JPH0331419A - Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics - Google Patents

Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics

Info

Publication number
JPH0331419A
JPH0331419A JP16547589A JP16547589A JPH0331419A JP H0331419 A JPH0331419 A JP H0331419A JP 16547589 A JP16547589 A JP 16547589A JP 16547589 A JP16547589 A JP 16547589A JP H0331419 A JPH0331419 A JP H0331419A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
semi
annealing
oriented electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16547589A
Other languages
Japanese (ja)
Other versions
JP2870817B2 (en
Inventor
Hidekuni Murakami
英邦 村上
Yoshikuni Furuno
古野 嘉邦
Takeshi Kono
河野 彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15813116&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0331419(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1165475A priority Critical patent/JP2870817B2/en
Publication of JPH0331419A publication Critical patent/JPH0331419A/en
Application granted granted Critical
Publication of JP2870817B2 publication Critical patent/JP2870817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce the semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics by subjecting a low carbon steel slab to a hot rolling, descaling and annealing under specific conditions and then further subjecting the steel sheet to a warm rolling, annealing and skin pass rolling under specific conditions, then to a working and strain relief annealing. CONSTITUTION:The low carbon steel slab contg., by weight%, 0.001 to 0.04% C, 0.01 to 2.5% Si, <0.20% Al, 0.1 to 1.2% Mn, 0.03 to 0.11% P, <0.015% S, and <0.0050% N or further contg. B in a range where 0.5 to 1.8 B/N (by weight) is attained is hot rolled at 700 deg.C to Ar3 transformation temp. or below hot finish rolling temp. and is coiled at >=700 deg.C. The coil is self-annealed by its own possessed heat. This steel sheet is cold roller after the scale generated by the hot rolling is removed and in this case, the total strains to be imparted by the cold rolling are converted to a logarithmic strain and >=50% thereof is rolled warm at 100 to 400 deg.C; thereafter, the steel sheet is annealed for <3 minutes at 700 to 900 deg.C. The steel sheet is in succession subjected to the working, such as blanking after the skin pass rolling, then to the strain relief annealing. The semi-processed non-oriented electrical steel sheet which has a high magnetic flux density and less iron loss is produced with good productivity.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は磁束密度が高く鉄損が小さいセミプロセス無第
2項に記載の磁気特性の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for manufacturing the magnetic properties described in item 2, which has high magnetic flux density and low iron loss and does not involve semi-processing.

(従来の技術) 近年、エネルギー消費量の削減は分野を問わず重要な課
題となり電気機器の高効率化の要求が強くなっている。
(Prior Art) In recent years, reducing energy consumption has become an important issue regardless of field, and there is a growing demand for higher efficiency in electrical equipment.

そのためモーターや変圧器などの鉄心材料として広く用
いられている無第2項に記載の磁気特性においても低鉄
損と高磁束密度を兼ね備えた材料が望まれている。
Therefore, there is a desire for a material that has both low iron loss and high magnetic flux density in terms of the magnetic properties described in item 2, which is widely used as an iron core material for motors, transformers, and the like.

周知のごとく無第2項に記載の磁気特性は製造方法によ
ってフルプロセス材とセミプロセス材に分けられる。フ
ルプロセス材は鋼板製造者側での最終仕上げ焼鈍のまま
製品として使用されるものであり、セミプロセス材は鋼
板製造者側で焼鈍、スキンパスなどを行い、鋼板需要者
において打ち抜き、剪断などの加工後さらに歪取り焼鈍
が施され所定の特性が得られるようにしたものである。
As is well known, the magnetic properties described in item 2 can be divided into fully processed materials and semi-processed materials depending on the manufacturing method. Fully processed materials are used as products after final annealing by the steel sheet manufacturer, while semi-processed materials are subjected to annealing, skin pass, etc. at the steel sheet manufacturer's side, and processing such as punching and shearing at the steel sheet consumer. Afterwards, it is further subjected to strain relief annealing to obtain predetermined characteristics.

セミプロセス材はフルプロセス材に比べて歪取り焼鈍で
粒成長が生じ鉄損は低くなるが反面、磁束密度が低下し
てしまう。この点を改善するためセミプロセス材におい
ては特開昭57−203718号公報や特開昭61−4
4125号公報に示されるように、熱延板焼鈍を施した
後冷間圧延、焼鈍を行う方法や冷間圧延の途中で焼鈍を
介在させる方法が提案されている。これらの方法によれ
ば磁気特性向上にかなりの効果が見られるが、熱延板の
焼鈍や冷間圧延途中の焼鈍など工程が長くなるため生産
性が低下し、コストも上昇する。
Compared to fully processed materials, semi-processed materials undergo grain growth during strain relief annealing, resulting in lower iron loss, but on the other hand, magnetic flux density decreases. In order to improve this point, semi-processed materials have been published in Japanese Patent Application Laid-Open Nos. 57-203718 and 61-4.
As shown in Japanese Patent No. 4125, a method of performing cold rolling and annealing after hot-rolled sheet annealing, and a method of intervening annealing during cold rolling have been proposed. Although these methods are highly effective in improving magnetic properties, they require longer steps such as annealing the hot-rolled sheet and annealing during cold rolling, resulting in decreased productivity and increased cost.

(発明が解決しようとする課題) 本発明はセミプロセス無第2項に記載の磁気特性の磁気
特性の向上、特に高磁束密度化を熱延板焼鈍などによら
ずに達成し高生産性、低コストで磁気特性の優れたセミ
プロセス無第2項に記載の磁気特性を得ることを目的と
する。
(Problems to be Solved by the Invention) The present invention achieves improvement of the magnetic properties of the magnetic properties described in item 2 without semi-processing, particularly high magnetic flux density, without using hot-rolled sheet annealing, etc., and achieves high productivity and It is an object of the present invention to obtain the magnetic properties described in item 2 without semi-processing, which are low cost and have excellent magnetic properties.

(課題を解決するための手段) 本発明の要旨とするところは、重二%でC:o、oot
〜0.04%、S I:0.01〜2.5%、Ag:0
.20%以下、Mn:0.l=1.2%、P : 0.
03〜0.11%、S:0.015%以下、N : 0
.0050%以下を含有し、残部が鉄および不可避的不
純物からなる鋼片を熱間圧延、脱スケールした後、冷間
圧延において付与する全ひずみを対数歪に換算して、そ
のうちの5096以上を100〜400℃の温間で圧延
し、700〜900℃で3分未満の焼鈍を行い、ついで
スキンパス圧延し、打ち抜きなどの加工後、歪取り焼鈍
することを特徴とする特許 電磁鋼板の製造方法にあり、他の要旨は、重量%でC 
:0.001〜0.04%、S I:0.Ol〜2,5
%、へp二0、20%以下、Mn:0.1−1.2%、
P : 0.03 〜0.11%、S :0.015%
以下、N : 0.0050%以下、BINとの重量比
B/Nで0,5〜1.8を含有し、残部が鉄および不可
避的不純物からなる鋼片を熱間圧延、脱スケールした後
、冷間圧延において付与する全ひずみを対数歪に換算し
て、そのうちの50%以上を100〜400℃の温間で
圧延し、700〜900℃で3分未満の焼鈍を行い、つ
いでスキンパス圧延し、打ち抜きなどの加工後、歪取り
焼鈍することを特徴とする磁気特性の優れたセミプロセ
ス無第2項に記載の磁気特性の製造方法にあり、さらに
必要に応じて熱間圧延において仕上げ温度をAr3変態
点未満700℃以上とし、また熱間圧延後の巻取りを7
(10℃以上の温度で行い自己焼鈍するところにある。
(Means for solving the problem) The gist of the present invention is that C: o, oot at 2%
~0.04%, SI: 0.01~2.5%, Ag: 0
.. 20% or less, Mn: 0. l=1.2%, P: 0.
03-0.11%, S: 0.015% or less, N: 0
.. After hot rolling and descaling a steel piece containing 0.050% or less and the remainder consisting of iron and unavoidable impurities, the total strain imparted during cold rolling is converted into logarithmic strain, and 5096 or more of that is 100%. A patented method for producing an electrical steel sheet, characterized by warm rolling at ~400°C, annealing at 700-900°C for less than 3 minutes, skin pass rolling, punching, etc., and strain relief annealing. Yes, other features include C in weight%
:0.001-0.04%, SI:0. Ol~2,5
%, Hep20, 20% or less, Mn: 0.1-1.2%,
P: 0.03-0.11%, S: 0.015%
Hereinafter, after hot rolling and descaling a steel billet containing N: 0.0050% or less, a weight ratio of B/N with BIN of 0.5 to 1.8, and the remainder consisting of iron and unavoidable impurities. The total strain imparted during cold rolling is converted into logarithmic strain, and at least 50% of it is warm rolled at 100 to 400°C, annealed at 700 to 900°C for less than 3 minutes, and then skin pass rolled. The method for producing magnetic properties according to item 2 does not include a semi-process that produces excellent magnetic properties, which is characterized by carrying out strain relief annealing after processing such as punching, and if necessary, the finishing temperature is increased during hot rolling. below the Ar3 transformation point and 700°C or higher, and the winding after hot rolling is 700°C or higher.
(Self-annealing is performed at a temperature of 10°C or higher.

(作  用) 以下、本発明を詳細に説明する。(for production) The present invention will be explained in detail below.

Cは磁気特性上有害な元素で磁気特性を劣化させるので
、0.04%以下とする。一層の磁気特性向上を図るに
は真空脱ガス処理装置などによって0.005%以下と
することが望ましい。しかし工業的にみて製鋼時の脱炭
にも限度があり0.001%以上とする。
Since C is a harmful element in terms of magnetic properties and deteriorates the magnetic properties, it should be kept at 0.04% or less. In order to further improve the magnetic properties, it is desirable to reduce the content to 0.005% or less using a vacuum degassing device or the like. However, from an industrial point of view, there is a limit to decarburization during steel manufacturing, and it is set at 0.001% or more.

Stは脱酸および鋼板の電気抵抗を高め鉄損値を下げる
のに有効であり、その作用を奏させるために0.01%
以上必要である。しかしその含有量の増加にともない磁
束密度の低下およびコスト上昇を招くため2.5%以下
とする。
St is effective in deoxidizing and increasing the electrical resistance of steel sheets and lowering the iron loss value, and in order to achieve this effect, 0.01%
The above is necessary. However, as the content increases, the magnetic flux density decreases and costs increase, so it is set to 2.5% or less.

Al2はSlと同様に脱酸に使用したり比抵抗を高め鉄
損を改善するために有効な元素であるが添加によるコス
ト上昇をきたすので0.20%以下とする。
Like Sl, Al2 is an effective element used for deoxidation and for increasing specific resistance and improving core loss, but its addition causes an increase in cost, so it is limited to 0.20% or less.

Mnは熱間圧延時の赤熱脆性を防止するため0、1%以
上含有させる。一方過剰な含有は磁気特性劣化を招くた
め1.2%以下とする。
Mn is contained in an amount of 0.1% or more to prevent red brittleness during hot rolling. On the other hand, excessive content causes deterioration of magnetic properties, so the content should be 1.2% or less.

Pは鋼板の硬度を増し雪要家での打ち抜き性を良くする
ため0.03%以上含有させる。しかし多すぎると脆化
が著しいため上限を0.11%とする。
P is contained in an amount of 0.03% or more in order to increase the hardness of the steel plate and improve the punching property in snowy areas. However, if the content is too large, embrittlement will be significant, so the upper limit is set at 0.11%.

Sは粒成長性を阻害し鉄損を悪化させるため0.015
%以下とするが0.005%以下が好ましい。
S is 0.015 because it inhibits grain growth and worsens iron loss.
% or less, preferably 0.005% or less.

Nは粒成長阻害元素で磁気特性に有害であるから0.0
050%以下とする。好ましくはo、ooao%以下で
ある。またNを固定することで粒成長性を良くし、より
鉄損を向上させるため必要に応じてBをN当量以下添加
する。Nmに対してB/Nが0.5以下では効果が得ら
れず一方1.8以上では逆効果となるためB/N−0,
5〜1.8の範囲に制限する。
Since N is an element that inhibits grain growth and is harmful to magnetic properties, the value is 0.0.
050% or less. Preferably it is o, ooao% or less. Further, by fixing N, grain growth properties are improved, and in order to further improve iron loss, B is added in an amount equal to or less than N equivalent, if necessary. If B/N is less than 0.5 with respect to Nm, no effect will be obtained, while if it is more than 1.8, the opposite effect will occur, so B/N-0,
5 to 1.8.

溶製、鋳造された前記成分からなるスラブは次いで熱間
圧延される。このときの仕上げ温度をA r a変態点
未満700℃以上とすれば(100) 、 (110)
集合組織が発達するため、後述する温間圧延と組合せた
場合に磁気特性の向上に効果がある。また熱間圧延後の
巻取りを700℃以上で行い自己焼鈍を行えばさらに磁
気特性は向上する。700℃以上巻取りとするのは熱延
コイルでの自己保有熱を確保するためである。
The slab made of the melted and cast components is then hot rolled. If the finishing temperature at this time is 700°C or higher below the Ara transformation point, (100), (110)
Since the texture develops, it is effective in improving magnetic properties when combined with warm rolling, which will be described later. Moreover, if the coiling after hot rolling is performed at 700° C. or higher and self-annealing is performed, the magnetic properties are further improved. The reason why the coil is wound at 700° C. or higher is to ensure that the hot-rolled coil retains its own heat.

次いで脱脂後、冷間圧延を行うがこの圧下時の一部また
は全部にわたった温度条件が本発明における重要な要件
であって100〜400℃の温度域における圧延が、冷
間圧延により付与された全歪を、対数歪で換算したもの
のうち50%以上にわたりなされることが磁気特性向上
、特に磁束密度を高めるために必要である。
Next, after degreasing, cold rolling is performed, and the temperature conditions over part or all of this rolling are important requirements in the present invention. In order to improve the magnetic properties, particularly to increase the magnetic flux density, it is necessary to increase the total strain by 50% or more of the total strain converted into logarithmic strain.

圧延温度域が100℃未満になると磁気特性改善の効果
がなくなり、一方400℃を超えると圧延作業に支障を
きたすようになる。この温度域での圧延は圧下の全量に
わたる必要はなく対数歪換算で50%以上にわたってい
れば冷間圧延の初期、中期。
When the rolling temperature range is less than 100°C, the effect of improving magnetic properties disappears, while when it exceeds 400°C, rolling operations are hindered. Rolling in this temperature range does not need to cover the entire reduction, but if it covers 50% or more in terms of logarithmic strain, it is in the early or middle stage of cold rolling.

後期のいずれで行っても磁気特性の向上効果は現れる。No matter which stage is used, the effect of improving magnetic properties will appear.

冷間圧延の後連続焼鈍するが、この温度は得られる磁気
特性の向上とコスト低下の面から700〜900℃とす
る。またその保熱時間は磁気特性を確保しながら生産性
を高めるため3分未満とする。
After cold rolling, continuous annealing is performed, and the temperature is set at 700 to 900° C. in order to improve magnetic properties and reduce costs. Further, the heat retention time is set to less than 3 minutes in order to improve productivity while ensuring magnetic properties.

さらにスキンパス圧延したのち製品となる。その圧下量
は特に限定はしないが磁気特性向上のため3〜8%が好
ましい。打ち抜きなどの加工ののちに歪取り焼鈍される
After further skin pass rolling, it becomes a product. The reduction amount is not particularly limited, but is preferably 3 to 8% in order to improve magnetic properties. After processing such as punching, it is annealed to remove strain.

(実 施 例) 表1に示す各成分のセミプロセス無第2項に記載の磁気
特性を製造しその磁気特性を調査した。熱間圧延、冷間
圧延、焼鈍、スキンパスの各製造条件及び製品の磁気特
性は表2に示す。
(Example) The magnetic properties of each component shown in Table 1 without semi-processing described in Section 2 were manufactured and their magnetic properties were investigated. Table 2 shows the manufacturing conditions of hot rolling, cold rolling, annealing, and skin pass, as well as the magnetic properties of the product.

試験材は750℃、2時間の歪取り焼鈍を施した。The test material was subjected to strain relief annealing at 750°C for 2 hours.

表2から明らかなように100〜400℃の温度範囲で
対数歪換算での圧下割合が50%以上の圧下を施された
ものは、比較材に比べ磁束密度が高くなり、鉄損も低下
している。熱間圧延での低温仕上げ、高温巻取りなどと
の組合せによりさらに磁気特性が向上する。
As is clear from Table 2, materials that have been rolled at a reduction ratio of 50% or more in terms of logarithmic strain in the temperature range of 100 to 400°C have higher magnetic flux density and lower iron loss than comparative materials. ing. Magnetic properties are further improved by combining low-temperature finishing with hot rolling and high-temperature winding.

(発明の効果) 本発明に従いセミプロセス無第2項に記載の磁気特性を
製造することにより、熱延板焼鈍などを行わず、磁束密
度が高く鉄損の小さい材料を高生産性、低コストにて得
ることができる。
(Effect of the invention) By manufacturing the magnetic properties described in item 2 without semi-processing according to the present invention, a material with high magnetic flux density and low iron loss can be produced with high productivity and low cost without hot-rolled plate annealing. You can get it at

代 理 人teenager Reason Man

Claims (1)

【特許請求の範囲】 1、重量%で C:0.001〜0.04% Si:0.01〜2.5% Al:0.20%以下 Mn:0.1〜1.2% P:0.03〜0.11% S:0.015%以下 N:0.0050%以下 残部が鉄および不可避的不純物からなる鋼片を熱間圧延
、脱スケールした後、冷間圧延において付与する全ひず
みを対数歪に換算して、そのうちの50%以上を100
〜400℃の温間で圧延し、700〜900℃で3分未
満の焼鈍を行い、ついでスキンパス圧延し、打ち抜きな
どの加工後、歪取り焼鈍することを特徴とする磁気特性
の優れたセミプロセス無方向性電磁鋼板の製造方法。 2、重量%で B:Nとの重量比B/Nで0.5〜1.8 を含有する特許請求の範囲第1項に記載の磁気特性の優
れたセミプロセス無方向性電磁鋼板の製造方法。 3、熱間圧延において仕上げ温度をAr_3変態点未満
700℃以上とする特許請求の範囲第1項または第2項
に記載の磁気特性の優れたセミプロセス無方向性電磁鋼
板の製造方法。 4、熱間圧延後の巻取りを700℃以上の温度で行い自
己焼鈍する特許請求の範囲第1項、第2項または第3項
に記載の磁気特性の優れたセミプロセス無方向性電磁鋼
板の製造方法。
[Claims] 1. C: 0.001-0.04% Si: 0.01-2.5% Al: 0.20% or less Mn: 0.1-1.2% P: 0.03 to 0.11% S: 0.015% or less N: 0.0050% or less Convert the strain to logarithmic strain, and convert more than 50% of it to 100
A semi-process with excellent magnetic properties characterized by warm rolling at ~400°C, annealing at 700-900°C for less than 3 minutes, skin pass rolling, processing such as punching, and strain relief annealing. A method for manufacturing non-oriented electrical steel sheets. 2. Production of a semi-processed non-oriented electrical steel sheet with excellent magnetic properties according to claim 1, which contains a B:N weight ratio of 0.5 to 1.8 by weight. Method. 3. The method for producing a semi-processed non-oriented electrical steel sheet with excellent magnetic properties as set forth in claim 1 or 2, wherein the finishing temperature during hot rolling is lower than the Ar_3 transformation point and 700° C. or higher. 4. Semi-processed non-oriented electrical steel sheet with excellent magnetic properties according to claim 1, 2 or 3, which is coiled at a temperature of 700° C. or higher and self-annealed after hot rolling. manufacturing method.
JP1165475A 1989-06-29 1989-06-29 Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP2870817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1165475A JP2870817B2 (en) 1989-06-29 1989-06-29 Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1165475A JP2870817B2 (en) 1989-06-29 1989-06-29 Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0331419A true JPH0331419A (en) 1991-02-12
JP2870817B2 JP2870817B2 (en) 1999-03-17

Family

ID=15813116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1165475A Expired - Fee Related JP2870817B2 (en) 1989-06-29 1989-06-29 Manufacturing method of semi-process non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2870817B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435480B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
CN103572158A (en) * 2013-09-25 2014-02-12 马钢(集团)控股有限公司 Non-oriented electrical steel plate and production method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884924A (en) * 1981-11-17 1983-05-21 Nippon Steel Corp Production of electrical steel plate utilizing warm rolling
JPS58181822A (en) * 1982-04-16 1983-10-24 Kawasaki Steel Corp Manufacture of non-oriented silicon steel sheet having low iron loss
JPS62222022A (en) * 1986-03-20 1987-09-30 Nippon Steel Corp Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
JPS6316447A (en) * 1986-07-08 1988-01-23 Matsushita Electric Ind Co Ltd Magneto-optical disk
JPS6473022A (en) * 1987-09-14 1989-03-17 Nippon Steel Corp Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristic

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884924A (en) * 1981-11-17 1983-05-21 Nippon Steel Corp Production of electrical steel plate utilizing warm rolling
JPS58181822A (en) * 1982-04-16 1983-10-24 Kawasaki Steel Corp Manufacture of non-oriented silicon steel sheet having low iron loss
JPS62222022A (en) * 1986-03-20 1987-09-30 Nippon Steel Corp Manufacture of nonoriented electrical sheet having good brittleness resistance and magnetic characteristic after stress relief annealing
JPS6316447A (en) * 1986-07-08 1988-01-23 Matsushita Electric Ind Co Ltd Magneto-optical disk
JPS6473022A (en) * 1987-09-14 1989-03-17 Nippon Steel Corp Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristic

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100435480B1 (en) * 1999-12-27 2004-06-10 주식회사 포스코 A method for manufacturing semiprocess non grain oriented electrical steel sheet with superior magnetic property
CN103572158A (en) * 2013-09-25 2014-02-12 马钢(集团)控股有限公司 Non-oriented electrical steel plate and production method thereof

Also Published As

Publication number Publication date
JP2870817B2 (en) 1999-03-17

Similar Documents

Publication Publication Date Title
JP2700505B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and method for producing the same
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JP5265835B2 (en) Method for producing non-oriented electrical steel sheet
EP0684320B1 (en) Process of making electrical steels
KR100707503B1 (en) Method for producing non-grain oriented electric sheet steel
JP2509018B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
US3415696A (en) Process of producing silicon steel laminations having a very large grain size after final anneal
US6007642A (en) Super low loss motor lamination steel
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH0331419A (en) Production of semi-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0331420A (en) Production of full-processed non-oriented electrical steel sheet having excellent magnetic characteristics
JPH0814015B2 (en) Non-oriented electrical steel sheet having excellent magnetic properties and surface properties and method for producing the same
JPH0273919A (en) Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
JP3294367B2 (en) Non-oriented electrical steel sheet having high magnetic flux density and low iron loss and method of manufacturing the same
JP2717009B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0726154B2 (en) Manufacturing method of low iron loss non-oriented electrical steel sheet
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
JPS63186823A (en) Production of electromagnetic steel plate having excellent magnetic characteristic
JPH04107216A (en) Production of nonoriented silicon steel sheet
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH03294422A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP2716987B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees