JPH037725B2 - - Google Patents

Info

Publication number
JPH037725B2
JPH037725B2 JP56183117A JP18311781A JPH037725B2 JP H037725 B2 JPH037725 B2 JP H037725B2 JP 56183117 A JP56183117 A JP 56183117A JP 18311781 A JP18311781 A JP 18311781A JP H037725 B2 JPH037725 B2 JP H037725B2
Authority
JP
Japan
Prior art keywords
rolling
annealing
solid solution
present
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56183117A
Other languages
Japanese (ja)
Other versions
JPS5884924A (en
Inventor
Mitsunobu Abe
Hideo Oosone
Kosaku Shioda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18311781A priority Critical patent/JPS5884924A/en
Publication of JPS5884924A publication Critical patent/JPS5884924A/en
Publication of JPH037725B2 publication Critical patent/JPH037725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、圧延−焼鈍を基本とする工程におい
て110,001方位を十分発達させ、磁束密度
の向上と鉄損低減を同時に満足する新しい無方向
性電磁鋼板の製造法に関するものである。 電磁鋼板では、方向性、無方向性を問わず磁束
密度を向上させるため、110,001方位の集
積度の高い鋼板が好ましいことは既によく知られ
ている。 無方向性電磁鋼板は、極低炭素鋼、低炭素アル
ミキルド鋼に必要に応じてSi,Alを添加した素
材を熱間圧延し、1回または中間焼鈍を挟む2回
の冷間圧延を経て最終製品厚の冷延鋼板とした
後、最終焼鈍し、必要に応じて調質圧延が施され
て製造されている。 この従来法では、冷延−焼鈍の組合せ処理を2
回おこなうため製造工程でのエネルギー消費も大
きい。一方、冷延−焼鈍の1回の組合せでは、高
い100,001の集積は得られなかつた。これ
に対して本発明を適用すれば、圧延−焼鈍を組合
せた1回の処理で110,001の集積を十分高
めることが可能であり、高磁束密度で、ヒステリ
シス損失も少ない無方向性電磁鋼板を得ることが
できる。 こゝで本発明は110,001なる集合組織を
主方位にもつ電磁鋼板を製造するが、このような
鋼板も慣習的に無方向性電磁鋼板に分類される。 即ち本発明は、固溶(C+N)が10ppm以上
200ppm以下である低炭素鋼を200〜500℃の温度
域において、20%以上80%以下の圧下率で圧延
し、そのあと再結晶焼鈍をおこない、集合組織の
110,001方位成分の発達を図ることを特徴
とする無方向性電磁鋼板の製造法を骨子とする。 以下本発明の内容を詳細に説明する。 本発明は、焼鈍に先立つ圧延の段階で激しい動
的歪時効を生ぜしめ、その結果得られる特殊な加
工組織を利用して、焼鈍後の集合組織における1
10,001方位成分の増大を図る点にある。動
的歪時効とは、加工時に運動する転位と鋼中の固
溶C,Nとの相互作用によつて生ずる加工中の歪
時効である。 本発明に関する詳細な研究の結果によれば、圧
延中に激しい動的歪時効が発生すると、結晶粒内
に特に加工歪の大きい帯状の領域(以下変形帯と
称する)が形成され、焼鈍時にはその変形帯に1
10,001再結晶核が優先的に形成され、焼鈍
後の集合組織における110,001方位成分の
増大に寄与する。 このような動的歪時効を生ぜしむるに当つて
は、先ず素材の低炭素鋼が十分な量の固溶(C+
N)を含有していなければならず、温間圧延の段
階で、内部摩擦法などで測定した固溶(C+N)
が10ppm以上であることが必要である。固溶(C
+N)が10ppm未満の場合には動的歪時効の程度
が小さく本発明の効果が期待できない。また、本
発明では、固溶(C+N)の量が多いほど効果を
発揮するが、フエライト相における(C+N)の
固溶限から200ppmが上限であり、より好ましく
は50〜150ppmの範囲である。 次に圧延温度であるが、200℃未満の温度では
鋼中におけるC,N原子の拡散が遅く、C,N原
子が転位に向つて拡散移動する所要時間が長くか
かり過ぎ、動的歪時効が十分には生じない。また
500℃超の温度域ではC,Nの拡散が十分早くC,
N原子は容易に転位に到達し得るが、転位とC,
N原子との相互作用が弱く、動的歪時効が消衰す
る。したがつて圧延温度は200〜500℃の範囲、つ
まり温間圧延(以下温延という)の範囲になけれ
ばならない。 また圧延時の圧下率が20%未満であつては、圧
延中の転位の増殖量が少なく、したがつて動的歪
時効が激しくは生ぜず有効でない。このため圧下
率は20%以上でなければならない。圧延時の圧下
率80%を越えると、転位密度が非常に高くなり、
逆に変形が均一化するため、もはや変形帯が存在
しなくなることから、この場合には本発明の効果
は期待できない。 この中でも圧延時の圧下率として好ましいの
は、50〜75%の範囲である。本発明は圧延後の再
結晶によりその発明効果が現われるのであるか
ら、上記条件で圧延したのち、再結晶の生じる条
件での再結晶焼鈍を必要とする。 即ち無方向性電磁鋼板の製造で通常採用されて
いる連続焼鈍(例えば700℃〜800℃×5分)の再
結晶焼鈍を行い、110,001方位成分の発達
を図る。 本発明を実施するに当つての素材鋼は、10ppm
以上の固溶(C+N)を含有しているだけで十分
であり、その他の特殊な元素の添加を必要としな
い。しかしながら、鉄損値などの電磁特性を向上
すさせる必要から、一般的に添加されるAl,Si
などの合金元素が多量に添加されていても、以下
に述べる理由により、10ppm以上の固溶(C+
N)を有することは可能であり、本発明の効果は
現われる。 即ち、Alが添加された場合には、固溶NはN
原子がAlNとして固定されるため減少あるいは
存在しなくなるが、固溶Cを10ppm以上にするこ
とは容易である。 また、Siの多量添加(数%程度まで)に対して
は、よく知られているように固溶(C+N)量は
大きく変化しない。 本発明に規定した条件での温度は、他の圧延と
の組合せ、つまり熱延−温延、温延−冷延あるい
は熱延−温延−冷延の組合せで実施しても有効で
あるが、この場合冷延の圧下率は温延の圧下率以
下であることが望ましい。 実施例 1 真空溶解したC,Nの含有量の異なる鋼を1200
℃に加熱し、仕上温度950℃で板厚2.0mmに熱延後
空冷した。これらの試料の化学成分および内部摩
擦法で評価した固溶(C+N)の量を第1表に示
す。
The present invention relates to a new method for manufacturing a non-oriented electrical steel sheet that fully develops the 110,001 orientation in a process based on rolling and annealing, and satisfies both improvement in magnetic flux density and reduction in iron loss. For magnetic steel sheets, it is already well known that steel sheets with a high degree of integration in 110,001 directions are preferable in order to improve the magnetic flux density regardless of whether the magnetic flux is oriented or non-directional. Non-oriented electrical steel sheets are made by hot rolling ultra-low carbon steel or low carbon aluminum killed steel with Si and Al added as necessary, and then cold rolling once or twice with intermediate annealing in between. After being made into a cold-rolled steel sheet of product thickness, it is manufactured by final annealing and, if necessary, temper rolling. In this conventional method, a combination of cold rolling and annealing is performed twice.
Because the process is repeated several times, energy consumption in the manufacturing process is also large. On the other hand, a high accumulation of 100,001 could not be obtained with a single combination of cold rolling and annealing. On the other hand, if the present invention is applied, it is possible to sufficiently increase the concentration of 110,001 in a single treatment combining rolling and annealing, and a non-oriented electrical steel sheet with high magnetic flux density and low hysteresis loss can be obtained. can be obtained. Accordingly, the present invention produces an electrical steel sheet having a 110,001 texture in the main orientation, but such a steel sheet is also conventionally classified as a non-oriented electrical steel sheet. That is, in the present invention, the solid solution (C+N) is 10 ppm or more.
Low carbon steel with a carbon content of 200 ppm or less is rolled at a temperature range of 200 to 500°C with a reduction rate of 20% or more and 80% or less, and then recrystallized annealing is performed to develop the 110,001 orientation component of the texture. The main point is a method for manufacturing non-oriented electrical steel sheets, which is characterized by the following. The contents of the present invention will be explained in detail below. The present invention produces severe dynamic strain aging in the rolling stage prior to annealing, and utilizes the resulting special processed structure to improve the texture after annealing.
The aim is to increase the 10,001 direction component. Dynamic strain aging is strain aging during processing that occurs due to the interaction between dislocations that move during processing and solid solution C and N in the steel. According to the results of detailed research related to the present invention, when severe dynamic strain aging occurs during rolling, band-shaped regions with particularly large processing strains (hereinafter referred to as deformation bands) are formed within grains, and during annealing, these band-shaped regions are formed. 1 in the deformation zone
10,001 recrystallization nuclei are preferentially formed and contribute to an increase in the 110,001 orientation component in the texture after annealing. In order to produce such dynamic strain aging, the low carbon steel material must first have a sufficient amount of solid solution (C+
must contain N), and the solid solution (C+N) measured by internal friction method etc. at the stage of warm rolling.
must be 10ppm or more. Solid solution (C
+N) is less than 10 ppm, the degree of dynamic strain aging is so small that the effects of the present invention cannot be expected. Further, in the present invention, the larger the amount of solid solution (C+N), the more effective it is, but the upper limit is 200 ppm from the solid solubility limit of (C+N) in the ferrite phase, and more preferably in the range of 50 to 150 ppm. Next is the rolling temperature. At temperatures below 200℃, the diffusion of C and N atoms in the steel is slow, and the time required for C and N atoms to diffuse and move toward dislocations is too long, resulting in dynamic strain aging. It doesn't happen enough. Also
In the temperature range over 500℃, C and N diffuse quickly enough to
N atoms can easily reach dislocations, but dislocations and C,
The interaction with N atoms is weak, and dynamic strain aging disappears. Therefore, the rolling temperature must be in the range of 200 to 500°C, that is, in the range of warm rolling (hereinafter referred to as hot rolling). Further, if the reduction ratio during rolling is less than 20%, the amount of multiplication of dislocations during rolling is small, and therefore dynamic strain aging does not occur violently and is not effective. For this reason, the rolling reduction ratio must be 20% or more. When the reduction rate during rolling exceeds 80%, the dislocation density becomes extremely high.
On the contrary, since the deformation becomes uniform and no deformation band exists anymore, the effects of the present invention cannot be expected in this case. Among these, the preferred rolling reduction ratio during rolling is in the range of 50 to 75%. Since the effects of the present invention are manifested by recrystallization after rolling, it is necessary to perform recrystallization annealing under conditions that cause recrystallization after rolling under the above conditions. That is, continuous annealing (for example, 700° C. to 800° C.×5 minutes) recrystallization annealing, which is normally employed in the production of non-oriented electrical steel sheets, is performed to develop the 110,001 orientation component. The material steel used in carrying out the present invention is 10ppm.
It is sufficient to contain the above solid solution (C+N), and there is no need to add other special elements. However, due to the need to improve electromagnetic properties such as iron loss, Al and Si are commonly added.
Even if a large amount of alloying elements such as C +
N) is possible, and the effect of the present invention appears. That is, when Al is added, the solid solution N becomes N
Since the atoms are fixed as AlN, it decreases or ceases to exist, but it is easy to increase the solid solution C to 10 ppm or more. Furthermore, as is well known, when a large amount of Si is added (up to about several percent), the amount of solid solution (C+N) does not change significantly. The temperature under the conditions specified in the present invention is effective even if it is carried out in combination with other rolling, that is, hot rolling-hot rolling, hot rolling-cold rolling, or hot rolling-hot rolling-cold rolling. In this case, it is desirable that the rolling reduction in cold rolling is equal to or lower than that in hot rolling. Example 1 1200 vacuum melted steels with different C and N contents
℃, hot-rolled to a thickness of 2.0 mm at a finishing temperature of 950℃, and air-cooled. Table 1 shows the chemical composition of these samples and the amount of solid solution (C+N) evaluated by the internal friction method.

【表】【table】

【表】 全試料とも他の元素は以下の通り。 Si≦0.01%、Mn=0.01%、P=0.002%、S=
0.004%、Al=0.002%、残部Fe。 これらの試料を10〜80%の圧下率で、室温〜
700℃の温度で圧延し、700℃×5分の再結晶焼鈍
をおこなつてから、それぞれの試料についてX線
極点図を作成し、110,001の方位成分強度
比(ランダム集合組織をもつ標準試料の場合を基
準としたX線の反射強度比)を求めた。 これは、110,001の方位成分強度比が圧
延方向の磁気特性と密接に関係することが良く知
られているからであり、一般に110,001の
方位成分強度比が高いものは磁気特性も良好であ
る。 このことは、後述する第3図、第4図からも、
110,001強度比の高い場合には飽和磁束密
度や鉄損が良くなることが判る。 この110,001強度比と成分、工程条件と
の関係を第1図、第2図に示す。 第1図は、上述の各種条件で製造した試料の1
10,001の方位成分強度比の測定結果を整理
し、温延前の熱延板の固定(C+N)量と焼鈍後
の110,001方位成分のランダム強度比との
関係を示したものである。 第1図は、圧延温度370℃の温延の結果で、横
軸は固溶(C+N)量であり、第1表中の固溶
(C+N)に対応している。 第1図から判るように、本発明の範囲内である
固溶(C+N)が10ppm以上の試料を、20%以上
の圧下率で温延(圧延温度370℃)した場合、焼
鈍後の110,001強度比が著しく高くなる。
(図中A;圧下率70%、B;圧下率30%、C;圧
下率10%を示した。)また一方第2図は、第1図
と同様に測定結果を整理し、圧下率50%の場合の
圧延温度と焼鈍後の110,001方位成分のラ
ンダム強度比との関係を示したものであり、本発
明の200〜500℃での温延(圧下率50%)が、11
0,001強度比の著しい増大に寄与しているこ
とを示している。(図中a;本発明材の試料No.6、
b;比較材の試料No.1を示す。) 従来工程材、すなわち固溶(C+N)が10ppm
未満の状態で室温において圧延した場合には、磁
気特性と密接に関係する110,001強度比は
ほぼ1となり、本発明の場合に比べ低い値とな
る。 一方、現在製造されている無方向性電磁鋼板の
110,001強度比は、熱延−冷延−最終焼鈍
のプロセスを経た状態で0.5以下となるのが通例
である。 したがつて、本発明の製品の磁気特性を向上さ
せることのみならず、現行プロセスの工程省略も
可能である。 実施例 2 第1表における試料No.2とNo.7を用い、室温〜
700℃の各温度で、別々に各々75%の圧延をおこ
ない、板厚0.5mmとしたのち、700℃×5分の焼鈍
で再結晶を終了させ、各々の試料について圧延方
向の電磁特性を測定した結果を第3図及び第4図
に示す。 図から明らかなごとく、本発明材a(試料No.7)
を本発明条件(200〜500℃)で圧延した場合(圧
下率75%、板厚0.5mm)には、比較材b(試料No.
2)に比して圧延方向について高磁束密度と低鉄
損値が同時に得られており、電磁特性が著しく改
善された。 このように、本発明では温間圧延前の鋼中の固
溶(C+N)量を調整し、適正な圧延温度を採用
するだけで、著しく磁気特性を改善する効果を示
す。 実施例 3 C:0.050%、Si:2.90%、Mn:0.086%、S:
0.025%、Sol.Al:0.027%、N:0.0071%の化学
組成を有する鋼を溶解し、1300℃に加熱後、仕上
温度970℃で板厚2.0mmに熱延し、その後の空冷中
の400℃および室温で、別々に各々の75%の圧延
をおこない、0.5mmの板厚とした。 そののち、800℃×5分の焼鈍で再結晶を終了
させ、圧延方向の電磁特性を測定した。 その結果を第2表に示す。但し、75%圧延の直
前での固溶(C+N)は、内部摩擦法による測定
の結果、400℃での圧延直前で83ppm、室温での
圧延直前で72ppmであつた。 表から明らかなごとく、本発明材では、高磁束
密度と低鉄損値が同時に得られており、本発明を
適用することにより電磁特性の著しい改善が図ら
れる。
[Table] Other elements in all samples are as follows. Si≦0.01%, Mn=0.01%, P=0.002%, S=
0.004%, Al=0.002%, balance Fe. These samples were heated to room temperature at a reduction rate of 10 to 80%.
After rolling at a temperature of 700°C and recrystallization annealing at 700°C for 5 minutes, an X-ray pole figure was created for each sample. The X-ray reflection intensity ratio (based on the sample) was determined. This is because it is well known that the directional component intensity ratio of 110,001 is closely related to the magnetic properties in the rolling direction, and generally, those with a high directional component intensity ratio of 110,001 have good magnetic properties. It is. This can also be seen from Figures 3 and 4, which will be described later.
It can be seen that when the 110,001 intensity ratio is high, the saturation magnetic flux density and iron loss are improved. The relationship between this 110,001 intensity ratio, components, and process conditions is shown in FIGS. 1 and 2. Figure 1 shows one of the samples manufactured under the various conditions mentioned above.
The measurement results of the 10,001 orientation component strength ratio are summarized and the relationship between the fixed (C+N) amount of the hot rolled sheet before hot rolling and the random strength ratio of the 110,001 orientation component after annealing is shown. FIG. 1 shows the results of hot rolling at a rolling temperature of 370° C., and the horizontal axis is the amount of solid solution (C+N), which corresponds to the solid solution (C+N) in Table 1. As can be seen from Fig. 1, when a sample with a solid solution (C+N) of 10 ppm or more, which is within the scope of the present invention, is hot rolled (rolling temperature 370°C) at a reduction rate of 20% or more, 110, 001 intensity ratio becomes significantly higher.
(In the figure, A shows a rolling reduction rate of 70%, B shows a rolling reduction rate of 30%, and C shows a rolling reduction rate of 10%.) On the other hand, in Figure 2, the measurement results are arranged in the same way as in Figure 1, and the rolling reduction rate is 50%. This figure shows the relationship between the rolling temperature and the random strength ratio of the 110,001 orientation component after annealing in the case of 110,001% of the rolling temperature.
It is shown that this contributes to a significant increase in the 0,001 intensity ratio. (a in the figure; sample No. 6 of the present invention material,
b: Comparative material sample No. 1 is shown. ) Conventional process materials, that is, solid solution (C + N) is 10ppm
When rolling is performed at room temperature in a state where the magnetic properties are less than 1, the 110,001 intensity ratio, which is closely related to magnetic properties, becomes approximately 1, which is a lower value than in the case of the present invention. On the other hand, the 110,001 strength ratio of currently manufactured non-oriented electrical steel sheets is usually 0.5 or less after undergoing the hot rolling-cold rolling-final annealing process. Therefore, it is possible not only to improve the magnetic properties of the product of the present invention, but also to omit steps in the current process. Example 2 Samples No. 2 and No. 7 in Table 1 were used at room temperature to
After rolling 75% of each sample separately at each temperature of 700℃ to obtain a plate thickness of 0.5mm, recrystallization was completed by annealing at 700℃ for 5 minutes, and the electromagnetic properties of each sample in the rolling direction were measured. The results are shown in FIGS. 3 and 4. As is clear from the figure, the invention material a (sample No. 7)
When rolled under the conditions of the present invention (200 to 500°C) (reduction ratio 75%, plate thickness 0.5 mm), comparative material B (sample No.
Compared to 2), high magnetic flux density and low iron loss values were simultaneously obtained in the rolling direction, and the electromagnetic properties were significantly improved. As described above, the present invention exhibits the effect of significantly improving magnetic properties simply by adjusting the amount of solid solution (C+N) in the steel before warm rolling and adopting an appropriate rolling temperature. Example 3 C: 0.050%, Si: 2.90%, Mn: 0.086%, S:
Steel with a chemical composition of 0.025%, Sol.Al: 0.027%, and N: 0.0071% was melted, heated to 1300℃, hot rolled to a thickness of 2.0mm at a finishing temperature of 970℃, and then heated to 400℃ during air cooling. ℃ and room temperature, 75% of each was rolled separately to give a thickness of 0.5 mm. Thereafter, recrystallization was completed by annealing at 800°C for 5 minutes, and the electromagnetic properties in the rolling direction were measured. The results are shown in Table 2. However, the solid solution (C+N) immediately before 75% rolling was 83 ppm immediately before rolling at 400° C. and 72 ppm immediately before rolling at room temperature, as measured by the internal friction method. As is clear from the table, the material of the present invention simultaneously achieves high magnetic flux density and low core loss, and by applying the present invention, the electromagnetic properties can be significantly improved.

【表】 本実施例から判るように、Siを含有する場合に
も本発明の方法は有効であり、実施例1,2と異
なりSiが添加されているので、鉄損W15/50が著し
く低下している。
[Table] As can be seen from this example, the method of the present invention is effective even when Si is contained, and unlike Examples 1 and 2, since Si is added, the iron loss W 15/50 is significantly reduced. It is declining.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、熱延板の固溶(C+N)量と焼鈍後
の110,001方位成分のランダム強度比との
関係、第2図は、圧延温度と焼鈍後の110,0
01方位成分のランダム強度比との関係図、第3
図は、圧延温度と磁束密度との関係図、第4図は
圧延温度と鉄損値との関係図である。
Figure 1 shows the relationship between the amount of solid solution (C+N) in the hot rolled sheet and the random strength ratio of the 110,001 orientation component after annealing, and Figure 2 shows the relationship between the rolling temperature and the 110,001 orientation component after annealing.
Relationship diagram with random intensity ratio of 01 azimuth component, 3rd
The figure is a diagram showing the relationship between rolling temperature and magnetic flux density, and FIG. 4 is a diagram showing the relationship between rolling temperature and iron loss value.

Claims (1)

【特許請求の範囲】[Claims] 1 固溶(C+N)が10ppm以上200ppm以下で
ある低炭素鋼を、200〜500℃の温度範囲において
20%以上80%以下の圧下率で圧延し、そのあと再
結晶焼鈍をおこない、集合組織の110,001
方位成分を発達せしめることを特徴とする温間圧
延を利用した無方向性電磁鋼板の製造法。
1 Low carbon steel with a solid solution (C+N) of 10 ppm or more and 200 ppm or less in a temperature range of 200 to 500℃
Rolling is performed at a rolling reduction of 20% or more and 80% or less, and then recrystallization annealing is performed to improve the texture of 110,001
A method for manufacturing non-oriented electrical steel sheets using warm rolling, which is characterized by developing directional components.
JP18311781A 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling Granted JPS5884924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18311781A JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18311781A JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Publications (2)

Publication Number Publication Date
JPS5884924A JPS5884924A (en) 1983-05-21
JPH037725B2 true JPH037725B2 (en) 1991-02-04

Family

ID=16130072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18311781A Granted JPS5884924A (en) 1981-11-17 1981-11-17 Production of electrical steel plate utilizing warm rolling

Country Status (1)

Country Link
JP (1) JPS5884924A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870817B2 (en) * 1989-06-29 1999-03-17 新日本製鐵株式会社 Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties
JP2870818B2 (en) * 1989-06-29 1999-03-17 新日本製鐵株式会社 Manufacturing method of full process non-oriented electrical steel sheet with excellent magnetic properties
JP4613414B2 (en) * 2000-11-09 2011-01-19 Jfeスチール株式会社 Electrical steel sheet for motor core and method for manufacturing the same

Also Published As

Publication number Publication date
JPS5884924A (en) 1983-05-21

Similar Documents

Publication Publication Date Title
US4666534A (en) Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
US4898627A (en) Ultra-rapid annealing of nonoriented electrical steel
US4692193A (en) Process for producing a grain-oriented electrical steel sheet having a low watt loss
JPS62185828A (en) Manufacture of frame material for shadow mask
US5676770A (en) Low leakage flux, non-oriented electromagnetic steel sheet, and core and compact transformer using the same
JPH1161256A (en) Production of non-oriented silicon steel sheet excellent in surface property and having low iron loss
JPH037725B2 (en)
US5913987A (en) Finish treatment method and silicon steel sheet manufactured by direct casting method
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH086135B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
EP0084980A2 (en) Non-oriented electrical steel sheet having a low watt loss and a high magnetic flux density and a process for producing the same
US4548655A (en) Method for producing cube-on-edge oriented silicon steel
JP2853552B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and manufacturing method
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JPS5980726A (en) Production of high strength cold rolled steel sheet having excellent deep drawability and small plate anisotropy
JPS641531B2 (en)
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JP3053407B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH021893B2 (en)
JP2719415B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0331420A (en) Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss