JPH07116511B2 - Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JPH07116511B2
JPH07116511B2 JP1610490A JP1610490A JPH07116511B2 JP H07116511 B2 JPH07116511 B2 JP H07116511B2 JP 1610490 A JP1610490 A JP 1610490A JP 1610490 A JP1610490 A JP 1610490A JP H07116511 B2 JPH07116511 B2 JP H07116511B2
Authority
JP
Japan
Prior art keywords
annealing
temperature
aln
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1610490A
Other languages
Japanese (ja)
Other versions
JPH03223423A (en
Inventor
昭彦 西本
邦和 冨田
清治 中村
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP1610490A priority Critical patent/JPH07116511B2/en
Publication of JPH03223423A publication Critical patent/JPH03223423A/en
Publication of JPH07116511B2 publication Critical patent/JPH07116511B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、無方向性電磁鋼板の製造方法に関し、鉄損、
磁束密度ともに優れた電磁鋼板を低コストで製造し得る
方法を提供するものである。
TECHNICAL FIELD The present invention relates to a method for manufacturing a non-oriented electrical steel sheet, including iron loss,
It is intended to provide a method capable of manufacturing an electromagnetic steel sheet excellent in magnetic flux density at low cost.

[従来技術] Si量が1%以下のいわゆる低級無方向性電磁鋼板は、鉄
損値は高いものの磁束密度が高く、また安価であること
から、家庭電気製品用小型モータを中心に多量に使用さ
れている。
[Prior Art] The so-called low-grade non-oriented electrical steel sheet having a Si content of 1% or less has a high iron loss value, but has a high magnetic flux density and is inexpensive. Therefore, it is mainly used in small motors for home appliances. Has been done.

電磁鋼板に要求される磁気特性としては、主として鉄損
と磁束密度の二つがあり、これらの磁気特性を決定する
冶金学的な要因としては、鋼成分、フェライト粒径、集
合組織等種々あることが知られている。鉄損低下のため
には、Si量を増し固有抵抗を高めることが有効である
が、一定のSiレベルにおいて鉄損値を低下させるために
は、フェライト粒径を増大させることが最も効果があ
る。また磁束密度向上に関しては、磁気特性上好ましい
集合組織を発達させる必要がある。これらを踏まえ、無
方向性電磁鋼板の磁気特性の向上を図るために、従来、
以下のような技術が開示されている。
There are two main magnetic properties required for electromagnetic steel sheets, iron loss and magnetic flux density, and various metallurgical factors that determine these magnetic properties include steel composition, ferrite grain size, and texture. It has been known. Increasing the Si content and increasing the specific resistance is effective for reducing the iron loss, but increasing the ferrite grain size is the most effective for decreasing the iron loss value at a constant Si level. . Further, in order to improve the magnetic flux density, it is necessary to develop a texture that is favorable in terms of magnetic properties. Based on these, in order to improve the magnetic characteristics of the non-oriented electrical steel sheet, conventionally,
The following techniques are disclosed.

熱間圧延後に熱延板焼鈍を行う技術(例えば、特開昭
54−68717号) 熱延高温巻取により自己焼鈍を行う技術(例えば、特
開昭54−76422号) 二冷圧、二回焼鈍を行う技術(例えば、特開昭60−39
121号) AlNの析出を利用し粒径を粗大化する技術(特公昭50
−8976号、特開昭61−136626号) 上記した各種技術の中で、の方法は熱延板段階での焼
鈍により、冷圧、焼鈍後のフェライト粒径を増大するこ
とにより鉄損の低下を図り、また集合組織の改善により
磁束密度をも向上させようとするものであるが、新たに
焼鈍工程が加わるため、大幅なコスト上昇は免れ得な
い。
Technology for hot-rolled sheet annealing after hot rolling
54-68717) Technology for performing self-annealing by hot rolling and high-temperature winding (for example, JP-A-54-76422) Technology for performing double cold pressure and double annealing (for example, JP-A-60-39)
No. 121) Technology for coarsening the grain size by utilizing AlN precipitation (Japanese Patent Publication No. 50)
(-8976, JP-A-61-136626) Among the various techniques described above, the method of (1) reduces the iron loss by increasing the cold pressure and the ferrite grain size after annealing by annealing at the hot rolled sheet stage. In order to improve the magnetic flux density by improving the texture, the magnetic flux density cannot be avoided because a new annealing process is added.

の方法は、圧延後の熱延板が保有する熱で自己焼鈍を
行うものであり、コスト面ではよりも有利である。し
かし、この方法により効果を得ようとする場合には、巻
取温度を極めて高くする必要があり、このため安定した
操業は困難であり、またコイル全長にわたり均一な特性
を得ることが難しい。さらに、巻取時の内部酸化により
表面性状が著しく劣化するという問題もある。
The method of (1) is a method of performing self-annealing with the heat retained by the hot-rolled sheet after rolling, which is more advantageous in terms of cost. However, in order to obtain the effect by this method, it is necessary to make the coiling temperature extremely high, which makes stable operation difficult and it is difficult to obtain uniform characteristics over the entire length of the coil. Further, there is also a problem that the surface quality is remarkably deteriorated due to internal oxidation during winding.

の方法は、の方法以上に工程が増加するため、大幅
なコスト上昇となり、低級電磁鋼板の使命である低コス
ト化と相反する製造法である。
The method (2) has a larger number of steps than that of the method (2), resulting in a significant increase in cost, and is a manufacturing method that conflicts with the cost reduction, which is the mission of low-grade electrical steel sheets.

の方法は、微細なAlN析出のピンニング効果を逆に利
用したもので、AlNのピンニングを解除して、仕上焼鈍
中に二次再結晶を起こさせることにより、粗大なフェラ
イト粒を出現させ、低鉄損化を図る技術である。このう
ち、特公昭50−8976号はCを0.005wt%以上含有させ、
仕上焼鈍時のAlN析出を円滑化するものであるが、Cに
よる磁気時効を回避するためには、脱炭雰囲気で焼鈍を
行わねばならず、生産効率は大きく低下する。また、高
C材を用いることにより、仕上焼鈍中のAlNの析出を円
滑化するにもかかわらず、その一方で脱炭により低C化
する、という相反することを同時に行わせようとする製
造法である。このため、AlN析出の温度、時間と脱炭進
行の温度、時間は当然マッチングしないため、AlNの析
出状態を安定化することが難しく、粗大化も安定し難い
欠点があった。また、単にフェライト粒の粗大化による
低鉄損化のみを狙った技術であるため、磁気特性のもう
一方の重要な指標である磁束密度は、フェライト粒の粗
大化によりむしろ低下する傾向にある。また特開昭61−
136626号は、Pの添加によりAlNの析出を促進し、フェ
ライト粒を粗大化して低鉄損化を図ることを狙いとした
技術である。しかし、この技術も前記技術と同様に、単
にフェライト粒の粗大化による低鉄損化のみを狙った技
術であり、磁束密度向上に関しては全く考慮されていな
い。したがって鋼の成分組織もAlNの析出のための適正
化しかなされておらず、このため後述するような磁束密
度の向上効果は見られず、低いレベルにある。
In the method of, the pinning effect of fine AlN precipitation is used in reverse, by releasing the pinning of AlN and causing secondary recrystallization during finish annealing, coarse ferrite grains appear, and low This is a technology for reducing iron loss. Of these, Japanese Patent Publication No. 50-8976 contains C in an amount of 0.005 wt% or more,
Although it is intended to facilitate precipitation of AlN during finish annealing, in order to avoid magnetic aging due to C, annealing must be performed in a decarburizing atmosphere, resulting in a large decrease in production efficiency. Further, by using a high C material, a production method for simultaneously performing the contradictory effect of facilitating the precipitation of AlN during finish annealing, while at the same time reducing the carbon content by decarburization. Is. Therefore, since the temperature and time of AlN precipitation do not match the temperature and time of decarburization progress, it is difficult to stabilize the precipitation state of AlN, and it is difficult to stabilize coarsening. Further, since the technique is aimed only at lowering iron loss due to coarsening of ferrite grains, the magnetic flux density, which is another important index of magnetic characteristics, tends to be rather lowered due to coarsening of ferrite grains. In addition, JP 61-
No. 136626 is a technique aimed at promoting precipitation of AlN by adding P and coarsening ferrite grains to reduce iron loss. However, like the above-mentioned technique, this technique is also only aimed at reducing iron loss due to coarsening of ferrite grains, and no consideration is given to improving magnetic flux density. Therefore, the compositional structure of the steel has not been optimized for precipitation of AlN, so that the effect of improving the magnetic flux density, which will be described later, is not observed and is at a low level.

[発明が解決しようとする課題] 前記のAlN析出を利用したフェライト粒の粗大化技術
は、一応の低鉄損化は達成されるものの、磁束密度に関
しては決して満足のいくレベルではない。特に、本発明
が対象としている小型モータの分野においては、磁束密
度が低いとモータのより一層の小型化が達成できず、ま
た使用時の電流の増加にもつながるため、トータルの商
品特性として見た場合、高い評価は得られない。このた
め低コストのメリットを生かしつつ、鉄損、磁束密度と
もに優れた電磁鋼板の開発が待たれていた。
[Problems to be Solved by the Invention] Although the ferrite grain coarsening technique utilizing AlN precipitation described above achieves a low iron loss, the magnetic flux density is not at a satisfactory level. In particular, in the field of small motors targeted by the present invention, if the magnetic flux density is low, further downsizing of the motor cannot be achieved, and it also leads to an increase in current during use. If you do, you will not get a high rating. For this reason, the development of magnetic steel sheets having excellent iron loss and magnetic flux density while waiting for the advantages of low cost has been awaited.

本発明は前述した従来法の問題に鑑み、低コストの製造
方法により、低鉄損化を可能とするとともに、磁束密度
が著しく高い無方向性電磁鋼板の製造方法を提供せんと
するものである。
In view of the problems of the conventional method described above, the present invention is to provide a method for manufacturing a non-oriented electrical steel sheet which enables a reduction in iron loss by a low-cost manufacturing method and has a remarkably high magnetic flux density. .

[課題を解決するための手段] 本発明者らは、低Si無方向性電磁鋼板の製造において、
コストの上昇なしに低鉄損化と高磁束密度化を両立すべ
く、実験、研究を重ねてきた。その結果、鋼成分と熱延
時の加熱温度、巻取温度の両者の規定により、仕上焼鈍
前のAlNの固溶状態を最適化し、且つ、その後の仕上焼
鈍において、まず前段の焼鈍により一次再結晶集合組織
を最適化し、続く後段の高温焼鈍中の二次再結晶により
フェライト粒を粗大化させる二段焼鈍法で連続焼鈍を行
うことにより、磁気特性、特に磁束密度を優れたものに
できることを新たに見いだし、本発明を完成させるに至
ったものである。
[Means for Solving the Problems] In the production of a low Si non-oriented electrical steel sheet, the present inventors have
We have conducted experiments and research to achieve both low iron loss and high magnetic flux density without increasing costs. As a result, the solid solution state of AlN before finish annealing was optimized by specifying both the steel composition and the heating temperature during hot rolling, and the coiling temperature, and in the subsequent finish annealing, first recrystallization was performed by annealing in the previous stage. It is now possible to improve magnetic properties, especially magnetic flux density, by optimizing the texture and performing continuous annealing by a two-step annealing method in which ferrite grains are coarsened by secondary recrystallization during subsequent high-temperature annealing. The present invention has led to the completion of the present invention.

すなわち、本発明の特徴は、C:0.005wt%以下、Si:0.1
〜1.0wt、Mn:0.25wt%以上、P:0.03wt%以上、sol.Al:
0.004〜0.080wt%、N:0.001〜0.005wt%、残部Fe及び不
可避的不純物からなり、且つsol.Al含有量とN含有量と
の原子量比率が、 2≦[sol.Al(at%)/N(at%)]≦15 を満足する成分組成のスラブを1150℃以上に加熱し、熱
間圧延後、 450≦CT≦−7.5{Al(at%)/N(at%)}+600(℃) の範囲の巻取温度CT(℃)で巻取り、該鋼帯を酸洗、冷
間圧延後、仕上焼鈍し、該仕上焼鈍においては、その前
段において加熱速度5℃/secとし、且つ(再結晶完了温
度−50)℃以上、(再結晶完了音度+100)℃以下の温
度範囲で30秒以上焼鈍し、引続き焼鈍後段において800
℃以上の温度で1分以上焼鈍する、二段焼鈍を行うよう
にしたことにある。
That is, the feature of the present invention is that C: 0.005 wt% or less, Si: 0.1
~ 1.0wt, Mn: 0.25wt% or more, P: 0.03wt% or more, sol.Al:
0.004 to 0.080 wt%, N: 0.001 to 0.005 wt%, balance Fe and unavoidable impurities, and the atomic weight ratio of sol.Al content and N content is 2 ≦ [sol.Al (at%) / N (at%)] ≤ 15 Slabs with a composition satisfying 15 are heated to 1150 ° C or higher and hot-rolled, then 450 ≤ CT ≤-7.5 {Al (at%) / N (at%)} + 600 (° C ) In the range of a winding temperature CT (° C), the steel strip is pickled, cold-rolled, and then finish-annealed. In the finish-annealing, the heating rate is 5 ° C / sec in the preceding stage, and ( Recrystallization completion temperature -50) ℃ or more, (recrystallization completion tone +100) ℃ or less in the temperature range of 30 seconds or more, followed by subsequent annealing 800
The purpose is to perform a two-stage annealing in which annealing is performed for 1 minute or more at a temperature of ℃ or more.

なお、本発明においては、上記再結晶完了温度を、該温
度で1分間保持した時に、100%再結晶する温度として
定義する。
In the present invention, the recrystallization completion temperature is defined as the temperature at which 100% recrystallization is carried out when the temperature is maintained for 1 minute.

以下、本発明の構成及びその限定理由について詳細に説
明する。
Hereinafter, the configuration of the present invention and the reason for the limitation will be described in detail.

まず、鋼の成分組成の限定理由について説明する。First, the reasons for limiting the component composition of steel will be described.

C:後述するようにCが0.005wt%を超えると、他の成
分、プロセスを適正化しても、CとMnの相互作用による
集合組織改善効果が得られず、高磁束密度が達成されな
い。またCを多量に含有させると、仕上焼鈍を脱炭雰囲
気で行う必要が生じ、この場合、脱炭の進行がAlNの析
出に影響を及ぼし、AlNの析出状態そのものが不安定と
なる。このため、高磁束密度化を達成し、AlN析出の安
定化と磁気時効の防止を図るべく、C:0.005wt%以下の
極低炭素鋼とする。
C: As described later, if C exceeds 0.005 wt%, the texture improving effect due to the interaction between C and Mn cannot be obtained even if other components and processes are optimized, and high magnetic flux density cannot be achieved. Further, if a large amount of C is contained, it is necessary to carry out the finish annealing in a decarburizing atmosphere. In this case, the progress of decarburizing affects the precipitation of AlN, and the precipitation state of AlN itself becomes unstable. Therefore, in order to achieve a high magnetic flux density, stabilize AlN precipitation, and prevent magnetic aging, an ultra-low carbon steel with C: 0.005 wt% or less is used.

Si:Siの増加は固有抵抗を高め鉄損を低下させる効果が
大きいため、その下限を0.1wt%とする。但し、1.0wt%
を超えると飽和磁束密度を低下させ、またコストの上昇
を招くため、上限は1.0wt%とする。
An increase in Si: Si has a large effect of increasing the specific resistance and decreasing the iron loss, so the lower limit is made 0.1 wt%. However, 1.0 wt%
If it exceeds, the saturation magnetic flux density will be lowered and the cost will be increased, so the upper limit is made 1.0 wt%.

Mn:本発明において、Mnは集合組織改善のために重要な
成分である。後述するように、Mn量が0.25wt%未満でも
フェライト粒は粗大化し低鉄損化は達成されるものの、
Cとの相互作用による、再結晶粒の選択性と集合組織の
改善が達成されず、磁束密度は向上しない。このため下
限を0.25wt%とする。但し、Mnを徒に増大させてもコス
ト上昇を招くだけであり、このためMnは2%を上限に添
加することが好ましい。
Mn: In the present invention, Mn is an important component for improving texture. As will be described later, even if the amount of Mn is less than 0.25 wt%, the ferrite grains are coarsened and the iron loss is reduced,
The improvement of recrystallized grain selectivity and texture due to the interaction with C is not achieved, and the magnetic flux density is not improved. Therefore, the lower limit is 0.25 wt%. However, even if Mn is increased excessively, it will only increase the cost. Therefore, it is preferable to add Mn in an upper limit of 2%.

P:通常Pは打ち抜き性改善のために添加される場合が多
いが、本発明では打ち抜き性改善とともに、仕上焼鈍時
のAlNの析出を促進、安定化する元素として、必須の成
分として規定する。Pが0.03wt%未満では、仕上焼鈍前
のAlNの固溶状態を適正化しても、仕上焼鈍時に十分なA
lNの析出量が得られず、フェライト粒の粗大化が実現さ
れない。このため下限を0.03wt%とする。但し、脆化に
よる圧延性、打抜き性の低下を防止するという観点から
は、Pは0.5wt%以下とすることが望ましく、さらに、
Pを添加すると粒成長性抑制効果が強まることから、こ
の点も勘案した場合には、0.3wt%をその上限とするこ
とが好ましい。
P: Usually, P is often added to improve punchability, but in the present invention, it is defined as an essential component as an element that promotes and stabilizes the precipitation of AlN during finish annealing together with the improvement of punchability. When P is less than 0.03 wt%, even if the solid solution state of AlN before finish annealing is optimized, sufficient A during finish annealing is obtained.
The precipitation amount of lN cannot be obtained, and coarsening of ferrite grains cannot be realized. Therefore, the lower limit is made 0.03 wt%. However, from the viewpoint of preventing the reduction of the rolling property and the punching property due to embrittlement, it is desirable that P is 0.5 wt% or less.
If P is added, the effect of suppressing grain growth is strengthened. Therefore, if this point is also taken into consideration, it is preferable to set 0.3 wt% as the upper limit.

sol.Al:sol.Alは本発明において最も重要な元素であ
る。本発明は、仕上焼鈍時における微細なAlNの析出に
よる粒界のピンニング効果と集合組織改善効果を利用す
るものである。このためsol.Al量は微細AlNの析出に適
した0.004〜0.080wt%に限定する。0.004wt%未満で
は、必要なAlNの析出量が得られない。一方、0.080wt%
を超えると析出したAlNが凝集、粗大化するためにピン
ニング効果が利用できない。
sol.Al: sol.Al is the most important element in the present invention. The present invention utilizes the grain boundary pinning effect and the texture improvement effect due to the precipitation of fine AlN during finish annealing. Therefore, the amount of sol.Al is limited to 0.004 to 0.080 wt% which is suitable for precipitation of fine AlN. If it is less than 0.004 wt%, the required precipitation amount of AlN cannot be obtained. On the other hand, 0.080 wt%
If it exceeds, the pinning effect cannot be utilized because the precipitated AlN aggregates and coarsens.

N:NもAlNの析出に影響を与える元素である。0.001wt%
未満では充分なAlNの析出が得られない。一方0.005wt%
を超えると磁気特性を劣化させる。
N: N is also an element that affects the precipitation of AlN. 0.001wt%
If it is less than this, sufficient precipitation of AlN cannot be obtained. On the other hand 0.005wt%
If it exceeds, magnetic properties are deteriorated.

[sol.Al(at%)/N(at%)]:前記のようにAlNの析
出に関してはAl量、N量が影響を及ぼすが、個々の含有
量によってAlNの析出が一義的に決まるのではなく、Al
量とN量の存在比率によりAlNの析出量、大きさ及び分
布形態が決まってくる。sol.Al量とN量との原子量比率
[sol.Al(at%)/(at%)](以下単に[Al/N]と記
す)が2未満ではピンニングに必要なAlNの析出量が得
られない。また[Al/N]が15を超えると、熱延条件を最
適化しても、一旦析出したAlNが凝集、粗大化してしま
うため、本発明において重要な要素である微細AlNのピ
ンニング効果を利用できない。
[Sol.Al (at%) / N (at%)]: As described above, Al amount and N amount affect the precipitation of AlN, but the precipitation of AlN is uniquely determined by each content. Not Al
The precipitation amount, size and distribution form of AlN are determined by the abundance ratio of the amount and the amount of N. When the atomic weight ratio [sol.Al (at%) / (at%)] (hereinafter simply referred to as [Al / N]) of the sol.Al amount and the N amount is less than 2, the amount of AlN precipitation required for pinning is obtained. I can't. Further, if [Al / N] exceeds 15, the pinning effect of fine AlN, which is an important factor in the present invention, cannot be utilized because once precipitated AlN aggregates and coarsens even if the hot rolling conditions are optimized. .

次に、本発明の加工、処理条件を成分条件とともに説明
する。
Next, the processing and processing conditions of the present invention will be described together with the component conditions.

本発明では、上述のような成分組成の鋼を熱間圧延に供
する。熱間圧延時の加熱温度については、AlNの固溶を
充分に促進するために、1150℃以上の温度での加熱を必
須とする。また、本発明では仕上焼鈍前にAlNの固溶を
充分なものとしておくことが必須条件であり、且つこれ
を熱延板段階での溶体化焼鈍なしに低コストで実現しよ
うとするものである。このためには、熱延時の加熱温度
だけでなく、圧延後の巻取温度も適切な範囲に管理し、
巻取中のAlN析出を抑制することが重要なポイントであ
る。この点を明らかにすべるため、以下の試験を行っ
た。
In the present invention, the steel having the above-described composition is subjected to hot rolling. Regarding the heating temperature during hot rolling, heating at a temperature of 1150 ° C. or higher is essential in order to sufficiently promote the solid solution of AlN. Further, in the present invention, it is an essential condition that the solid solution of AlN is sufficient before finish annealing, and it is intended to realize this at low cost without solution annealing in the hot rolled sheet stage. . For this purpose, not only the heating temperature during hot rolling but also the winding temperature after rolling is controlled within an appropriate range,
Suppressing AlN precipitation during winding is an important point. The following tests were conducted to clarify this point.

第1表に示すようなAl量とN量を各々変えた鋼A1〜A8の
スラブを、1250℃に加熱して熱間圧延後、450〜650℃の
間の温度で巻取を行った。引き続き酸洗、冷間圧延を施
して0.5mmの板厚とした後、前段を5℃/sの加熱速度で6
30℃×1分、後段を3℃/sの加熱速度で850℃×2分と
する二段焼鈍サイクルの連続焼鈍により仕上焼鈍を行っ
た。第1図は、これら鋼板について鉄損(W15/50)に
及ぼす[Al/N]と巻取温度の影響を調べたものである。
この図から明らかなように、鉄損が5.0W/kg未満の良好
な領域は[Al/N]と巻取温度の両者に依存している。
[Al/N]が2未満の領域においては、いずれの巻取温度
においても鉄損5.0W/kg未満は達成されておらず、逆に
同一巻取温度で見た場合[Al/N]が一定レベル以上でも
やはり鉄損が5.0W/kg以上となっており、最適[Al/N]
範囲が存在することが判る。この[Al/N]の最適範囲
は、巻取温度の低下に伴って拡大している。すなわち、
[Al/N]が15以下であれば、巻取温度を[−7.5{Al(a
t%)/N(at%)}+600]℃以下とすることにより鉄損
値5.0W/kg未満が達成可能であることが明らかとなっ
た。この現象は、微細なAlNの析出と二次再結晶による
フエライト粒の粗大化によるものである。[Al/N]が2
未満の領域では、低温巻取というAlNの固溶に適した条
件であっても、AlNの析出量が少ないため粗大化は発生
しない。一方、[Al/N]が高い場合や巻取温度が高い場
合は、AlNの析出は起こるものの、AlNが凝集、粗大化す
るためにやはりフエライト粒の粗大化は起きない。これ
に対し、[Al/N]と巻取温度が本発明が規定する範囲に
ある場合は、一次再結晶の段階では微細AlNのピンニン
グにより結晶粒は細粒であるが、その後AlNのピンニン
グが弱まり、これが一定限界を超えると、解除される際
の粒成長駆動力により二次再結晶し、フエライト粒が粗
大化して低鉄損化が達成される。
The slabs of steels A1 to A8 having different amounts of Al and N as shown in Table 1 were heated to 1250 ° C and hot-rolled, and then wound at a temperature of 450 to 650 ° C. Subsequently, after pickling and cold rolling to a plate thickness of 0.5 mm, the previous stage was heated at a heating rate of 5 ° C / s for 6
Finish annealing was carried out by continuous annealing in a two-stage annealing cycle of 30 ° C. × 1 minute and the subsequent stage at a heating rate of 3 ° C./s at 850 ° C. × 2 minutes. FIG. 1 shows the effects of [Al / N] and winding temperature on the iron loss (W 15/50 ) of these steel sheets.
As is clear from this figure, the good region where the iron loss is less than 5.0 W / kg depends on both [Al / N] and the coiling temperature.
In the region where [Al / N] is less than 2, iron loss of less than 5.0 W / kg has not been achieved at any winding temperature, and conversely when viewed at the same winding temperature, [Al / N] is The iron loss is 5.0 W / kg or more even at a certain level or higher, which is optimal [Al / N]
It turns out that there is a range. The optimum range of this [Al / N] is expanding as the winding temperature decreases. That is,
If [Al / N] is 15 or less, the winding temperature is [-7.5 {Al (a
It has been clarified that the iron loss value of less than 5.0 W / kg can be achieved by controlling the temperature to be t%) / N (at%)} + 600] ° C or less. This phenomenon is due to coarsening of ferrite grains due to fine AlN precipitation and secondary recrystallization. [Al / N] is 2
In the region of less than, even under conditions suitable for solid solution of AlN, such as low temperature winding, coarsening does not occur because the amount of AlN precipitation is small. On the other hand, when [Al / N] is high or the coiling temperature is high, precipitation of AlN occurs, but since AlN aggregates and coarsens, coarsening of ferrite grains does not occur. On the other hand, when [Al / N] and the coiling temperature are in the ranges specified by the present invention, the crystal grains are fine due to pinning of fine AlN in the stage of primary recrystallization, but thereafter the pinning of AlN is When it is weakened and exceeds a certain limit, secondary recrystallization is caused by the grain growth driving force at the time of release, and the ferrite grains are coarsened to achieve a low iron loss.

本発明ではこれらの結果を踏まえ[Al/N]を2〜15と規
定するとともに、巻取温度をこの[Al/N]の関係で[−
7.5{Al/(at%)/N(at%)}+600]℃以下に規定す
るものである。
In the present invention, based on these results, [Al / N] is defined as 2 to 15, and the winding temperature is [-
7.5 {Al / (at%) / N (at%)} + 600] ° C or less.

なお、巻取時のAlN析出抑制に関しては巻取温度の低下
が有効であるが、巻取温度の極度の低温化は、水冷却時
の冷却むらに起因する板厚変動などの形状不良を生ずる
ため、下限を450℃に限定する。
It should be noted that lowering the winding temperature is effective for suppressing AlN precipitation during winding, but an extremely low winding temperature causes shape defects such as plate thickness variation due to uneven cooling during water cooling. Therefore, the lower limit is limited to 450 ° C.

本発明のように連続焼鈍においてAlN析出を安定的に制
御するためには、AlNの固溶状態の最適化だけでなく、
更にAlNの析出を促進する手段を講ずる必要がある。こ
のために種々の方法について検討した結果、Pの添加が
最も有効であることが明らかとなった。
In order to stably control AlN precipitation in continuous annealing as in the present invention, not only optimization of the solid solution state of AlN,
Furthermore, it is necessary to take measures to accelerate the precipitation of AlN. Therefore, as a result of studying various methods, it became clear that the addition of P was the most effective.

第1表に示すような[Al/N]が約4でP量を変化させた
鋼B1〜B5と、[Al/N]が約11でP量を変化させた鋼C1〜
C4のスラブを、1250℃に加熱して熱間圧延後、500℃で
巻取り、引続き酸洗、冷圧を行い0.5mm厚の板厚とし
た。その後、前段を10℃/sの加熱速度で630℃×1.5分、
後段を10℃/sの加熱速度で830℃×1.5分とする二段焼鈍
サイクルにより連続焼鈍を行った。第2図はこのように
して得られた鋼板の鉄損(W15/50)に及ぼすPの影響
を示すものである。これによれば、いずれの[Al/N]で
も、P量が0.03wt%以上では二次再結晶が起き、フェラ
イト粒が粗大化することにより鉄損が5.0wt%以下と良
好な値を示す。一方、Pが0.03wt%未満では、AlNの析
出が不充分であるため二次再結晶が起きず、一次再結晶
粒の正常粒成長しか起きない。これらAlN析出に対する
Pの効果は、PがAlNの溶解度を低下させ、AlNの析出を
促進するためであると考えられる。
As shown in Table 1, steels B1 to B5 in which [Al / N] is about 4 and the amount of P is changed, and steels [Al / N] are around 11 and in which P amount is changed are C1 to B5.
The slab of C4 was heated to 1250 ° C., hot-rolled, wound at 500 ° C., subsequently pickled and cold pressed to a plate thickness of 0.5 mm. After that, the previous stage was heated at 10 ℃ / s at 630 ℃ × 1.5 minutes,
Continuous annealing was performed by a two-stage annealing cycle in which the latter stage was heated at 830 ° C for 1.5 minutes at a heating rate of 10 ° C / s. FIG. 2 shows the effect of P on the iron loss (W 15/50 ) of the steel sheet thus obtained. According to this, in any [Al / N], when the amount of P is 0.03 wt% or more, secondary recrystallization occurs, and the ferrite grain is coarsened, so that the iron loss is 5.0 wt% or less, which is a good value. . On the other hand, when P is less than 0.03 wt%, the secondary recrystallization does not occur because the precipitation of AlN is insufficient, and only the normal grain growth of the primary recrystallized grains occurs. It is considered that the effect of P on the AlN precipitation is that P reduces the solubility of AlN and promotes the precipitation of AlN.

上記のように鋼の成分組成、熱延時の加熱、巻取温度を
規制することにより、仕上焼鈍前のAlNの固溶状態を最
適化し、またP添加により微細AlNの析出を促進するこ
とで、フェライト粒の粗大化による低鉄損化は達成でき
る。しかし本発明者らは、低鉄損化だけでなく、更に磁
束密度をも向上させる方法について検討を重ねた結果、
極低C材でかつMnを一定量以上含有させるとともに、仕
上焼鈍を二段焼鈍で行い、且つ前段の焼鈍温度と、後段
の焼鈍温度とを適切に組み合せることにより、低鉄損化
とともに高磁束密度化を達成し得ることを新たに見い出
したものである。以下に、本発明の最も重要な製造要件
である二段焼鈍の焼鈍条件について説明する。
By controlling the composition of the steel, heating during hot rolling, and the coiling temperature as described above, the solid solution state of AlN before finish annealing is optimized, and by promoting the precipitation of fine AlN by adding P, The iron loss can be reduced by coarsening the ferrite grains. However, as a result of repeated studies on the method of improving not only the core loss but also the magnetic flux density, the inventors have found that
It is an extremely low C material and contains Mn in a certain amount or more, finish annealing is performed by two-step annealing, and by combining the annealing temperature of the first stage and the annealing temperature of the second stage appropriately, it is possible to reduce iron loss and increase the iron loss. This is a new finding that a magnetic flux density can be achieved. The annealing conditions for the two-step annealing, which is the most important manufacturing requirement of the present invention, will be described below.

第2表に示す鋼Dのスラブを1250℃に加熱して熱間圧延
後、520℃で巻取り、酸洗、冷間圧延により0.5mmの板厚
とした。この鋼板を用いて、加熱速度10℃/s、降温速度
5℃/sの条件で第3図(A)、(B)に示す2つの焼鈍
サイクルで各種の仕上焼鈍を行った。第3図において、
(A)は前段の焼鈍を500〜850℃の温度で1分間均熱し
て行い、引続き後段の焼鈍650〜900の温度で1分間均熱
して行う二段焼鈍である。(B)は比較として650〜850
℃の温度で均熱を2分間行う台形一段焼鈍であり、
(A)における後段の焼鈍温度が前段と同一である場合
である。第4図はこれら各仕上焼鈍条件により連続焼鈍
を行った鋼板の磁気特性について、まず鉄損
(W15/50)5W/kgで類別し、更に鉄損が5W/kg未満の鋼
板について、磁束密度(B50)1.80Tで類別したものであ
る。
The slab of steel D shown in Table 2 was heated to 1250 ° C., hot rolled, wound at 520 ° C., pickled and cold rolled to a plate thickness of 0.5 mm. Using this steel sheet, various finish annealings were performed in the two annealing cycles shown in FIGS. 3A and 3B under the conditions of a heating rate of 10 ° C./s and a cooling rate of 5 ° C./s. In FIG.
(A) is a two-stage annealing in which the former annealing is soaked at a temperature of 500 to 850 ° C. for 1 minute, and then the latter annealing is soaked at a temperature of 650 to 900 for 1 minute. (B) is 650-850 for comparison
It is a trapezoidal single-step annealing in which soaking is performed at a temperature of ℃ for 2 minutes.
This is the case where the annealing temperature in the latter stage in (A) is the same as that in the former stage. Fig. 4 shows the magnetic properties of steel sheets that were continuously annealed under each of these finish annealing conditions, first categorized by iron loss (W 15/50 ) of 5 W / kg, and the magnetic flux of steel sheets with an iron loss of less than 5 W / kg. It is classified by density (B 50 ) 1.80T.

まず、鉄損について二段焼鈍法と台形一段焼鈍を比較す
ると、台形一段焼鈍の場合、焼鈍温度が800℃以下では
フェライト粒が細粒であるため、鉄損は高い値を示す、
焼鈍温度を850℃と高温にすることで、二次再結晶が起
き、鉄損値が5W/kg未満を達成する。一方、二段焼鈍法
を行った場合、後段の焼鈍が800℃未満の場合はいずれ
の条件でも二次再結晶は起きない。また後段の焼鈍が80
0℃以上であっても、前段の焼鈍温度が750℃以上と高い
場合には、この前段焼鈍の段階で、ある程度結晶粒が成
長してしまうため、やはり二次再結晶が起こらず鉄損は
高い。しかし、台形一段焼鈍法では二次再結晶が起きな
かった800℃の焼鈍であっても、前段に750℃未満の焼鈍
を行うことによって二段焼鈍化することにより、二次再
結晶が起き、鉄損値は5W/kg未満となる。このように、
二段焼鈍法において、前段に低温での焼鈍を行うことに
より二次再結晶が促進されており、二次再結晶促進のた
めにも二段焼鈍法が有効であることが判る。
First, when comparing the two-step annealing method and the trapezoidal one-step annealing for the iron loss, in the case of the trapezoidal one-step annealing, since the ferrite grains are fine grains at an annealing temperature of 800 ° C or less, the iron loss shows a high value,
By increasing the annealing temperature to as high as 850 ℃, secondary recrystallization occurs and the iron loss value of less than 5W / kg is achieved. On the other hand, when the two-step annealing method is performed and the subsequent annealing is less than 800 ° C, secondary recrystallization does not occur under any conditions. The subsequent annealing is 80
Even if the temperature is 0 ° C or higher, if the annealing temperature in the former stage is as high as 750 ° C or higher, the crystal grains grow to some extent in the stage in the former annealing, so that secondary recrystallization does not occur and the iron loss does not occur. high. However, even in the case of 800 ° C annealing in which the secondary recrystallization did not occur in the trapezoidal one-step annealing method, the secondary recrystallization occurs by performing the two-step annealing by performing the annealing at less than 750 ° C in the previous stage, Iron loss value is less than 5W / kg. in this way,
In the two-step annealing method, the secondary recrystallization is promoted by performing the annealing at a low temperature in the previous step, and it is understood that the two-step annealing method is also effective for promoting the secondary recrystallization.

次に、これら二段焼鈍法により二次再結晶が起き、低鉄
損化した領域について磁束密度の挙動を見ると、同じ低
鉄損領域であっても、二段焼鈍条件により磁束密度に差
が見られる。図のように、後段の焼鈍温度が800℃以上
で、前段の焼鈍温度がある温度範囲のものについての
み、磁束密度(B50)1.80T以上が達成されている。この
温度範囲の下限は、本供試鋼における(再結晶完了温度
[=590℃]−50)℃とほぼ一致しており、また、上限
は(再結晶完了温度+100)℃に相当している。前段の
焼鈍温度が(再結晶完了温度−50)℃を下回った場合
や、(再結晶完了温度+100)℃を上回った場合は、い
ずれも磁束密度は1.80T未満となっている。また、台形
一段焼鈍における焼鈍温度を前段焼鈍の温度範囲とした
場合や、同様に後段焼鈍の温度範囲とした場合では、こ
のような高磁束密度化は達成されておらず、本現象が二
段焼鈍を行うことにより、はじめて実現される二段焼鈍
固有の現象であることが判る。
Next, looking at the behavior of the magnetic flux density in the region where the secondary recrystallization has occurred due to these two-step annealing methods and reduced iron loss, even in the same low iron loss region, there is a difference in the magnetic flux density due to the two-step annealing conditions. Can be seen. As shown in the figure, the magnetic flux density (B 50 ) of 1.80 T or higher is achieved only for the annealing temperature of the latter stage of 800 ° C or higher and the annealing temperature of the former stage in a certain temperature range. The lower limit of this temperature range is almost the same as (recrystallization completion temperature [= 590 ° C] -50) ° C in this test steel, and the upper limit is equivalent to (recrystallization completion temperature +100) ° C. . When the annealing temperature in the former stage is lower than (recrystallization completion temperature −50) ° C. or higher than (recrystallization completion temperature +100) ° C., the magnetic flux density is less than 1.80 T. Further, when the annealing temperature in the trapezoidal one-step annealing is set to the temperature range of the first-stage annealing, or when the temperature range of the second-stage annealing is similarly set, such a high magnetic flux density has not been achieved, and this phenomenon has two stages. It can be seen that this is a phenomenon unique to the two-step annealing that is first realized by performing annealing.

この現象はAlN析出による集合組織改善効果に起因して
おり、以下のような理由によるものと推定される。すな
わち、前段の焼鈍温度が(再結晶完了温度−50)℃〜
(再結晶完了温度+100)℃の範囲では、前段の焼鈍に
おいて、微細AlNの析出と回復、再結晶が競合すること
により、AlNが再結晶の核生成に選択性を与える。その
結果、再結晶粒の集合組織形成に影響を及ぼし、磁気特
性に有効な{100}、{110}面強度が高まり、磁気特性
に不利な{111}面の増加を抑制するものと考えられ
る。このように前段の焼鈍段階において、AlN析出の効
果により細粒かつ、{100}、{110}面成分が多く磁気
特性上好ましい集合組織が形成される場合、後段の高温
焼鈍時の二次再結晶においても、{100}、{110}面の
結晶粒の発生頻度が高まり、粗粒であるにもかかわらず
磁束密度が向上するものと考えられる。
This phenomenon is due to the texture improving effect of AlN precipitation and is presumed to be due to the following reasons. That is, the annealing temperature of the former stage is (recrystallization completion temperature −50) ° C.
In the range of (recrystallization completion temperature +100) ° C, precipitation and recovery of fine AlN and recrystallization compete with each other in the former annealing, and AlN gives selectivity to the nucleation of recrystallization. As a result, it is thought that it affects the formation of recrystallized grain texture, increases the strength of {100} and {110} planes effective for magnetic properties, and suppresses the increase of {111} faces, which is disadvantageous for magnetic properties. . In this way, in the former annealing step, when a fine grain and a large amount of {100} and {110} plane components are formed due to the effect of AlN precipitation and a favorable texture is formed in terms of magnetic properties, the secondary re-annealing during the subsequent high temperature annealing is performed. It is considered that the frequency of occurrence of crystal grains on the {100} and {110} planes also increases in crystals, and the magnetic flux density improves even though they are coarse grains.

一方、前段の焼鈍温度が(再結晶完了温度−50)℃より
低い場合は、前段の焼鈍ではAlNの析出は少なく、また
再結晶も不十分であるため、集合組織改善現象は起こら
ない。またその場合、AlNの析出と再結晶の進行は後段
焼鈍の昇温過程でしか起こらず、先に述べたような両者
の適正な競合が起きない。このため、有効な結晶粒の選
択性もないままに一次再結晶が進行するため、集合組織
は改善されず、また二次再結晶後も通常の台形一段焼鈍
サイクル並みの集合組織しか得られない。
On the other hand, when the annealing temperature of the former stage is lower than (recrystallization completion temperature −50) ° C., the precipitation of AlN is small and the recrystallization is insufficient in the annealing of the former stage, so that the texture improvement phenomenon does not occur. Further, in this case, the precipitation of AlN and the progress of recrystallization occur only in the temperature rising process of the post-annealing, and the proper competition between the two as described above does not occur. For this reason, the primary recrystallization proceeds without effective selectivity of the crystal grains, so that the texture is not improved, and after the secondary recrystallization, only a texture similar to a normal trapezoidal one-step annealing cycle is obtained. .

逆に前段の焼鈍温度が高い場合は、前段の焼鈍における
再結晶の進行が速いため、AlNの析出と再結晶の競合関
係が最適化されず、結晶粒の選択現象が起きない。この
ため、後段焼鈍時の二次再結晶においても{100}面、
{110}面の優先成長は起きず、磁束密度は低い。
On the contrary, when the annealing temperature in the former stage is high, the progress of recrystallization in the annealing in the former stage is fast, so that the competitive relationship between precipitation of AlN and recrystallization is not optimized, and the selection phenomenon of crystal grains does not occur. Therefore, even in the secondary recrystallization during the subsequent annealing, the {100} plane,
The preferential growth of the {110} plane does not occur and the magnetic flux density is low.

以上のように、仕上焼鈍を二段焼鈍化し、且つ前段の焼
鈍温度を制御してAlN析出と再結晶を競合させ、集合組
織を最適化することにより、低鉄損のみならず高磁束密
度化が達成可能であることが明らかとなった。このよう
な磁束密度に対する二段焼鈍条件依存性は、他のSi量、
[Al/N]、P量の鋼や他の巻取温度条件でも同様に見ら
れ、最適範囲も同一範囲であった。
As described above, the finish annealing is performed in two steps, and the annealing temperature in the preceding step is controlled to compete with AlN precipitation and recrystallization to optimize the texture, thereby improving not only the low iron loss but also the high magnetic flux density. Has been found to be achievable. The dependence of the two-step annealing condition on the magnetic flux density depends on other Si content,
The same range was found under the conditions of [Al / N], steel with P content, and other winding temperature conditions, and the optimum range was the same range.

これら高磁束密度材を安定して製造すべく、更に種々の
鋼について仕上焼鈍における二段焼鈍条件と磁束密度の
関係について詳細に調査したところ、焼鈍条件は本発明
範囲を満足しているにもかかわらず、磁束密度が低いレ
ベルの鋼が見られた。これらの鋼について成分組織と磁
束密度の関係を検討したところ、C量とMn量の両者の影
響を受けており、C量を一定量以下とし、更にMnを一定
以上含有させたうえで、二段焼鈍条件を適正化する必要
があることが明確となった。
In order to stably produce these high magnetic flux density materials, further detailed investigations were carried out on the relationship between the two-stage annealing condition and the magnetic flux density in finish annealing for various steels, and it was found that the annealing conditions satisfy the range of the present invention. Nevertheless, low levels of magnetic flux density were found in the steel. When the relationship between the chemical composition and the magnetic flux density was examined for these steels, they were affected by both the C content and the Mn content. The C content was kept below a certain amount, and the Mn content was also kept above a certain amount. It became clear that it is necessary to optimize the stage annealing conditions.

第2表に示すような0.004%CベースでMn量を変えた鋼E
1〜E5、0.008%CベースでMn量を変えた鋼F1〜F4、およ
び0.013%CベースでMn量を変えた鋼G1〜G4の合計13種
の鋼のスラブを、1200℃に加熱して熱間圧延後、470℃
で巻取り、引続き酸洗、冷圧により0.5mm厚の鋼板とし
た。各鋼板の再結晶温度は、590℃〜620℃の範囲内であ
った。これら鋼板を、5℃/sの加熱速度で加熱し、前段
を640×1.5分、引続き後段を840℃×2分とする二段焼
鈍により仕上焼鈍を行った。第5図は仕上焼鈍後の磁束
密度(B50)に及ぼすMn量とC量の影響を調べたもので
ある。図に示されるように0.008%C材や、0.013%C材
などC量が高い場合は、いずれのMn量においても磁束密
度は1.75程度と低いレベルである。また0.004%C材の
ようにCが低い場合でも、Mn量が0.25wt%未満の場合
は、高C材と同等かやや劣るレベルであり、Mnが0.25wt
%以上含有された場合のみ、磁束密度が1.78以上と優れ
た特性値を示している。このように、低C、高Mnの条件
でのみ高磁束密度化が達成されていることが判る。
Steel E with varying Mn content based on 0.004% C as shown in Table 2
Slabs of 13 kinds of steels, 1 to E5, steels F1 to F4 with varying Mn content based on 0.008% C, and steels G1 to G4 with varying Mn content based on 0.013% C, are heated to 1200 ° C. After hot rolling, 470 ℃
It was rolled up, and then it was pickled and cold-pressed into a 0.5 mm thick steel plate. The recrystallization temperature of each steel sheet was within the range of 590 ° C to 620 ° C. These steel sheets were heated at a heating rate of 5 ° C./s, and finish annealing was performed by two-stage annealing in which the former stage was 640 × 1.5 minutes and the latter stage was 840 ° C. × 2 minutes. FIG. 5 shows the effect of Mn content and C content on the magnetic flux density (B 50 ) after finish annealing. As shown in the figure, when the C content is high such as 0.008% C material and 0.013% C material, the magnetic flux density is as low as about 1.75 at any Mn content. Even when the C content is low, such as 0.004% C material, when the Mn content is less than 0.25 wt%, it is at a level equivalent to or slightly inferior to the high C material, and Mn is 0.25 wt%.
%, The magnetic flux density shows an excellent characteristic value of 1.78 or more. Thus, it can be seen that the high magnetic flux density is achieved only under the conditions of low C and high Mn.

これらC、Mnによる磁束密度改善効果の詳細な機構は必
ずしも明らかではないが、以下のように考えられる。す
なわち、極低Cの条件下では、Mnが一定量以上共存する
ことにより、CとMnが適度に相互作用をし、AlNによる
再結晶方位の選択作用に影響を及ぼす。その結果{10
0}、{110}面が優先成長した集合組織が得られるもの
と思われる。高C材では高Mn化しても磁束密度は向上し
ていないが、これはMnとの相互作用が強まり過ぎて選択
性に悪影響を及ぼしているか、あるいはCがAlNの析出
タイミングそのものをも変化させるため、適切に再結晶
と競合しないためであると考えられる。
Although the detailed mechanism of the effect of improving the magnetic flux density by C and Mn is not clear, it is considered as follows. That is, under the condition of extremely low C, coexistence of Mn in a certain amount or more causes C and Mn to appropriately interact with each other, which affects the selective action of the recrystallization orientation by AlN. As a result {10
It seems that a texture with preferential growth of the 0} and {110} planes will be obtained. In the high C material, the magnetic flux density is not improved even if the Mn is increased, but this is because the interaction with Mn becomes too strong and adversely affects the selectivity, or C changes the AlN precipitation timing itself. Therefore, it is considered that it does not compete with recrystallization appropriately.

以上のように、極低C材においてMnを一定量以上含有さ
せ、仕上焼鈍を二段化し、AlNの析出制御とAlNの再結晶
方位選択作用を利用することにより、低鉄損と高磁束密
度を両立させることが可能であるということが明らかと
なった。
As described above, low iron loss and high magnetic flux density can be obtained by incorporating Mn in a certain amount or more in the ultra-low C material, by performing the finishing annealing in two stages, and by utilizing the AlN precipitation control and the recrystallization orientation selection effect of AlN. It became clear that it is possible to achieve both.

このため本発明では、Cに関しては0.005wt%以下、Mn
に関しては0.25wt%以上をその条件として規定する。よ
り安定して高磁束密度化するためには、Mn量は0.50wt%
以上とすることが好ましい。また仕上焼鈍条件に関して
は、二段焼鈍の前段の焼鈍温度を磁束密度向上効果の大
きい(再結晶完了温度−50)℃以上、(再結晶完了温度
+100)℃以下の範囲とし、後段の焼鈍温度を二次再結
晶が起きる800℃以上として規定する。後段の焼鈍温度
は、950℃を超えるとエネルギーコストが増すため950℃
以下が好ましい。本発明においては、AlNは前段の焼鈍
中に析出させる。このため前段焼鈍時の加熱速度は、昇
温過程での微細AlNの析出防止のため5℃/s以上と規定
する。後段焼鈍での加熱速度は、二次再結晶の進行に大
きな影響を与えないため特に規定しないが、本製造法は
連続焼鈍を前提とするものであるため、実質的には1℃
/s以上となる。次に、前段焼鈍における加熱時間は、本
発明の下限の焼鈍温度においても微細AlNの析出と再結
晶の進行を所要量確保するため30秒以上とし、後段焼鈍
における均熱時間は、二次再結晶進行のため1分以上と
する。また、均熱時間の上限は、生産効率の点から全体
で10分以内とすることが好ましい。
Therefore, in the present invention, C is 0.005 wt% or less, Mn
With respect to, 0.25 wt% or more is specified as the condition. For more stable and higher magnetic flux density, the Mn content should be 0.50wt%
The above is preferable. Regarding the finish annealing conditions, the annealing temperature in the first stage of the two-stage annealing is set in the range of (recrystallization completion temperature −50) ° C. or higher and (recrystallization completion temperature +100) ° C. or less, which has a large effect of improving the magnetic flux density, and the annealing temperature of the latter stage Is defined as 800 ° C or higher at which secondary recrystallization occurs. The annealing temperature in the latter stage is 950 ° C because the energy cost increases if it exceeds 950 ° C.
The following are preferred. In the present invention, AlN is precipitated during the former annealing. Therefore, the heating rate during the pre-annealing is specified to be 5 ° C./s or more to prevent the precipitation of fine AlN during the temperature rising process. The heating rate in the post-annealing is not specified because it does not significantly affect the progress of secondary recrystallization, but since this manufacturing method presupposes continuous annealing, it is substantially 1 ° C.
/ s or more. Next, the heating time in the first-stage annealing is set to 30 seconds or more to secure the required amount of precipitation and recrystallization of fine AlN even at the lower limit annealing temperature of the present invention, and the soaking time in the second-stage annealing is the secondary re-heating. It should be 1 minute or longer for the progress of crystallization. The upper limit of the soaking time is preferably 10 minutes or less in terms of production efficiency.

本発明法による電磁鋼板は、需要家での打ち抜き後にそ
のまま製品に組み立てても、非常にすぐれた特性を発揮
するものであるが、打ち抜き後に一旦歪取焼鈍を施し、
その後に製品に組み立てても何ら問題はなく、よりすぐ
れた特性を発揮する。
Magnetic steel sheet according to the method of the present invention, even if assembled into a product as it is after punching by a customer, exhibits very excellent characteristics, but after being punched, it is subjected to strain relief annealing,
After that, there is no problem when assembled into a product, and it exhibits superior characteristics.

〔実 施 例〕〔Example〕

第3表に示す8種の成分組成のスラブを、第4表に示し
た熱延条件で熱間圧延し、引続き酸洗、冷間圧延を行
い、板厚0.5mmの鋼板とした。これら鋼板について、第
4表に示した仕上焼鈍条件で二段焼鈍を行った。なお、
均熱時間は前段焼鈍を1分、後段焼鈍を2分と一定とし
た。第4表の右欄にこれら鋼板の仕上焼鈍後の鉄損(W
15/50)と磁束密度(B50)を示す。同表から明らかなよ
うに、本発明範囲の成分、加熱温度、巻取温度および二
段焼鈍条件で製造した鋼板は、非常に優れた鉄損、磁束
密度バランスを示している。特に、磁束密度に関しては
0.19%Si材(鋼種J)で1.81以上、0.82%Si材(鋼種
L)で1.79以上を達成している。一方、本発明範囲外の
成分や加熱温度、巻取温度の場合には、二次再結晶が起
きないため鉄損が高い。また二段焼鈍の焼鈍条件が本発
明範囲外の場合には、ある程度低鉄損化しても磁束密度
は低い。
The slabs having the eight kinds of compositions shown in Table 3 were hot-rolled under the hot-rolling conditions shown in Table 4, followed by pickling and cold-rolling to obtain a steel plate having a thickness of 0.5 mm. Two-step annealing was performed on these steel sheets under the finish annealing conditions shown in Table 4. In addition,
The soaking time was fixed at 1 minute for the first stage annealing and 2 minutes for the second stage annealing. In the right column of Table 4, the iron loss (W
15/50 ) and magnetic flux density (B 50 ) are shown. As is clear from the table, the steel sheet produced under the components of the present invention, the heating temperature, the coiling temperature, and the two-step annealing condition shows very excellent iron loss and magnetic flux density balance. Especially regarding the magnetic flux density
Achieved 1.81 or more for 0.19% Si material (steel type J) and 1.79 or more for 0.82% Si material (steel type L). On the other hand, when the component, heating temperature, or coiling temperature is out of the range of the present invention, secondary recrystallization does not occur, and thus iron loss is high. When the annealing conditions of the two-step annealing are out of the range of the present invention, the magnetic flux density is low even if the iron loss is reduced to some extent.

〔発明の効果〕 以上のように本発明法によれば、無方向性電磁鋼板の製
造において、熱延板焼鈍や、二回冷圧、二回焼鈍といっ
たコストアップを招く手段を用いることなく、また表面
性状の劣化など商品特性を劣化させることなく、高い生
産効率で、鉄損、磁束密度ともに非常に優れた電磁鋼板
を提供でき、その産業上の効果は極めて大きい。
[Effects of the Invention] As described above, according to the method of the present invention, in the production of a non-oriented electrical steel sheet, without using means for increasing costs such as hot-rolled sheet annealing, double cold pressing, and double annealing, Further, it is possible to provide a magnetic steel sheet having a high production efficiency and a very excellent iron loss and magnetic flux density without deteriorating the product characteristics such as the deterioration of the surface properties, and the industrial effect thereof is extremely large.

【図面の簡単な説明】[Brief description of drawings]

第1図は仕上焼鈍後の鉄損に及ぼす[Al/N]と巻取温度
の影響を示すグラフである。 第2図は仕上焼鈍後の鉄損に及ぼす[Al/N]とPの影響
を示すグラフである。 第3図は仕上焼鈍における熱サイクルを示す説明図であ
る。 第4図は鉄損と磁束密度に及ぼす仕上焼鈍条件の影響を
示すグラフである。 第5図は磁束密度に及ぼすCとMnの影響を示すグラフで
ある。
FIG. 1 is a graph showing the effect of [Al / N] and winding temperature on iron loss after finish annealing. FIG. 2 is a graph showing the effect of [Al / N] and P on iron loss after finish annealing. FIG. 3 is an explanatory view showing a heat cycle in finish annealing. FIG. 4 is a graph showing the effect of finish annealing conditions on iron loss and magnetic flux density. FIG. 5 is a graph showing the effect of C and Mn on the magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.005wt%以下、Si:0.1〜1.0wt%、Mn:
0.25wt%以上、P:0.03wt%以上、sol.Al:0.004〜0.080w
t%、N:0.001〜0.005wt%、残部Fe及び不可避的不純物
からなり、且つ sol.Al含有量とN含有量との原子量比率が、 2≦[sol.Al(at%)/N(at%)]≦15 を満足する成分組成のスラブを1150℃以上に加熱し、熱
間圧延後、 450≦CT≦−7.5{Al(at%)/N(at%)}+600(℃) の範囲の巻取温度CT(℃)で巻取り、該鋼帯を酸洗、冷
間圧延後、仕上焼鈍し、該仕上焼鈍においては、その前
段において加熱速度5℃/sec以上とし、且つ(再結晶完
了温度−50)℃以上、(再結晶完了温度+100)℃以下
の温度範囲で30秒以上焼鈍し、引続き焼鈍後段において
800℃以上の温度で1分間以上焼鈍する、二段焼鈍を行
うことを特徴とする磁気特性に優れた無方向性電磁鋼板
の製造方法。
1. C: 0.005 wt% or less, Si: 0.1-1.0 wt%, Mn:
0.25wt% or more, P: 0.03wt% or more, sol.Al:0.004-0.080w
t%, N: 0.001 to 0.005 wt%, balance Fe and unavoidable impurities, and the atomic weight ratio of sol.Al content and N content is 2 ≦ [sol.Al (at%) / N (at %)] ≦ 15, slabs with a composition satisfying 15 are heated to over 1150 ° C and hot-rolled, and then 450 ≦ CT ≦ −7.5 {Al (at%) / N (at%)} + 600 (° C) At a coiling temperature CT (° C) of the steel strip, the steel strip is pickled, cold-rolled, and then finish-annealed. In the finish-annealing, the heating rate was 5 ° C / sec or more in the preceding stage, and (recrystallization Annealing is performed for 30 seconds or more in the temperature range of completion temperature −50) ° C. or higher and (recrystallization completion temperature +100) ° C. or lower, followed by subsequent annealing.
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties, which comprises performing a two-step annealing in which the annealing is performed at a temperature of 800 ° C or more for 1 minute or more.
JP1610490A 1990-01-29 1990-01-29 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties Expired - Lifetime JPH07116511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1610490A JPH07116511B2 (en) 1990-01-29 1990-01-29 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1610490A JPH07116511B2 (en) 1990-01-29 1990-01-29 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH03223423A JPH03223423A (en) 1991-10-02
JPH07116511B2 true JPH07116511B2 (en) 1995-12-13

Family

ID=11907209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1610490A Expired - Lifetime JPH07116511B2 (en) 1990-01-29 1990-01-29 Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JPH07116511B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997022723A1 (en) * 1995-12-19 1997-06-26 Pohang Iron & Steel Co., Ltd. Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film
CN1060815C (en) * 1995-12-19 2001-01-17 浦项综合制铁株式会社 Process for producing nondirectional electrical steel sheet excellent in close adhesion of insulating film

Also Published As

Publication number Publication date
JPH03223423A (en) 1991-10-02

Similar Documents

Publication Publication Date Title
JP2983128B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
US5039359A (en) Procees for producing grain-oriented electrical steel sheet having superior magnetic characteristic
KR910000010B1 (en) Method of producing silicon fron sheet having excellent soft magnetic properties
JP3359449B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JP4385960B2 (en) Method for producing grain-oriented electrical steel sheet
CN114867872A (en) Oriented electrical steel sheet and method for manufacturing the same
JP2639226B2 (en) Grain-oriented electrical steel sheet and its manufacturing method
JP2951852B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPH07116511B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP2746631B2 (en) High magnetic flux density oriented silicon steel sheet with excellent iron loss characteristics and method for producing the same
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JP2760208B2 (en) Method for producing silicon steel sheet having high magnetic flux density
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH08279408A (en) Manufacture of unidirectional electromagnetic steel sheet being excellent in magnetic characteristics
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JPH07116508B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JPH04341518A (en) Production of extra thin grain-oriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3474594B2 (en) Manufacturing method of unidirectional electrical steel sheet with excellent thickness and thickness
JPH0257125B2 (en)
WO2022210503A1 (en) Production method for grain-oriented electrical steel sheet