JPH03223424A - Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property - Google Patents

Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property

Info

Publication number
JPH03223424A
JPH03223424A JP2016105A JP1610590A JPH03223424A JP H03223424 A JPH03223424 A JP H03223424A JP 2016105 A JP2016105 A JP 2016105A JP 1610590 A JP1610590 A JP 1610590A JP H03223424 A JPH03223424 A JP H03223424A
Authority
JP
Japan
Prior art keywords
annealing
flux density
magnetic flux
iron loss
heating rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105A
Other languages
Japanese (ja)
Other versions
JPH07116512B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Kunikazu Tomita
邦和 冨田
Seiji Nakamura
清治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2016105A priority Critical patent/JPH07116512B2/en
Publication of JPH03223424A publication Critical patent/JPH03223424A/en
Publication of JPH07116512B2 publication Critical patent/JPH07116512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve the iron loss and magnetic flux density of the silicon steel sheet by carrying out hot rolling, coiling, heating after cold rolling, and continuous annealing under respectively specified conditions at the time of producing a semiprocessed nonoriented silicon steel sheet with a specific composition. CONSTITUTION:A slab which has a composition consisting of, by weight, <=0.005% C, 0.1-1.0% Si, at least 0.25% Mn, at least 0.03% P, 0.004-0.080% SolAl, 0.001-0.005% N, and the balance Fe with inevitable impurities and satisfying 2<=[SolAl(atomic%)/N(atomic%)]<=20 is heated to >=1150 deg.C and hot rolled. Subsequently, the resulting steel strip is coiled at a coiling temp. CT represented by 450<=CT<=-7.5 [Al(atomic%)/N(atomic%)]+650( deg.C), pickled, cold-rolled, heated at a heating rate HR satisfying 5<=HR<=40( deg.C), and continuously annealed at >=720 deg.C soaking temp. By this method, the semiprocessed nonoriented silicon steel sheet excellent in iron loss and magnetic flux density can be obtained with high production efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、需要家において歪取焼鈍が施される、セミプ
ロセス無方向性電磁鋼板の製造方法に関し、鉄損、磁束
密度ともに優れた電磁鋼板を低コストで製造し得る方法
を提供するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing semi-processed non-oriented electrical steel sheets that are subjected to strain relief annealing at the customer's end. The present invention provides a method for manufacturing steel plates at low cost.

〔従来の技術〕[Conventional technology]

Si量が1%以下のいわゆる低級無方向性電磁鋼板は、
鉄損値は高いものの磁束密度が高く。
So-called low-grade non-oriented electrical steel sheets with a Si content of 1% or less are
Although the iron loss value is high, the magnetic flux density is high.

また安価であることから、家庭電気製品用小型モータを
中心に多量に使用されている.これら電磁鋼板は、鉄鋼
メーカーで所定の磁気特性を具備させ、需要家で打抜き
後そのまま製品に組み立てられるフルプロセス材と、需
要家での打抜き後に歪取焼鈍が施されて最終の磁気特性
となるセミプロセス材に大別される。
Also, because it is inexpensive, it is used in large quantities, mainly in small motors for home appliances. These electromagnetic steel sheets are fully processed materials that are made to have predetermined magnetic properties by the steel manufacturer, then assembled into products after being punched by the consumer, and are subjected to strain relief annealing after being punched by the consumer to achieve the final magnetic properties. It is broadly classified into semi-processed materials.

電磁鋼板においては,主として鉄損と磁束密度の二つの
磁気特性が要求されており、これらの磁気特性を決定す
る冶金学的な要因としては、鋼成分、フェライト粒径、
集合組織等積々あることが知られている。鉄損低下のた
めには、Si量を増し固有抵抗を高めることが有効であ
るが、一定のSiレベルにおいて鉄損値を低下させるた
めには、フェライト粒径を増大させることが最も効果が
ある。また磁束密度向上に関しては、磁気特性上好まし
い集合組織を発達させる必要がある。これらを踏まえ、
セミプロセス材の磁気特性の向上を図るために、従来、
以下のような技術が開示されている。
Two main magnetic properties are required for electrical steel sheets: core loss and magnetic flux density.The metallurgical factors that determine these magnetic properties include steel composition, ferrite grain size,
It is known that there are many kinds of collective tissues. In order to reduce iron loss, it is effective to increase the amount of Si and increase the specific resistance, but in order to reduce the iron loss value at a certain Si level, increasing the ferrite grain size is most effective. . Furthermore, in order to improve the magnetic flux density, it is necessary to develop a texture that is favorable in terms of magnetic properties. Based on these,
In order to improve the magnetic properties of semi-processed materials,
The following technologies have been disclosed.

■熱間圧延後に熱延板焼鈍を行う技術(例えば、特開昭
57−203718号) ■熱延高温巻取により自己焼鈍を行う技術(例えば、特
開昭54−76422号) ■二冷圧、二回焼鈍を行う技術 ■焼鈍後に調質圧延を行う技術 ■AiNの析出を利用し粒径を粗大化する技術(特公昭
50−8976号、特開平1−139720号) 上記した各種技術の中で、■の方法は熱延板段階での焼
鈍により冷圧、焼鈍後のフェライト粒径を増大すること
により鉄損の低下を図り、また集合組織の改善により磁
束密度をも向上させようとするものであるが、新たに焼
鈍工程が加わるため、大幅なコスト上昇は免れ得ない。
■Technique of annealing a hot-rolled sheet after hot rolling (for example, JP-A No. 57-203718) ■Technology of self-annealing by hot-rolling and high-temperature coiling (for example, JP-A-54-76422) ■Two-cold rolling , a technique of performing two-time annealing ■ a technique of performing temper rolling after annealing ■ a technique of coarsening the grain size using precipitation of AiN (Japanese Patent Publication No. 50-8976, Japanese Patent Application Laid-Open No. 1-139720) Among them, method (2) aims to reduce iron loss by increasing the ferrite grain size after cold pressing and annealing by annealing at the hot-rolled sheet stage, and also aims to improve magnetic flux density by improving the texture. However, since a new annealing process is added, a significant increase in cost cannot be avoided.

■の方法は圧延後の熱延板が保有する熱で自己焼鈍を行
うものであり、コスト面では■よりも有利である。しか
し、この方法により効果を得ようとする場合には、巻取
温度を極めて高くする必要があり、このため安定した操
業は困難であり、またコイル全長にわたり均一な特性を
得ることが難しい。さらに、巻取時の内部酸化により表
面性状が劣化するという問題もある。
Method (2) performs self-annealing using the heat possessed by the hot-rolled sheet after rolling, and is more advantageous than method (2) in terms of cost. However, if this method is to be effective, it is necessary to raise the winding temperature extremely high, which makes stable operation difficult and also makes it difficult to obtain uniform characteristics over the entire length of the coil. Furthermore, there is also the problem that the surface quality deteriorates due to internal oxidation during winding.

■の方法は■の方法以上に工程を増加するため、大幅な
コスト上昇となり、低級電磁鋼板の使命である低コスト
化と相反する製造法である。
Method (2) requires more steps than method (2), resulting in a significant increase in cost, and is a manufacturing method that conflicts with the mission of low-grade electrical steel sheets to reduce costs.

■の方法は鉄鋼メーカーでの焼鈍(以下、仕上焼鈍とい
う)後、更に調質圧延を施し、歪誘起により需要家での
歪取焼鈍時の粒成長性を向上させ、低鉄損化を図ろうと
するものである。しかし、この方法においても調質圧延
の工程が加わるため、コスト上昇につながる。また調質
圧延率が大きいため、耳波、中伸び等の形状不良を引き
起こすという問題がある。
Method (2) involves annealing (hereinafter referred to as "finish annealing") at the steel manufacturer, followed by skin pass rolling, which induces strain to improve grain growth during strain relief annealing at the customer, thereby reducing iron loss. It is something that we try to do. However, even in this method, the step of temper rolling is added, leading to an increase in cost. In addition, since the temper rolling rate is high, there is a problem in that shape defects such as ear waves and mid-elongation occur.

■の方法は.AlNの析出を利用したもので、仕上焼鈍
ままではAINのピンニング効果により細粒とし、歪取
焼鈍時にAINのピンニングを解除することにより、粗
大なフェライト粒を出現させ、低鉄損化をはかる技術で
ある。このうち特公昭50−8976号はC量を0,0
05wt%以上含有させ、仕上焼鈍時のAiN析出を円
滑化するものであるが、Cによる磁気時効を回避するた
めには、脱炭雰囲気で焼鈍を行わねばならず、生産効率
は大きく低下する。また高C材を用いることにより、仕
上焼鈍中のAINの析出の円滑化効果を利用するにもか
かわらず、一方で脱炭により低C化する、という相反す
る現象を同時に行わせようとする製造法であり、このた
め.AlNの析出状態を安定化することが難しく、粗大
化も安定し難い。また、単にフェライト粒の粗大化によ
る低鉄損化のみを狙ったものであるため、磁気特性のも
う一方の指標である磁束密度は、歪取焼鈍後も同等もし
くは、低下する傾向にある。また、特開平1−1397
20号は、前記技術と同様に単にフェライト粒を粗大化
して低鉄損化を指向したものである。このため、仕上焼
鈍温度も単に打抜き性の観点だけから700℃以下の低
温焼鈍としているが、この焼鈍温度では後述するような
磁束密度の向上効果は見られず、低いレベルとなる。
■The method is. A technology that utilizes the precipitation of AlN. When finished annealing, the AIN pinning effect produces fine grains, and by releasing the AIN pinning during strain relief annealing, coarse ferrite grains appear, reducing core loss. It is. Among these, Special Publication No. 50-8976 has a C content of 0.0.
05 wt% or more to smooth AiN precipitation during final annealing, but in order to avoid magnetic aging due to C, annealing must be performed in a decarburizing atmosphere, which greatly reduces production efficiency. In addition, by using a high C material, although the effect of smoothing the precipitation of AIN during finish annealing is utilized, on the other hand, the manufacturing process attempts to achieve the contradictory phenomenon of lowering C through decarburization at the same time. Law and therefore. It is difficult to stabilize the precipitation state of AlN, and it is also difficult to stabilize the coarsening of AlN. Furthermore, since the aim is simply to reduce core loss by coarsening the ferrite grains, the magnetic flux density, which is another index of magnetic properties, tends to be the same or to decrease even after strain relief annealing. Also, JP-A-1-1397
Similar to the above technology, No. 20 simply coarsens the ferrite grains and aims at lower core loss. For this reason, the finish annealing temperature is also low-temperature annealing of 700° C. or less simply from the viewpoint of punchability, but at this annealing temperature, the effect of improving the magnetic flux density as described later is not observed, and the magnetic flux density is at a low level.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前述のAINの析出を利用したフェライト粒の粗大化技
術は、大幅なコスト上昇を招くことなく一応の低鉄損化
は達成され、鉄損改善に関しては有効な技術である。し
かし、磁束密度に関しては決して満足のいくレベルでは
ない。特に、本発明が対象としている小型モータの分野
においては、低磁束密度材ではモータのより一層の小型
化が達成できず、また使用時の電流の増加にもつながる
ため、トータルの商品特性として見た場合、高い評価は
得られない。このため低コストのメリットを生かしつつ
、鉄損、磁束密度ともに優れた電磁鋼板の開発が待たれ
ていた。
The above-described technology for coarsening ferrite grains using precipitation of AIN achieves a certain level of reduction in core loss without causing a significant increase in cost, and is an effective technology for improving core loss. However, the magnetic flux density is by no means at a satisfactory level. In particular, in the field of small motors that the present invention targets, low magnetic flux density materials cannot achieve further miniaturization of the motor and also lead to an increase in current during use. If you do so, you will not receive a high evaluation. For this reason, the development of an electrical steel sheet with excellent iron loss and magnetic flux density while taking advantage of low cost has been awaited.

本発明は前述した従来法の問題に鑑み、低コストの製造
方法により、歪取焼鈍後に一層の低鉄損化を可能とする
とともに、磁束密度が著しく高いセミプロセス無方向性
電磁鋼板の製造方法を提供せんとするものである。
In view of the problems of the conventional method described above, the present invention provides a method for manufacturing a semi-processed non-oriented electrical steel sheet with a significantly high magnetic flux density, which enables further reduction in core loss after strain relief annealing using a low-cost manufacturing method. We aim to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、需要家での歪取焼鈍を前提としたセミプ
ロセス無方向性電磁鋼板において、コストの上昇なしに
低鉄損化と高磁束密度化を両立すべく、実験、研究を重
ねてきた。その結果、鋼成分と熱延巻取温度の両者の規
定により、仕上焼鈍前のAINの固溶状態を最適化し、
且つその後の仕上焼鈍において、鋼成分に対し加熱速度
及び温度を最適化して連続焼鈍することにより、AtN
の析出と再結晶の進行を適切にマツチングさせ、歪取焼
鈍後の磁気特性、特に磁束密度を優れたものにできるこ
とを新たに見いだし、本発明を完成させるに至ったもの
である。
The present inventors have repeatedly conducted experiments and research in order to achieve both low iron loss and high magnetic flux density without increasing cost in semi-processed non-oriented electrical steel sheets that are intended for strain relief annealing at customers. It's here. As a result, the solid solution state of AIN before final annealing was optimized by specifying both the steel composition and hot rolling coiling temperature,
In the subsequent final annealing, continuous annealing is performed by optimizing the heating rate and temperature for the steel components.
The present invention has been completed based on the new discovery that it is possible to appropriately match the progress of precipitation and recrystallization to improve the magnetic properties, especially the magnetic flux density, after strain relief annealing.

すなわち、本発明の特徴は、C: 0.005%it%
以下、Si : 0.1〜1.0wt%、Mn : 0
.25wt%以上、P:0.0:ht%以上、Sol、
Al : 0.004〜0.080wt%、N:0.0
01〜0.005wt%、残部Fe及び不可避的不純物
からなり、且つSol.Al含有量とN含有量との原子
量比率が、゛ 2≦(Sol、Al(at%)/N(at%)〕≦20
を満足する成分組成のスラブを1150℃以上に加熱、
熱間圧延後、鋼板を、 450≦CT≦−7,5(^1(at%)/N(at%
))+650  (”C)の範囲の巻取温度CTで巻取
り、該鋼帯を酸洗、冷間圧延後、 5≦HR≦40  (’C/ s) の範囲の加熱速度HRで加熱し、720℃以上の均熱温
度で連続焼鈍するようにしたことにある。
That is, the feature of the present invention is that C: 0.005%it%
Below, Si: 0.1 to 1.0 wt%, Mn: 0
.. 25wt% or more, P: 0.0:ht% or more, Sol,
Al: 0.004-0.080wt%, N: 0.0
01 to 0.005 wt%, the balance consisting of Fe and inevitable impurities, and Sol. The atomic weight ratio of Al content and N content is {2≦(Sol, Al(at%)/N(at%))}≦20
Heating a slab with a composition that satisfies the above to 1150℃ or higher,
After hot rolling, the steel plate is 450≦CT≦-7,5(^1(at%)/N(at%
)) Coiling at a coiling temperature CT in the range of +650 ('C), pickling the steel strip, cold rolling, and heating at a heating rate HR in the range of 5≦HR≦40 ('C/s). , continuous annealing is performed at a soaking temperature of 720° C. or higher.

〔作  用〕[For production]

以下、本発明の構成及びその限定理由について詳細に説
明する。
Hereinafter, the configuration of the present invention and the reasons for its limitations will be explained in detail.

まず、鋼の成分組成の限定理由について説明する。First, the reasons for limiting the composition of steel will be explained.

C:Cを多量に含有させると、仕上焼鈍時もしくは歪取
焼鈍時に脱炭焼鈍を行う必要が生じ、生産性が低下する
。また同時に、脱炭の進行程度によりAINの析出状態
が影響を受は不安定となる。このような脱炭焼鈍を不要
とし、AiN析出の安定化と磁気時効防止のため、C:
0.005wt%以下の極低炭素鋼とする。
C: When a large amount of C is contained, it becomes necessary to perform decarburization annealing during finish annealing or strain relief annealing, resulting in a decrease in productivity. At the same time, the state of AIN precipitation is affected by the degree of progress of decarburization and becomes unstable. In order to eliminate the need for such decarburization annealing, stabilize AiN precipitation, and prevent magnetic aging, C:
Ultra-low carbon steel with a carbon content of 0.005 wt% or less.

Si : Siの増加は固有抵抗を高め鉄損を低下させ
る効果が大きいため、その下限を0.1wt%とする。
Si: Since an increase in Si has a large effect of increasing specific resistance and reducing iron loss, the lower limit is set to 0.1 wt%.

但し、1wt%を超えると飽和磁束密度を低下させ、ま
たコストの上昇を招くため、上限はlwt%とする。
However, if it exceeds 1 wt%, the saturation magnetic flux density will decrease and the cost will increase, so the upper limit is set at lwt%.

Mn:本発明において、にnは集合組織改善のために重
要な成分である。後述するように、Mn量が0.25w
t%未満ではフェライト粒の粗大化により低鉄担化は達
成されるものの、加熱速度を最適化しても集合組織は改
善されず、磁束密度は向上しない、このため下限を0.
25wt%とする。但し、Mn量を徒らに増大させても
コスト上昇を招くだけであり、このためMnは2%を上
限に添加することが好ましい。
Mn: In the present invention, Mn is an important component for improving texture. As described later, the amount of Mn is 0.25w
If it is less than t%, a low iron loading can be achieved by coarsening the ferrite grains, but even if the heating rate is optimized, the texture will not be improved and the magnetic flux density will not be improved.Therefore, the lower limit is set to 0.
It is set to 25wt%. However, unnecessarily increasing the amount of Mn will only lead to an increase in cost, so it is preferable to add Mn at an upper limit of 2%.

P:通常Pは打ち抜き性改善のために添加される場合が
多いが、本発明では仕上焼鈍時のAjNの析出を促進、
安定化する元素として必須の成分として規定する。Pが
0.03wt%未満では、仕上焼鈍前のAINの固溶状
態を適正化しても十分なAINの析出が得られず、フェ
ライト粒の粗大化が実現されない、このため下限を0.
03wt%とする。但し、脆化による圧延性、打抜性の
低下を防止するという観点からは、Pは0.5wt%以
下とすることが望ましく、さらに、Pを添加すると粒成
長性抑制効果が強まることから、この点も勘案した場合
には、0゜3 wt%をその上限とすることが好ましい
P: Normally, P is often added to improve punchability, but in the present invention, P is added to promote the precipitation of AjN during final annealing.
It is defined as an essential component as a stabilizing element. If P is less than 0.03 wt%, sufficient precipitation of AIN will not be obtained even if the solid solution state of AIN before final annealing is optimized, and coarsening of ferrite grains will not be achieved.Therefore, the lower limit is set to 0.03 wt%.
03wt%. However, from the viewpoint of preventing deterioration of rollability and punchability due to embrittlement, it is desirable to keep P at 0.5 wt% or less, and furthermore, since adding P strengthens the effect of suppressing grain growth, Taking this point into consideration, it is preferable to set the upper limit to 0°3 wt%.

Sol.Al : Sol、^慮は本発明において最も
重要な元素である1本発明は、仕上焼鈍時における微細
なAINの析出による粒界のピンニング効果と集合組織
改善効果を利用するものである。このためSol.Al
量は微細AtNの析出に適した0、004〜0.080
wt%に限定する。 0.004wt%未満では必要な
AjNの析出量が得られない。
Sol. Al: Sol, consideration is the most important element in the present invention. The present invention utilizes the grain boundary pinning effect and texture improving effect due to the precipitation of fine AIN during final annealing. For this reason, Sol. Al
The amount is 0.004 to 0.080, which is suitable for the precipitation of fine AtN.
Limited to wt%. If it is less than 0.004 wt%, the required amount of AjN precipitation cannot be obtained.

方、0.080wj%を超えると析出したAINが凝集
粗大化するためにピンニング効果が利用できない。
On the other hand, if it exceeds 0.080 wj%, the pinning effect cannot be utilized because the precipitated AIN aggregates and becomes coarse.

N:NもAINの析出に影響を与える元素である。N: N is also an element that affects the precipitation of AIN.

0.001i+t%未満では十分なAiNの析出が得ら
れない、一方、0.005ist%を超えると磁気特性
を劣化させる。
If it is less than 0.001 i+t%, sufficient AiN precipitation cannot be obtained, while if it exceeds 0.005 ist%, the magnetic properties will deteriorate.

Sol.Al(at%)/N(at%):前記のように
AINの析出に関してはAt量、N量が影響を及ぼすが
、個々の含有量によってAINの析出が一義的に決まる
のではなく、At量とN量の存在比率により月Nの析出
量、大きさおよび分布形態が決まってくる。Sol.A
lとNの原子量比率 [Sol。
Sol. Al (at%)/N (at%): As mentioned above, the amount of At and the amount of N influence the precipitation of AIN, but the precipitation of AIN is not uniquely determined by the individual contents; The amount, size, and distribution form of lunar N precipitation are determined by the amount and the existence ratio of N amount. Sol. A
Atomic weight ratio of l and N [Sol.

Al(at%)/N(at%)](以下、単に[Aj/
N]と記す)が2未満ではピンニングに必要なAINの
析出量が得られない、また[Ai/N]が20を超える
と一旦析出したAtNが凝集、粗大化してしまうため、
本発明において重要な要素である微細AINを生じ得な
い。
Al(at%)/N(at%)] (hereinafter simply [Aj/
If [Ai/N] is less than 2, the amount of precipitated AIN necessary for pinning cannot be obtained, and if [Ai/N] exceeds 20, the AtN that has precipitated will aggregate and become coarse.
Fine AIN, which is an important element in the present invention, cannot be produced.

次に、本発明の成分条件および加工、処理条件をAIN
固溶の最適化、高磁束密度化の観点から説明する。
Next, the component conditions and processing and treatment conditions of the present invention are
This will be explained from the perspective of optimizing solid solution and increasing magnetic flux density.

{AlN固溶の最適化) 本発明では上述のような成分組成の鋼を熱間圧延に供す
る。熱間圧延時の加熱温度については、AINの固溶を
充分に促進するために1150℃以上の温度での加熱を
必須とする。
{Optimization of AlN solid solution) In the present invention, steel having the above-mentioned composition is subjected to hot rolling. Regarding the heating temperature during hot rolling, heating at a temperature of 1150° C. or higher is essential in order to sufficiently promote solid solution of AIN.

本発明では、仕上焼鈍前にAiNの固溶を充分なものと
することが必須条件であり、且つAINの固溶を熱延板
段階での溶体化焼鈍なしに低コストで実現しようとする
ものである。このためには、熱間圧延後の巻取温度を適
切な範囲に管理し、巻取中におけるAINの析出を抑制
することが重要なポイントとなる。この点を明らかにす
るため、以下の試験を行った。
In the present invention, it is essential to have sufficient solid solution of AiN before final annealing, and it is intended to achieve solid solution of AI at low cost without solution annealing at the hot rolled sheet stage. It is. For this purpose, it is important to control the coiling temperature after hot rolling within an appropriate range and to suppress precipitation of AIN during coiling. In order to clarify this point, the following test was conducted.

第1表に示すようなAt量とN量を各々変えた鋼A1〜
A8のスラブを、1250℃に加熱して熱間圧延後、4
50〜700℃の間の温度で巻取を行った。づき続き酸
洗、冷間圧延を施して0.5mの板厚とした後、10℃
/Sの加熱速度で820℃X 1.5分の連続焼鈍によ
り仕上焼鈍を行った。第1図は、これら鋼板について、
加熱速度5℃/分、750℃X2hr均熱の条件で歪取
焼鈍を行った後の鉄損(W□、/、。)に及ぼす[^1
7N]と巻取温度の影響を調べたものであり、また、第
2図の写真は500℃巻取の鋼Al、A4、A8の歪取
焼鈍後のフェライト組織を示す。
Steel A1 with different At and N contents as shown in Table 1
After heating the A8 slab to 1250°C and hot rolling, 4
Winding was carried out at temperatures between 50 and 700°C. After being pickled and cold rolled to a thickness of 0.5m, the plate was heated at 10°C.
Finish annealing was performed by continuous annealing at 820° C. for 1.5 minutes at a heating rate of /S. Figure 1 shows these steel plates.
Effect on iron loss (W□, /,.) after strain relief annealing under the conditions of heating rate 5°C/min and soaking at 750°C for 2 hours [^1
7N] and the influence of the coiling temperature, and the photograph in FIG. 2 shows the ferrite structures of steels Al, A4, and A8 coiled at 500° C. after strain relief annealing.

第1図から明らかなように、歪取焼鈍後の鉄損が5 W
/kg未満の良好な領域は[AIハ]の巻取温度の両者
に依存している。  [AI/N]が2未満の領域にお
いては、いずれの巻取温度においても鉄損5゜OW/k
g未満は達成されておらず、逆に同一巻取温度で見た場
合、[AI/Nlが一定レベル以上でも鉄損5.OW/
kg以上となっており、最適[AI/N]の領域が存在
することがわかる。この[AI/N]の最適領域は、巻
取温度の低下に伴って拡大している。すなわち[AI/
N]に対し[−7,5({Al)/(N))+650]
 ’C以下の温度で巻取れば、鉄損5.0W / kg
未満が達成可能であることが明らかとなった。これはA
INの析出状態とフェライト粒の粗大化に起因している
。第2図の写真に示すように、[AAハ]が2未満の領
域では、低温巻取であってもAINの析出が少ないため
フェライト粒の粗大化は発生しない。一方[AI/N]
が高い場合や1巻取温度が高い場合は.AlNの析出は
起こるもののAjNが凝集、粗大化するため、やはりフ
ェライト粒の粗大化は起きない。これに対し、[AI/
N]と巻取温度が本発明が規定する範囲にある場合には
、微J18AjNのピンニングが解除される際の粒成長
駆動力によりフェライト粒が粗大化し、低鉄損化が達成
される。
As is clear from Figure 1, the iron loss after strain relief annealing is 5 W.
The good range of less than /kg depends on both [AIc] and the winding temperature. In the region where [AI/N] is less than 2, the iron loss is 5°OW/k at any winding temperature.
On the contrary, when looking at the same winding temperature, even if AI/Nl is above a certain level, the iron loss is 5. OW/
kg or more, and it can be seen that there is an optimal [AI/N] region. This optimum range of [AI/N] is expanding as the winding temperature decreases. In other words, [AI/
[-7,5({Al)/(N))+650]
If it is wound at a temperature below 'C, the iron loss is 5.0W/kg.
It has become clear that less than This is A
This is caused by the precipitation state of IN and coarsening of ferrite grains. As shown in the photograph of FIG. 2, in the region where [AAc] is less than 2, even if the material is rolled at a low temperature, precipitation of AIN is small, so that coarsening of ferrite grains does not occur. On the other hand [AI/N]
If the temperature is high or the winding temperature is high. Although precipitation of AlN occurs, since AjN aggregates and becomes coarse, the ferrite grains do not become coarse. On the other hand, [AI/
N] and the winding temperature are within the range specified by the present invention, the ferrite grains become coarse due to the grain growth driving force when the fine J18AjN pinning is released, and low core loss is achieved.

本発明ではこれらの結果を踏まえ、[AI/Nlを2〜
20と規定するとともに、巻取温度を[−7,5((A
皇)/(N)) +6501 ’C以下に規定するもの
である。
In the present invention, based on these results, [AI/Nl is 2 to 2]
20, and the winding temperature is [-7,5((A
)/(N)) +6501 'C These are the following.

なお、巻取時のAIN析出制御に関しては、巻取温度の
低下が有効であるが、巻取温度を極度に低温化すると安
定した操業が困難となり、また水冷却時の冷却むらに起
因する板厚変動などの形状不良を生ずるため、下限を4
50℃に限定する。
Regarding the control of AIN precipitation during winding, lowering the winding temperature is effective, but if the winding temperature is extremely low, stable operation becomes difficult, and the plate The lower limit is set to 4 to avoid shape defects such as thickness fluctuations.
Limited to 50°C.

本発明のように連続焼鈍においてAIN析出を安定的に
制御するためには.Alの固溶状態の最適化だけでなく
、更にAINの析出を促進する手段を講する必要がある
。このために種々の方法について検討した結果、Pの添
加が最も有効であることが明らかとなった。第1表に示
すようなP量を変化させた鋼B1〜B6のスラブを、1
200℃に加熱して熱間圧延後、500℃で巻取り、引
き続き酸洗、冷圧を行い0.5■厚の板厚とした。その
後10℃/Sの加熱速度で800℃×2分の連続焼鈍を
行い、更に加熱速度5℃/分、均熱750℃X2hrの
条件で歪取焼鈍を行った。第3図に、このようにして得
られた鋼板の鉄損CWxs/s。)に及ぼすPの影響を
示す。
In order to stably control AIN precipitation during continuous annealing as in the present invention. In addition to optimizing the solid solution state of Al, it is necessary to take measures to further promote the precipitation of AIN. As a result of examining various methods for this purpose, it became clear that the addition of P was the most effective. Slabs of steel B1 to B6 with varying amounts of P as shown in Table 1 were prepared at 1
After heating to 200°C and hot rolling, it was wound up at 500°C, followed by pickling and cold pressing to give a plate thickness of 0.5mm. Thereafter, continuous annealing was performed at 800°C for 2 minutes at a heating rate of 10°C/S, and strain relief annealing was performed at a heating rate of 5°C/min and soaking at 750°C for 2 hours. FIG. 3 shows the iron loss CWxs/s of the steel plate thus obtained. ) shows the influence of P on

図のように、Pが0,03wt%以上では歪取焼鈍時の
フェライト粒が粗大化することにより、鉄損が5、OW
/kg以下と良好な値を示す。一方、Pが0.03wt
%未満では、正常粒成長による粒径増大だけで、粗大粒
は発生しない、他の[AI/N]の鋼についても同様に
調査したが、いずれもPが0,03wt%未満ではフェ
ライト粒の粗大化は起きなかった。
As shown in the figure, when P is 0.03 wt% or more, the ferrite grains become coarse during strain relief annealing, resulting in an iron loss of 5 and OW.
/kg or less, which is a good value. On the other hand, P is 0.03wt
When the P content is less than 0.03 wt%, the grain size only increases due to normal grain growth, and coarse grains do not occur.A similar investigation was conducted on other [AI/N] steels, but in all cases, when the P content is less than 0.03 wt%, the ferrite grain size increases. No coarsening occurred.

(高磁束密度化) 前述のように鋼の成分組成、巻取温度を規制することに
より、仕上焼鈍前のAINの固溶状態を最適化し、また
微細INの析出を促進することで、フェライト粗大化に
よる低鉄損化は達成できるが、これだけでは高磁束密度
化は達成できない、このため本発明者らは、粗大化の利
点は残しつつ、磁束密度を向上させる方法について検討
を重ねた結果、Nnを一定レベル以上含有させ、仕上焼
鈍条件を最適化、特に加熱速度を適切に選ぶことにより
、歪取焼鈍後に高磁束密度化が達成されることを新たに
見い出したものである。以下、本発明の最も重要な要件
である仕上焼鈍条件について説明する。
(Higher magnetic flux density) As mentioned above, by regulating the steel composition and coiling temperature, the solid solution state of AIN before final annealing is optimized, and by promoting the precipitation of fine IN, coarse ferrite Although it is possible to achieve low iron loss through coarsening, it is not possible to achieve high magnetic flux density by this alone.As a result, the inventors have repeatedly studied ways to improve magnetic flux density while retaining the advantages of coarsening. It has been newly discovered that a high magnetic flux density can be achieved after strain relief annealing by containing Nn at a certain level or more and optimizing the final annealing conditions, especially by appropriately selecting the heating rate. The final annealing conditions, which are the most important requirements of the present invention, will be explained below.

第2表に示す鋼C4のスラブを1250℃に加熱、熱間
圧延後、500℃で巻取り、引続き酸洗、冷間圧延によ
り0.5■の板厚とした。この鋼板を1〜b り仕上焼鈍を行った。第4図はこれら鋼板の仕上焼鈍後
と、加熱速度10℃/分、750℃X 2hr均熱の歪
取焼鈍後の鉄損(W1s/s。)と磁束密度(Bs、)
に及ぼす加熱速度の影響を調べたものである0図に示さ
れるように、鉄損、磁束密度ともに加熱速度依存性が見
られる。
Slabs of steel C4 shown in Table 2 were heated to 1250°C and hot rolled, then wound up at 500°C, followed by pickling and cold rolling to give a thickness of 0.5cm. This steel plate was subjected to finish annealing. Figure 4 shows the iron loss (W1s/s) and magnetic flux density (Bs,) of these steel plates after final annealing and strain relief annealing at a heating rate of 10°C/min and soaking at 750°C for 2 hours.
As shown in Figure 0, which examines the influence of heating rate on the magnetic flux density, both iron loss and magnetic flux density are dependent on the heating rate.

鉄損の挙動は、加熱速度が5℃/Sと50℃/S前後を
境として3つの領域に分けられる6加熱速度3℃/S未
満の低加熱速度領域は、仕上焼鈍ままでは鉄損が最も低
く、歪取焼鈍による変化も小さい、これは仕上焼鈍中に
AINのピンニングが弱まり、仕上焼鈍段階で既に二次
再結晶が起き、フェライト粒が粗大化するためである。
The behavior of iron loss is divided into three regions with heating rates of 5°C/S and around 50°C/S.6 In the low heating rate region of less than 3°C/S, iron loss is low if finish annealing is performed. It is the lowest, and the change due to strain relief annealing is also small. This is because the pinning of AIN weakens during final annealing, secondary recrystallization already occurs during the final annealing stage, and the ferrite grains become coarse.

このため歪取焼鈍による変化も小さい、逆に、加熱速度
が60℃/S以上の高加熱速度領域は、仕上焼鈍ままで
は中間領域よりも鉄損は低いが、歪取焼鈍後は3つの領
域−中で最も高い、これは、仕上焼鈍段階ではAIN析
出よりも再結晶、粒成長が先行するためAINの粒成長
抑制効果が弱まり、ある程度粒成長するが、歪取焼鈍で
はAINが粒成長を抑制するものの、正常粒成長しか起
きないため鉄損低下量が小さいためであると考えられる
Therefore, changes due to strain relief annealing are small.Conversely, in the high heating rate region of 60°C/S or more, the iron loss is lower than the intermediate region when finished annealing, but after strain relief annealing, the iron loss is lower than the intermediate region. -Highest of all, this is because recrystallization and grain growth precede AIN precipitation in the final annealing stage, so the grain growth suppressing effect of AIN weakens and grain growth occurs to some extent, but in strain relief annealing, AIN inhibits grain growth. This is thought to be because although it is suppressed, only normal grain growth occurs, so the reduction in iron loss is small.

一方、加熱速度5〜40℃/Sの中間領域では、仕上焼
鈍時に微細AINが析出するものの、二次再結晶が起き
ないため粒径が小さく高い鉄損値となる。
On the other hand, in the intermediate region of the heating rate of 5 to 40° C./S, although fine AIN is precipitated during final annealing, secondary recrystallization does not occur, resulting in a small grain size and a high iron loss value.

しかし、歪取焼鈍時に微細AiNのピンニングが解除さ
れることによるフェライト粒の粗大化効果と。
However, the effect of coarsening of ferrite grains due to the release of pinning of fine AiN during strain relief annealing.

後述する集合組織改善効果が相まって、鉄損が大幅に低
下する。
Coupled with the texture improvement effect described later, iron loss is significantly reduced.

また、磁束密度については、まず5℃/S未満の低加熱
速度領域では、仕上焼鈍ままにおいては既にフェライト
粒が粗大化し、磁束密度が低い。
Regarding the magnetic flux density, first, in the low heating rate region of less than 5° C./S, the ferrite grains are already coarsened and the magnetic flux density is low in the finish annealing.

そして、歪取焼鈍後も変化は小さく、はぼ仕上焼鈍まま
の特性である。加熱速度が5℃/S以上の加熱速度領域
は、仕上焼鈍ままでは低加熱速度よりも高い磁束密度を
示すが、特に、歪取焼鈍後は著しい加熱速度依存性が見
られる。すなわち、加熱速度50℃/S以上の領域は歪
取焼鈍で粗大化は起きず、磁束密度の変化は小さい、そ
れに対し加熱速度が5〜b り磁束密度が著しく向上し、優れた特性を示している。
Even after strain relief annealing, the change is small, and the characteristics are the same as after rough finish annealing. A heating rate region where the heating rate is 5° C./S or more shows a higher magnetic flux density than a low heating rate when finish annealing is performed, but particularly after strain relief annealing, a remarkable heating rate dependence is observed. In other words, in the region where the heating rate is 50°C/S or higher, no coarsening occurs during strain relief annealing, and the change in magnetic flux density is small.On the other hand, when the heating rate is 5~B, the magnetic flux density improves significantly and exhibits excellent properties. ing.

このような現象の詳細は必ずしも明らかではないが、中
間加熱速度領域では、仕上焼鈍時の回復、再結晶の初期
において微細AINが適切な時期に析出することにより
、再結晶粒の成長に選択性を与え、その結果、集合組織
形成に影響を及ぼし、磁気特性に有利な(100)、(
110)面強度が高まり、磁気特性に不利な(111)
面の増加が抑制されることによるものと考えられる。こ
れに対し、低加熱速度の場合はAINの析出が先行する
ため、また逆に、高加熱速度領域では再結晶、粒成長が
先行するため、それぞれこのような集合組織改善が実現
されない。通常の二次再結晶による粗大化では(111
)面強度が強くなりがちであるが、本発明のように、仕
上焼鈍段階で細粒且つ、(100) 。
Although the details of this phenomenon are not necessarily clear, in the intermediate heating rate region, fine AIN precipitates at appropriate times during the recovery during final annealing and the early stage of recrystallization, resulting in selective growth of recrystallized grains. (100), which affects the texture formation and is advantageous for the magnetic properties.
110) Increased surface strength, disadvantageous for magnetic properties (111)
This is thought to be due to the suppression of the increase in the number of surfaces. On the other hand, in the case of a low heating rate, precipitation of AIN takes precedence, and conversely, in the high heating rate region, recrystallization and grain growth take precedence, so such texture improvement is not achieved. In the case of coarsening by normal secondary recrystallization (111
) The surface strength tends to be strong, but as in the present invention, the surface strength becomes fine and (100) at the final annealing stage.

(110)面成分が多い場合、歪取焼鈍時の二次再結晶
においても(100)、(110)面の結晶粒の発生頻
度が高まり、粗粒であるにもかかわらず、歪取焼鈍後の
磁束密度が向上するものと思われる。
When the (110) plane component is large, the frequency of occurrence of (100) and (110) plane crystal grains increases even in secondary recrystallization during strain relief annealing, and even though they are coarse grains, after strain relief annealing, This is expected to improve the magnetic flux density.

次に、これら加熱速度の集合組織への影響について更に
詳細に検討したところ、単に加熱速度を最適化しただけ
では安定した高磁束密度化は実現できず、更に肚を一定
以上含有させ、焼鈍温度も適正化する必要があることが
明らかとなった。第2表に示すようなMn量の異なる6
種の鋼C1〜C6について、先に述べた鋼C4と同様の
工程により0.5■厚の鋼板とした。これら鋼板を種々
の加熱速度で700〜850℃の温度で2分間均熱の仕
上焼鈍を行い、更に加熱速度10℃/分、750℃X 
2hr均熱の条件で歪取焼鈍を行った。第S図は加熱速
度10”C/ sで仕上焼鈍を行った場合の歪取焼鈍後
の磁束密度(Bs。)を1.80で類別したものである
。図に示されるように焼鈍温度が700℃と低い場合や
、Mn量が0.25wt%未滴の場合、加熱速度が最適
であるにもかかわらず、高磁束密度化は達成されない。
Next, we investigated in more detail the effects of these heating rates on the texture, and found that it was not possible to achieve a stable high magnetic flux density simply by optimizing the heating rate. It became clear that there was a need to optimize the 6 with different amounts of Mn as shown in Table 2
The steels C1 to C6 were made into steel plates with a thickness of 0.5 mm by the same process as the steel C4 described above. These steel plates were subjected to finish annealing at various heating rates for 2 minutes at a temperature of 700 to 850°C, and then further annealed at a heating rate of 10°C/min and 750°C.
Strain relief annealing was performed under the condition of soaking for 2 hours. Figure S shows the magnetic flux density (Bs.) after strain relief annealing when finish annealing is performed at a heating rate of 10''C/s, classified by 1.80.As shown in the figure, the annealing temperature is When the temperature is as low as 700° C. or when the amount of Mn is less than 0.25 wt%, high magnetic flux density cannot be achieved even though the heating rate is optimal.

すなわち、焼鈍温度が低い場合は.AlNの析出時期を
適正化しても、粒成長の進行が不充分であるため集合組
織は改善されない。また、 Mn量が低い場合は、再結
晶初期においてAINとMnの相互作用による再結晶粒
の選択現象が起きないため、粒成長が充分であってもや
はり集合組織は改善されない。
In other words, if the annealing temperature is low. Even if the timing of AlN precipitation is optimized, the texture is not improved because the progress of grain growth is insufficient. Furthermore, when the amount of Mn is low, the selection phenomenon of recrystallized grains due to interaction between AIN and Mn does not occur in the early stage of recrystallization, so even if grain growth is sufficient, the texture is not improved.

以上のように肚を一定量以上含有させ、加熱速度と焼鈍
温度を最適化し.AlNの析出時期と再結晶の進行のタ
イミングを適切にマツチングさせることにより、低鉄損
と高磁束密度を両立させることが可能であることが明ら
かとなった。このため本発明では、その効果の最も大き
い加熱速度5〜40℃/Sの範囲で、焼鈍温度720℃
以上を最適仕上焼鈍条件として規定する。
As described above, the heating rate and annealing temperature were optimized by containing more than a certain amount of lupus. It has become clear that by appropriately matching the timing of AlN precipitation and the progress of recrystallization, it is possible to achieve both low iron loss and high magnetic flux density. Therefore, in the present invention, the annealing temperature is 720°C within the heating rate range of 5 to 40°C/S, which has the greatest effect.
The above is defined as the optimum finish annealing conditions.

〔実施例〕〔Example〕

第3表に示す6種の成分組成の鋼を220m5厚のスラ
ブとし、第4表に示した熱延条件で熱間圧延を行い、引
き続き酸洗、冷間圧延を行い、板厚0.5■の鋼板とし
た。これら鋼板について、第4表に示した焼鈍条件によ
り、仕上焼鈍と歪取焼鈍を行った。なお、仕上焼鈍時の
均熱時間はいずれの条件においても2分と一定である。
A 220m5 thick slab of steel with the six types of composition shown in Table 3 was hot-rolled under the hot-rolling conditions shown in Table 4, followed by pickling and cold rolling, resulting in a plate thickness of 0.5 ■The steel plate was used. These steel plates were subjected to finish annealing and strain relief annealing under the annealing conditions shown in Table 4. Note that the soaking time during final annealing is constant at 2 minutes under all conditions.

第4表の右欄にこれら鋼板の仕上焼鈍まま及び歪取焼鈍
後の鉄損(Wl、、、。)と磁束密度(B so)を示
す。同表から明らかなように、本発明条件の成分、巻取
温度、加熱速度により製造した鋼板は、歪取焼鈍後の磁
気特性が良好で非常に優れた鉄損、磁束密度バランスと
なっている。特に磁束密度に関しては0.22%Si材
(鋼種G)では1.81以上、0.78Si材(鋼種H
)1−1.79以上を達成している。一方、本発明条件
外の成分の場合(実施NQ2.3.21.22)及び条
件外の巻取温度の場合(実施&4.12.13)は、低
鉄損化すら達成されていない、また本発明条件外のルベ
ル、加熱速度の場合(実施N111.6.11.14.
15.20)はある程度低鉄損化しているが、磁束密度
は低い。
The right column of Table 4 shows the iron loss (Wl,...) and magnetic flux density (Bso) of these steel plates as finished annealed and after strain relief annealing. As is clear from the table, the steel sheets manufactured using the composition, coiling temperature, and heating rate according to the conditions of the present invention have good magnetic properties after strain relief annealing, and a very excellent iron loss and magnetic flux density balance. . In particular, regarding the magnetic flux density, 0.22%Si material (steel type G) has a magnetic flux density of 1.81 or more, and 0.78Si material (steel type H)
) 1-1.79 or higher. On the other hand, in the case of components outside the conditions of the present invention (Execution NQ2.3.21.22) and the case of the coiling temperature outside the conditions (Execution &4.12.13), even low core loss was not achieved. In the case of a heating rate outside the conditions of the present invention (implementation N111.6.11.14.
15.20) has a somewhat low core loss, but the magnetic flux density is low.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明法によれば、セミプロセス無方向性
電磁鋼板の製造において、熱延板焼鈍や、調質圧延の工
程追加といったコストアップを招く手段を用いることな
く、また表面性状の劣化や、調質圧延による平坦度の悪
化といった商品特性を劣化することなく、高い生産効率
で、鉄損、磁束密度ともに非常に優れた電磁鋼板を提供
でき、その産業上の効果は極めて大きい。
As described above, according to the method of the present invention, in the production of semi-processed non-oriented electrical steel sheets, there is no need to use means that increase costs such as hot-rolled sheet annealing or additional steps of skin-pass rolling, and there is no need for deterioration of surface properties. It is possible to provide electrical steel sheets with excellent iron loss and magnetic flux density with high production efficiency without deteriorating product characteristics such as deterioration of flatness due to heat rolling or deterioration of flatness due to temper rolling, and its industrial effects are extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は歪取焼鈍後の鉄損(W15/S。)に及ぼすS
ol、Al量とN量との原子量比率[Al (at%)
/N(at%)コと巻取温度の影響を示すグラフであり
、第2図はその時の代表的試料のフェライト金属組織の
光学顕微鏡拡大写真である。第3図は歪取焼鈍後の鉄損
に及ぼすPの影響を示すグラフである。第4図は磁気特
性と仕上焼鈍時の加熱速度との関係を示すグラフ、第5
図は歪取焼鈍後の磁束密度(B、。)に及ぼすMn量と
焼鈍温度の影響を示すグラフである。 14/15150 巻取温度 (C) ツ【ツiジ1哀〒蚤1シ鼠1((] (°C) k/+57s。 (W/に9 ) Bo。 <1)
Figure 1 shows the effect of S on iron loss (W15/S.) after stress relief annealing.
ol, atomic weight ratio of Al amount and N amount [Al (at%)
This is a graph showing the influence of /N(at%) and winding temperature, and FIG. 2 is an optical microscope enlarged photograph of the ferrite metal structure of a typical sample at that time. FIG. 3 is a graph showing the influence of P on iron loss after stress relief annealing. Figure 4 is a graph showing the relationship between magnetic properties and heating rate during final annealing.
The figure is a graph showing the influence of the amount of Mn and the annealing temperature on the magnetic flux density (B, .) after strain relief annealing. 14/15150 Winding temperature (C)

Claims (1)

【特許請求の範囲】 C:0.005wt%以下、Si:0.1〜1.0wt
%、Mn:0.25wt%以上、P:0.03%以上、
Sol.Al:0.004〜0.080wt%、N:0
.001〜0.005wt%、残部Fe及び不可避的不
純物からなり、且つSol.Al含有量とN含有量との
原子量比率が、 2≦[Sol.Al(at%)/N(at%)]≦20
を満足する成分組成のスラブを1150℃以上に加熱し
、熱間圧延後、鋼帯を、 450≦CT≦−7.5{Al(at%)/N(at%
)}+650(℃)の範囲の巻取温度CTで巻取り、該
鋼帯を酸洗、冷間圧延後、 5≦HR≦40(℃/s) の範囲の加熱速度HRで加熱し、720℃以上の均熱温
度で連続焼鈍することを特徴とする磁気特性の優れたセ
ミプロセス無方向性電磁鋼板の製造方法。
[Claims] C: 0.005wt% or less, Si: 0.1 to 1.0wt
%, Mn: 0.25wt% or more, P: 0.03% or more,
Sol. Al: 0.004-0.080wt%, N: 0
.. 001 to 0.005 wt%, the remainder consisting of Fe and inevitable impurities, and Sol. The atomic weight ratio between Al content and N content is 2≦[Sol. Al(at%)/N(at%)]≦20
A slab having a composition satisfying 450≦CT≦-7.5{Al (at%)/N (at%
)}+650 (℃) The steel strip is coiled at a coiling temperature CT in the range of +650 (℃), and after pickling and cold rolling, the steel strip is heated at a heating rate HR in the range of 5≦HR≦40 (℃/s). A method for producing a semi-processed non-oriented electrical steel sheet with excellent magnetic properties characterized by continuous annealing at a soaking temperature of ℃ or higher.
JP2016105A 1990-01-29 1990-01-29 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH07116512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105A JPH07116512B2 (en) 1990-01-29 1990-01-29 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105A JPH07116512B2 (en) 1990-01-29 1990-01-29 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH03223424A true JPH03223424A (en) 1991-10-02
JPH07116512B2 JPH07116512B2 (en) 1995-12-13

Family

ID=11907239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105A Expired - Lifetime JPH07116512B2 (en) 1990-01-29 1990-01-29 Manufacturing method of semi-processed non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH07116512B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
WO2014129034A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
WO2019182022A1 (en) 2018-03-23 2019-09-26 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544531B1 (en) * 2000-12-20 2006-01-24 주식회사 포스코 A method for manufacturing non-oriented electrical steel sheet with excellent magnetic flux density
US9920393B2 (en) 2012-03-15 2018-03-20 Jfe Steel Corporation Method of producing non-oriented electrical steel sheet
WO2014129034A1 (en) * 2013-02-21 2014-08-28 Jfeスチール株式会社 Production method for semi-processed non-oriented electromagnetic steel sheet exhibiting superior magnetic properties
JP6008157B2 (en) * 2013-02-21 2016-10-19 Jfeスチール株式会社 Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
JPWO2014129034A1 (en) * 2013-02-21 2017-02-02 Jfeスチール株式会社 Method for producing semi-processed non-oriented electrical steel sheet with excellent magnetic properties
US9978488B2 (en) 2013-02-21 2018-05-22 Jfe Steel Corporation Method for producing semi-processed non-oriented electrical steel sheet having excellent magnetic properties
WO2019182022A1 (en) 2018-03-23 2019-09-26 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
KR20200116990A (en) 2018-03-23 2020-10-13 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet
US11421297B2 (en) 2018-03-23 2022-08-23 Nippon Steel Corporation Non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPH07116512B2 (en) 1995-12-13

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
US5139582A (en) Method of manufacturing an oriented silicon steel sheet having improved magnetic characeristics
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JP3392664B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JP4389553B2 (en) Method for producing grain-oriented electrical steel sheet
JP3392579B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP3368409B2 (en) Manufacturing method of low iron loss unidirectional electrical steel sheet
JP3338263B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2784661B2 (en) Manufacturing method of high magnetic flux density thin unidirectional magnetic steel sheet
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet
JP3498978B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
WO2022210504A1 (en) Method for manufacturing grain-oriented electromagnetic steel sheet
JPH0762437A (en) Production of grain oriented silicon steel sheet having extremely low iron loss
JP3020810B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH05279742A (en) Manufacture of silicon steel sheet having high magnetic flux density
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JP2023089089A (en) Grain-oriented electromagnetic steel sheet and method for producing the same
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss
JPH07116511B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS63134631A (en) Manufacture of semi-processed electrical steel sheet