JPS5884924A - Production of electrical steel plate utilizing warm rolling - Google Patents

Production of electrical steel plate utilizing warm rolling

Info

Publication number
JPS5884924A
JPS5884924A JP18311781A JP18311781A JPS5884924A JP S5884924 A JPS5884924 A JP S5884924A JP 18311781 A JP18311781 A JP 18311781A JP 18311781 A JP18311781 A JP 18311781A JP S5884924 A JPS5884924 A JP S5884924A
Authority
JP
Japan
Prior art keywords
rolling
strain aging
dislocation
annealing
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18311781A
Other languages
Japanese (ja)
Other versions
JPH037725B2 (en
Inventor
Mitsunobu Abe
阿部 光延
Hideo Osone
大曾根 英男
Kosaku Shioda
浩作 潮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18311781A priority Critical patent/JPS5884924A/en
Publication of JPS5884924A publication Critical patent/JPS5884924A/en
Publication of JPH037725B2 publication Critical patent/JPH037725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To obtain an electrical steel plate of improved magnetic flux density with one time of treatment wherein rolling-annealing are combined by generating intensive dyamical strain aging with the steel of a sufficient solid soln. (C+N) in a specific temp. region then subjecting the same to recrystallization annealing. CONSTITUTION:Steel of >=10ppm solid soln. (C+N) is rolled at >=20% draft at 200-500 deg.C; thereafter the steel is subjected to recrystallization annealing. Then the degree of integration of the (110)[001]bearing components in the crystal structure is increased thoroughly and an electrical steel plate having high magnetic density is obtained. Here, if the solid soln. (C+N) is below 10ppm, the degree of dynamical strain aging is small and no effect is expected. If the rolling temp. is below the lower limit, the diffusion transfer of C, N atoms to dislocation is slow and no sufficient dynamical strain aging is generated. In excess of the upper limit, the C and N atoms can arrive easily at dislocation but the mutual effect between the dislocation and the C, N atoms is weak and the dynamical strain aging annihilates. If the draft is below 20%, the propagation rate of the dislocation during rolling is small and the intensive dynamical strain aging is not generated.

Description

【発明の詳細な説明】 本発明は、圧延−焼鈍を基本とする工程において(11
0)(001)方位を十分発達させ、磁束密度の向上と
鉄損低減を同時に満足する新しい電磁鋼板の製造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a process based on rolling and annealing (11
The present invention relates to a new method for producing electrical steel sheets that fully develops the 0) (001) orientation and satisfies both the improvement of magnetic flux density and the reduction of iron loss.

電磁鋼板では、磁束密度を向上させるため、(110)
(001)方位の集積度の高い鋼板が好ましいことは既
によく知られてはいるが、この種の鋼板の製造に当って
は、従来冷延−焼鈍の組合せを2回繰返し、その2回目
の焼鈍の段階での極端な粗大結晶粒成長の過程を通じて
、(110)(001)方位の発達を図っている。
In magnetic steel sheets, (110) is used to improve magnetic flux density.
It is already well known that steel sheets with a high concentration of (001) orientations are preferable, but in the production of this type of steel sheet, conventionally, the combination of cold rolling and annealing is repeated twice, and the second The (110) (001) orientation is developed through the process of extremely coarse grain growth at the annealing stage.

この従来法では、冷延−焼鈍の組合せ処理を2回おこな
うため製造工程でのエネルギー消費も大きい。一方、冷
延−焼鈍の1回の組合せでは、高い(110)(001
)の集積は得られなかった。これに対して本発明を適用
すれば、正順焼鈍を組合せた1回の処理で(110)(
001)得られる。
In this conventional method, a combination of cold rolling and annealing is performed twice, which consumes a large amount of energy in the manufacturing process. On the other hand, in one combination of cold rolling and annealing, high (110) (001
) could not be obtained. On the other hand, if the present invention is applied, (110) (
001) obtained.

即ち本発明は、固溶(C十N)が10 ppm以上であ
る鋼を200〜500℃の温度域において、20チ以上
の圧下率で圧延し、そのあと再結晶焼鈍をおこない、集
合組織の(110)(001)方位成分の発達を図るこ
とを特徴とする電磁鋼板の製造法を骨子とする。
That is, in the present invention, steel having a solid solution (C and N) of 10 ppm or more is rolled at a reduction rate of 20 inches or more in a temperature range of 200 to 500°C, and then recrystallized annealed to improve the texture. The gist of the method is to produce an electrical steel sheet characterized by developing the (110) (001) orientation component.

以下本発明の内容を詳細に説明する。The contents of the present invention will be explained in detail below.

本発明は、焼鈍に先立つ圧延の段階で激しい動的歪時効
を生ぜしめ、その結果得られる特殊な加工組織を利用し
て、焼鈍後の集合組織における(11.0)(:001
)方位成分の増大を図る点にある。動的歪時効とは、加
工時に運動する転位と鋼中の固溶C,Nとの相互作用に
よって生ずる加工中の歪時効である。本発明に関する詳
細な研究の結果によれば、圧延中に激しい動的歪時2効
が発生すると、結晶粒内に特に加工歪の大きい帯状の領
域(以下変形帯と称する)が形成され、焼鈍時にはその
変形帯に(110)〔001〕再結晶核が優先的に形成
され、焼鈍後の集合組織における(110)(001)
方位成分の増大に寄与する。
The present invention produces severe dynamic strain aging in the rolling stage prior to annealing, and utilizes the resulting special processed structure to create (11.0) (:001) texture after annealing.
) The aim is to increase the azimuth component. Dynamic strain aging is strain aging during processing that is caused by the interaction between dislocations that move during processing and solid solution C and N in the steel. According to the results of detailed research related to the present invention, when severe dynamic strain effects occur during rolling, band-shaped regions with especially large working strains (hereinafter referred to as deformation bands) are formed within grains, and during annealing Sometimes (110)[001] recrystallization nuclei are preferentially formed in the deformation zone, and (110)(001) in the texture after annealing.
Contributes to an increase in the azimuth component.

このような動的歪時効を生ぜしむるに当っては、先ず鋼
が十分な量の固溶(C+N )を含有していなければな
らず、圧延前の段階で、内部摩擦法などで測定した固溶
(C’+N)が10 ppm以上であることが必要であ
る。固溶(C+N)が10ppm未満の場合には動的歪
時効の程度が小さく本発明の効果が期待できない。
In order to produce such dynamic strain aging, the steel must first contain a sufficient amount of solid solution (C+N), and the steel must contain a sufficient amount of solid solution (C+N) before rolling. It is necessary that the amount of dissolved (C'+N) is 10 ppm or more. When the solid solution (C+N) is less than 10 ppm, the degree of dynamic strain aging is small and the effects of the present invention cannot be expected.

次に圧延温度であるが、200℃未満の温度では鋼中に
おけるC、N原子の拡散が遅(、C1N原子が転位に向
って拡散移動する所要時間が長(かかり過ぎ、動的歪時
効が十分には生じない。また500℃超の温度域ではC
,Hの拡散が十分早<C,N原子は容易に転位に到達し
得るが、転位とC,N原子との相互作用が弱く、動的歪
時効が消衰する。したがって圧延温度は200〜500
℃の範囲、つまり温間−圧延(以下温延という)の範囲
になければならない。
Next, regarding the rolling temperature, at temperatures below 200°C, the diffusion of C and N atoms in the steel is slow (and the time required for C1N atoms to diffuse and move toward dislocations is long (too much time is required, and dynamic strain aging occurs). In addition, in the temperature range exceeding 500℃, C
, H diffusion is sufficiently fast<C, N atoms can easily reach dislocations, but the interaction between dislocations and C, N atoms is weak, and dynamic strain aging disappears. Therefore, the rolling temperature is 200-500
℃ range, that is, the range of warm rolling (hereinafter referred to as hot rolling).

また圧延時の圧下率が20%未満であっては、圧延中の
転位の増殖量が少なく、シたがって動的歪時効が激しく
は生ぜず有効でない。このため圧下率は20%以上でな
ければならない。本発明は圧延後の再結晶によりその発
明効果が現われるのであるから、上記条件で圧延したの
ち、再結晶の生じる条件での再結晶焼鈍を必要とす□ る。
Further, if the rolling reduction ratio during rolling is less than 20%, the amount of multiplication of dislocations during rolling is small, and therefore dynamic strain aging does not occur violently and is not effective. For this reason, the rolling reduction ratio must be 20% or more. Since the effects of the present invention are manifested by recrystallization after rolling, it is necessary to perform recrystallization annealing under conditions that cause recrystallization after rolling under the above conditions.

本発明を実施するに当っての素材鋼は、10ppm以上
の固溶(C+N)を含有しているだけで十分であり、そ
の他の特殊な元素の添加を必要としない。しかしながら
、鉄損値などの電磁特性を向上、させる必要から、一般
的に添加されるA1、Siなどの合金元素が多量に添加
されていても、以下に述べる理由により、10 ppm
以上の固溶(C+N)を有することは可能であり、本発
明の効果は現われる。即ち、Alが添加された場合には
、固溶NはN原子がAINとして固定されるため減少あ
るいは存在しなくなるが、固溶Cを10 ppm以上に
することは容易である。
It is sufficient for the steel material used to carry out the present invention to contain 10 ppm or more of solid solution (C+N), and there is no need to add other special elements. However, due to the need to improve electromagnetic properties such as iron loss value, even if a large amount of commonly added alloying elements such as A1 and Si are added, for the reasons described below, 10 ppm
It is possible to have the above solid solution (C+N), and the effects of the present invention will appear. That is, when Al is added, the solid solution N decreases or disappears because the N atoms are fixed as AIN, but it is easy to increase the solid solution C to 10 ppm or more.

また、Siの多量添加(数チ程度まで)に対しては、よ
く知られているように固溶(C+N)量は大きく変化し
ない。
Furthermore, as is well known, when a large amount of Si is added (up to several Si), the amount of solid solution (C+N) does not change significantly.

本発明に規定した条件での温延は、他の圧延との組合せ
、つまり熱延−温延、温延−冷延あるいは熱延−温延一
冷延の組合せで実施しても有効であるが、この場合冷延
の圧下率は温延の圧下率以下であることが望ましい。
Hot rolling under the conditions specified in the present invention is effective even if it is performed in combination with other rolling, that is, a combination of hot rolling-hot rolling, hot rolling-cold rolling, or hot rolling-hot rolling and cold rolling. However, in this case, it is desirable that the rolling reduction in cold rolling is equal to or lower than that in hot rolling.

実施例1 真空溶解、したCXNの含有量の異なる鋼を1200℃
に加熱し、仕上温度950℃で板厚2、0 Illに熱
延後空冷した。これらの試料の化学成分および内部摩擦
法で評価した固溶(C+N)の量を第1表に示す。
Example 1 Vacuum melted steels with different CXN contents were heated at 1200°C.
The sheet was hot rolled to a thickness of 2.0 Ill at a finishing temperature of 950°C, and then cooled in air. Table 1 shows the chemical composition of these samples and the amount of solid solution (C+N) evaluated by the internal friction method.

第1表 全試料とも他の元素は以下の通り。Table 1 Other elements in all samples are as follows.

St≦0.01係、■=o、oi%、P=0.002チ
、S=0.004%、A1−〇、002%、残部Fe0
これらの試料を10〜80qbの圧下率で、室温〜70
0℃の温度で圧延し、700℃×5分の再結晶焼鈍をお
こなってから、それぞれの試料についてX線極点図を作
成し、(110)(001)の方位成分強度比(ランダ
ム集合組織をもつ標準試料の場合を基準としたX線の反
射強度比)を求めた。
St≦0.01, ■=o, oi%, P=0.002chi, S=0.004%, A1-〇, 002%, remainder Fe0
These samples were heated at room temperature to 70 qb at a reduction rate of 10 to 80 qb.
After rolling at a temperature of 0°C and recrystallization annealing at 700°C for 5 minutes, an X-ray pole figure was created for each sample, and the (110) (001) orientation component intensity ratio (random texture) was The X-ray reflection intensity ratio (based on the case of a standard sample) was determined.

この(110) ’(001)強度比と成分、工程条件
との関係を第1図、第2図に示す。
The relationship between this (110) '(001) intensity ratio, components, and process conditions is shown in FIGS. 1 and 2.

第1図より明らかなどと<、固溶(C+N)が10 P
Pm以上の試料を、20チ以上の圧下率で温延(圧延温
度370℃)した場合、焼鈍後の(110)(001)
強度比が著しく高くなる。(図中A;圧下車70%、B
;圧下率30チ、C;圧下−10チを示した。)また一
方第2図は、200〜500℃での温延(圧下率50チ
)が、(110)(001)強度比の著鴫い増大に寄与
していることを示した。(図中a;本発明材の試料x6
、b:比較材の試料屋1を示す。)実施例2 第1表における試料A2とAlを用い、室温〜700℃
の各温度で、別々に各々75%の圧延をおこない、板厚
0.5 mgとしたのち、700℃×5分の焼鈍で再結
晶を終了させ、各々の試料について圧延方向の電磁特性
を測定した結果を第3図及び第4図に示す。
It is clear from Figure 1 that the solid solution (C+N) is 10 P.
When a sample with Pm or more is hot rolled (rolling temperature 370°C) at a rolling reduction of 20 inches or more, (110) (001) after annealing
The intensity ratio becomes significantly higher. (A in the figure; reduction car 70%, B
: The rolling reduction was 30 inches; C: The rolling reduction was -10 inches. ) On the other hand, FIG. 2 showed that hot rolling at 200 to 500°C (reduction ratio of 50 inches) contributed to a significant increase in the (110)(001) strength ratio. (a in the figure; sample x6 of the present invention material
, b: Shows sample shop 1 of comparative material. ) Example 2 Using sample A2 and Al in Table 1, at room temperature to 700°C
After rolling 75% of each sample separately at each temperature to obtain a plate thickness of 0.5 mg, recrystallization was completed by annealing at 700°C for 5 minutes, and the electromagnetic properties of each sample in the rolling direction were measured. The results are shown in FIGS. 3 and 4.

図から明らかなごとく、本発明材a(試料屋7)を本発
明条件(200〜500℃)で圧延した場合(圧下率7
5%、板厚0.5 mg )には、比較材b(試料A2
)に比して圧延方向について高磁束密度と低鉄損値が同
時に得られており、電磁特性が著しく改善された。
As is clear from the figure, when the present invention material a (sample shop 7) is rolled under the present invention conditions (200 to 500°C) (rolling reduction rate 7
5%, plate thickness 0.5 mg), comparative material b (sample A2
), high magnetic flux density and low core loss values were simultaneously obtained in the rolling direction, and the electromagnetic properties were significantly improved.

実施例3 C: 0.050%、Si : 2.90%、Mn:0
.086チ、S:0.025%、Sol、Al : 0
.027%、N:0.0071%の化学組成を有する鋼
を溶解し、1300℃に加熱後゛、仕上温度970℃で
板厚2、0 mに熱延し、その後の空冷中の400℃お
よび室温で、別々に各々75チの圧延をおこない、0.
5 mmの板厚とした。
Example 3 C: 0.050%, Si: 2.90%, Mn: 0
.. 086chi, S: 0.025%, Sol, Al: 0
.. Steel having a chemical composition of 0.027% and N: 0.0071% was melted and heated to 1300°C, then hot rolled to a thickness of 2.0 m at a finishing temperature of 970°C, and then heated at 400°C during air cooling. Rolling of 75 inches each was carried out separately at room temperature.
The plate thickness was 5 mm.

そののち、800℃×5分の焼鈍で再結晶を終了させ、
圧延方向の電磁特性を測定した。
After that, recrystallization is completed by annealing at 800°C for 5 minutes.
The electromagnetic characteristics in the rolling direction were measured.

その結果を第2表に示す。但し、75%圧延の直前での
固溶(C+N)は、内部摩擦法による測定の結果、40
0℃での圧延直前で83 ppm。
The results are shown in Table 2. However, the solid solution (C+N) just before 75% rolling is 40% as measured by the internal friction method.
83 ppm just before rolling at 0°C.

室温での圧延直前で72 ppmであった。It was 72 ppm immediately before rolling at room temperature.

表から明らかなごとく、本発明材では、高磁束密度と低
鉄損値が同時に得られており、本発明を適用することに
より電磁特性の著しい改善が図られる。
As is clear from the table, in the material of the present invention, high magnetic flux density and low core loss values are simultaneously obtained, and by applying the present invention, the electromagnetic properties can be significantly improved.

第2表Table 2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱延板の固溶(C+N)量と焼鈍後の(11
0)(001)方位成分のランダム強度比との関係図、
第2図は、圧延温度と焼鈍後の(110)(001)方
位成分のランダム強度比との関係図、第3図は、圧延温
度と磁束密度との関係図、第4図は圧延温度と鉄損値と
の関係図である。 第7面 A 圏z3、(C十A/) (1)/)M)埠2図 圧χ温度  (て2 θ   々θ  4tt)   d<リ  eの圧延、
&崖 (でン 第4面 θ  初  #V  ω 6θ0 )王し旬三う曙()喫4(°ビノ
Figure 1 shows the amount of solid solution (C+N) in the hot rolled sheet and the amount of (11
0) (001) relationship diagram with the random intensity ratio of the azimuth component,
Figure 2 is a relationship between rolling temperature and random intensity ratio of (110) (001) orientation component after annealing, Figure 3 is a relationship between rolling temperature and magnetic flux density, and Figure 4 is a relationship between rolling temperature and random intensity ratio of (110) (001) orientation components after annealing. It is a relationship diagram with an iron loss value. 7th surface A sphere z3, (C0A/) (1)/) M) 2 θ pressure χ temperature (te2 θ 4tt) d<li e rolling,
& Cliff (Den 4th page θ first #V ω 6θ0) King Shunzo Ukebono () 4 (°Bino

Claims (1)

【特許請求の範囲】[Claims] 固溶(C十N)が10 ppm以上である鋼を、200
〜500℃の温度範囲において20チ以上の圧下率で圧
延し、そのあと再結晶焼鈍をおこない、集合組織の(1
10)(001)方位成分を発達せしめることを特徴と
する温間圧延を利用した電磁鋼板の製造法。
Steel with a solid solution (C0N) of 10 ppm or more is
Rolling is performed at a reduction rate of 20 inches or more in a temperature range of ~500℃, followed by recrystallization annealing to improve the texture (1
10) A method for producing an electrical steel sheet using warm rolling, which is characterized by developing a (001) orientation component.
JP18311781A 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling Granted JPS5884924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18311781A JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18311781A JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Publications (2)

Publication Number Publication Date
JPS5884924A true JPS5884924A (en) 1983-05-21
JPH037725B2 JPH037725B2 (en) 1991-02-04

Family

ID=16130072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18311781A Granted JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Country Status (1)

Country Link
JP (1) JPS5884924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331419A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0331419A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH0331420A (en) * 1989-06-29 1991-02-12 Nippon Steel Corp Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JP2002146491A (en) * 2000-11-09 2002-05-22 Kawasaki Steel Corp Silicon steel sheet for iron core of motor having excellent high frequency magnetic property and mechanical strength property and its manufacturing method
JP4613414B2 (en) * 2000-11-09 2011-01-19 Jfeスチール株式会社 Electrical steel sheet for motor core and method for manufacturing the same

Also Published As

Publication number Publication date
JPH037725B2 (en) 1991-02-04

Similar Documents

Publication Publication Date Title
JPS5920731B2 (en) Manufacturing method for electric iron plates with excellent magnetic properties
EP0957180A2 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
US3415696A (en) Process of producing silicon steel laminations having a very large grain size after final anneal
JPH07268567A (en) Grain oriented silicon steel sheet having extremely low iron loss
JPS5884924A (en) Production of electrical steel plate utilizing warm rolling
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH0565537A (en) Manufacture of high silicon steel sheet having high permeability
JPH0336242A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPS60125325A (en) Production of non-directionally oriented electrical steel strip
JP2000178647A (en) Production of high silicon steel high in magnetic flux density
JPS61231120A (en) Manufacture of nonoriented electrical steel sheet having superior magnetic characteristic
JP2853552B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method
US4548655A (en) Method for producing cube-on-edge oriented silicon steel
JP3890790B2 (en) High silicon steel sheet
JPS6253571B2 (en)
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH04224625A (en) Manufacture of grain-oriented high silicon steel sheet
JPH01198428A (en) Production of non-oriented silicon steel sheet having excellent magnetic characteristic
JPS6330968B2 (en)
JPH0261031A (en) Non-oriented silicon steel sheet excellent in magnetic property and its production
JPH0623411B2 (en) Manufacturing method of electrical steel sheet with small anisotropy
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JPS60159120A (en) Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture
JPS5823411A (en) Nondirectional electromagnetic steel plate having superior magnetism and manufacture therefor
JP3034964B2 (en) Method for producing soft surface-treated original sheet by continuous annealing