化処理した
後、10%NsOH水溶液中に浸して急冷した。この
合金インゴツトから小片を切り出し、磁化量を測
定すると、σs=0.02(emu/gm)のγ相であつ
た。この合金インゴツトの表面酸化膜を除去した
後、減面率で75%の冷間圧延加工を施し、再び
950℃の温度で30分間、Ar雰囲気中で均一化処理
した後、上記溶液中に浸して急冷した。その結
果、磁化量は上記と同様に、σs=0.02(emu/
gm)であつた。引き続き、再び減面率で50%の
冷間圧延加工を施し、30μm厚さの板材とした。
その結果、磁化量σs=0.05(emu/gm)、機械的
強度σ0.2=130(Kg/mm2)、ビツカース硬さHv=680
であつた。
Example 5 The composition alloy ingot used in Example 1 was heated to 1100°C.
After homogenizing in an Ar atmosphere for 1 hour at a temperature of When a small piece was cut out from this alloy ingot and the amount of magnetization was measured, it was found to be a γ phase with σ s =0.02 (emu/gm). After removing the surface oxide film of this alloy ingot, it was cold-rolled with an area reduction rate of 75% and then rolled again.
After homogenization treatment at a temperature of 950° C. for 30 minutes in an Ar atmosphere, it was immersed in the above solution and rapidly cooled. As a result, the magnetization amount is σ s = 0.02 (emu/
gm). Subsequently, cold rolling was performed again with an area reduction rate of 50% to obtain a plate material with a thickness of 30 μm.
As a result, magnetization σ s = 0.05 (emu/gm), mechanical strength σ 0.2 = 130 (Kg/mm 2 ), and Vickers hardness Hv = 680.
It was hot.

上記冷間圧延加工された30μm厚さの板材を
550℃の温度で5秒間、Ar雰囲気中で焼鈍し、
Ar雰囲気で急冷した。その結果、磁化量σs=131
(emu/gm)、機械的強度σ0.2=91(Kg/mm2)、ビツ
カース硬さHv=518のα相となつた。
The above cold-rolled plate material with a thickness of 30 μm is
Annealed in an Ar atmosphere at a temperature of 550℃ for 5 seconds,
It was rapidly cooled in an Ar atmosphere. As a result, the amount of magnetization σ s = 131
(emu/gm), mechanical strength σ 0.2 = 91 (Kg/mm 2 ), and Vickers hardness Hv = 518.

また、上記30μmの厚さのγ相の板材の表面
を、3W連続発振YAGレーザーアニール装置で、
1mm直径のレーザービームを1(mm/sec.)の速
度で走行させて、Ar雰囲気中で焼鈍した。加熱
部の顕微鏡観察を行なつたところ、板厚方向の全
長に渡つて、約1.1mmの巾でγ相とは異なる相に
変態していることを確認し、該変態部を切り出
し、磁化量を測定したところ、σs=120(emu/
gm)のα相であつた。
In addition, the surface of the 30 μm thick γ-phase plate material was coated with a 3W continuous wave YAG laser annealing device.
Annealing was performed in an Ar atmosphere by running a laser beam with a diameter of 1 mm at a speed of 1 (mm/sec.). When the heated part was observed under a microscope, it was confirmed that it was transformed into a phase different from the γ phase in a width of approximately 1.1 mm over the entire length in the thickness direction.The transformed part was cut out and the magnetization amount was determined. When we measured σ s = 120 (emu/
gm).

(Fe87.8Mn10C2.298.0Al2.0のCが2%越えて添
加された合金を1100℃の温度で1時間Ar雰囲気
中で均一処理した後、10%NaOH水溶液中に浸
して急冷した。この合金をX線測定した結果、γ
相の回折線と他の回折線が測定された。この合金
を冷間圧延すると割れが生じ、薄板への圧延は不
可能であつた。
(Fe 87.8 Mn 10 C 2.2 ) 98.0 An alloy containing more than 2% of Al 2.0 was uniformly treated in an Ar atmosphere at a temperature of 1100° C. for 1 hour, and then quenched by immersing it in a 10% NaOH aqueous solution. As a result of X-ray measurement of this alloy, γ
The phase diffraction lines and other diffraction lines were measured. When this alloy was cold rolled, cracks appeared and rolling into thin sheets was impossible.

以上、実施例にもとずいて述べたが、直線状の
磁性パターンのみならず、加熱ビームを所望の任
意の方向に移動させれば、任意の複雑な磁性パタ
ーンを描くことが可能である。また50μm厚さの
板材の加熱する面を冷却し、実施例1と同様にレ
ーザービームで焼鈍すると、厚さ方向の全長に渡
つて相変態が起らず、切断面を顕微鏡観察すると
γ相とは異なる相(α相)に変態している部分の
深さは、約20μmであつた。
Although the above has been described based on the embodiments, it is possible to draw not only a linear magnetic pattern but also any complex magnetic pattern by moving the heating beam in any desired direction. In addition, when the heated surface of a 50 μm thick plate material is cooled and annealed with a laser beam in the same manner as in Example 1, no phase transformation occurs over the entire length in the thickness direction, and when the cut surface is observed under a microscope, it appears as γ phase. The depth of the part where the phase was transformed into a different phase (α phase) was about 20 μm.

このようにAlを含有するFe−Mn−C系合金は
その熱処理の容易さから、複合磁性材料用合金と
しての工業的有用性は高いといわねばならない。
It must be said that Fe--Mn--C alloys containing Al have high industrial utility as alloys for composite magnetic materials because of their ease of heat treatment.

Claims (1)

【特許請求の範囲】[Claims] 1 Mn:2〜20重量%、C:0.4〜2重量%、残
部Feからなる組成にAlを0.1〜4重量含有せしめ
たことを特徴とする複合磁性材料用合金。
1. An alloy for a composite magnetic material, characterized in that the composition consists of Mn: 2 to 20% by weight, C: 0.4 to 2% by weight, and the balance Fe, containing 0.1 to 4% by weight of Al.
JP56088670A 1981-06-09 1981-06-09 Alloy for composite magnetic material Granted JPS57203750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56088670A JPS57203750A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56088670A JPS57203750A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Publications (2)

Publication Number Publication Date
JPS57203750A JPS57203750A (en) 1982-12-14
JPH0236665B2 true JPH0236665B2 (en) 1990-08-20

Family

ID=13949246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56088670A Granted JPS57203750A (en) 1981-06-09 1981-06-09 Alloy for composite magnetic material

Country Status (1)

Country Link
JP (1) JPS57203750A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08100243A (en) 1994-08-05 1996-04-16 Toyota Motor Corp Highly heat resistant iron-bas alloy

Also Published As

Publication number Publication date
JPS57203750A (en) 1982-12-14

Similar Documents

Publication Publication Date Title
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JP2639227B2 (en) Manufacturing method of non-oriented electrical steel sheet
JPH0236663B2 (en)
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JPH0236665B2 (en)
JPS61235514A (en) Production of extra-low iron loss grain oriented silicon steel sheet having thermal stability
JPH0236668B2 (en)
JPH03130322A (en) Production of fe-co-type soft-magnetic material
JPH0236667B2 (en)
JPH0245697B2 (en)
JPH0236666B2 (en)
JPH0236664B2 (en)
JPS61133321A (en) Production of ultra-low iron loss grain oriented electrical steel sheet
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP3220828B2 (en) Heat treatment method for Fe-Al soft magnetic material
JPS6196036A (en) Grain-oriented electrical steel sheet having small iron loss and its manufacture
JPS61183457A (en) Manufacture of grain-oriented electrical steel sheet having extremely superior magnetic characteritic
JPS61117220A (en) Production of low-iron loss electrical steel sheet
JPH027370B2 (en)
JPS5818905A (en) Method of nitriding part of magnetic circuit formed of armco iron
JPS6128741B2 (en)
JPS61117216A (en) Manufacture of grain oriented magnetic steel plate of ultralow iron loss
JPS6128017B2 (en)
JPS6128021B2 (en)
JPS6210278A (en) Thin amorphous alloy strip having excellent paramagnetic permeability