JPS60159120A - Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture - Google Patents

Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture

Info

Publication number
JPS60159120A
JPS60159120A JP1406484A JP1406484A JPS60159120A JP S60159120 A JPS60159120 A JP S60159120A JP 1406484 A JP1406484 A JP 1406484A JP 1406484 A JP1406484 A JP 1406484A JP S60159120 A JPS60159120 A JP S60159120A
Authority
JP
Japan
Prior art keywords
steel sheet
low
hot
phase
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1406484A
Other languages
Japanese (ja)
Inventor
Kenichi Shinoda
研一 篠田
Yuichi Higo
裕一 肥後
Takahiro Watanabe
渡辺 孝博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP1406484A priority Critical patent/JPS60159120A/en
Publication of JPS60159120A publication Critical patent/JPS60159120A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/04Decarburising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To obtain the titled steel sheet by providing a structure of a single ferrite phase in which a phase formed by transformation at a low temp. is not practically present to the prescribed surface layers of a steel sheet having a low yield ratio and a composite structure. CONSTITUTION:A hot rolled steel sheet is heated to a temp. in the range in which ferrite and austenite phases coexist with each other, and it is cooled to obtain a hot rolled steel sheet having a low yield ratio and a composite metallic structure contg. a phase formed by transformation at a low temp. and dispersed in the matrix of a ferrite phase. In this method, the surfaces of the hot rolled steel sheet are decarburized before said heating and cooling to form decarburized surface layers of 20-100mum thickness. A structure of a single ferrite phase in which a phase formed by transformation at a low temp. is not practically present can be provided to the surface layers of 20-100mum thickness, so the bendability of the steel sheet can be considerably improved.

Description

【発明の詳細な説明】 本発明は1曲げ加工性の優れた低降伏比複合組NJi 
(熱延)鋼板およびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a low yield ratio composite set NJi with excellent bending workability.
(Hot-rolled) steel plate and its manufacturing method.

最近1例えば自動車の軽量化等を目的とした場合のよう
に、かっては普通鋼の熱延鋼板が使用されていた分野に
おいて、高張力熱延鋼板の採用がさかんに進められてい
る。採用が検討されているρi張力熱延綱板のうらで注
目されているものに。
Recently, high-strength hot-rolled steel sheets have been increasingly adopted in fields where hot-rolled plain steel sheets were used in the past, such as for the purpose of reducing the weight of automobiles. This is attracting attention on the back of ρi tension hot-rolled steel sheets, which are being considered for adoption.

低降伏比複合組織熱延鋼板がある。これは、フェライト
相と低温変態相との混合組織をもつ熱延鋼板であり、i
a+強度と共に良好な延性と低降伏比という成形加工に
都合のよい特性を有する点でとくに注目されている。
There is a low yield ratio composite structure hot rolled steel sheet. This is a hot-rolled steel sheet with a mixed structure of a ferrite phase and a low-temperature transformation phase.
It is attracting particular attention because it has properties such as a+ strength, good ductility, and low yield ratio, which are convenient for forming processing.

この低降伏比複合組織鋼板は、軟質なフエラ・C1−相
の素地に、硬質なマルテンサイト相を主体とした低温変
態相が分散した金属組織を呈しており。
This low yield ratio composite structure steel sheet exhibits a metal structure in which a low-temperature transformed phase mainly consisting of a hard martensitic phase is dispersed in a soft Ferra C1-phase matrix.

固溶強化や析出強化を利用した高張力鋼板に比べると、
一般に、加工硬化係数が大きく、また引張試験において
大きな伸びを示す。一般的には、伸びが向」ニすれば1
曲げ加工性も向上する伸開にあるのが通常であるが、従
来の低降伏比複合組!1lli鋼板の場合には、伸びが
大であるにもかかわらず。
Compared to high-strength steel plates that utilize solid solution strengthening and precipitation strengthening,
In general, it has a large work hardening coefficient and exhibits large elongation in a tensile test. Generally speaking, if the growth is in the opposite direction, it is 1.
Normally, it is expanded to improve bending workability, but the conventional low yield ratio composite set! Even though the elongation is large in the case of 1lli steel plate.

その曲げ加工性は、固溶強化や析出強化型の高張力鋼板
に比べて、特に優れているとは言い難かった。これは、
低降伏比複合組織鋼板では、ネッキング開始までの均−
伸びは、大きな加工硬化係数によって大であるものの、
ネッキング後の局部伸びはあまり人きくないことに関係
しているものと思われる。
It was hard to say that its bending workability was particularly superior compared to solid solution strengthened or precipitation strengthened high tensile strength steel plates. this is,
In low-yield-ratio composite steel sheets, the uniformity of
Although the elongation is large due to the large work hardening coefficient,
It seems that the local elongation after necking is related to the fact that it is not very sensitive to people.

ところで、この低降伏比複合組織鋼板の用途である自動
車部材などでは、張出し加工や曲げ加工などを含む複合
的な成形加工がなされるのが通常であるから、その曲げ
加工性が改善されるならば当該鋼板の成形加工性は一層
向上すると言える。
By the way, in automobile parts, etc., for which this low yield ratio composite structure steel sheet is used, complex forming processes including stretching and bending are usually performed, so if the bending workability could be improved. It can be said that the formability of the steel sheet is further improved.

本発明は、この低降伏比複合組織鋼板の曲げ加工性を改
善することを目的としてなされたものである。本発明者
らはこの低降伏比複合組織鋼板の曲げ加工性を改善すべ
(種々の試験研究を行った結果、この鋼板の表面から深
さ20μ〜100μに至る表層部に低温変態相が実質上
存在しないフェライト単相の組織の刷を形成さ・店でお
くならば、この低降伏比複合組織鋼板の曲げ加工性を非
常に向−ヒさせることができることがわかった。
The present invention was made for the purpose of improving the bending workability of this low yield ratio composite structure steel plate. The present inventors aimed to improve the bending workability of this low-yield-ratio composite-structure steel sheet (as a result of various test studies, it was found that a low-temperature transformed phase is substantially present in the surface layer from the surface of this steel sheet to a depth of 20μ to 100μ). It has been found that the bending workability of this low-yield-ratio composite-structure steel sheet can be greatly improved if a ferrite single-phase structure, which does not exist, is formed and stored in a shop.

そして5曲げ加工性のよい複合組織の熱延鋼板を製造す
る場合には、熱延鋼板の表面に20〜100μの表面脱
炭層を形成させておいてから、この熱延鋼板をフェライ
ト相とオーステナイト相の2相共存域の温度に加熱した
あと冷却してフェライト相の素地に低温変態相が分散し
た金属組織を得る熱処理を施すことによって有利に製造
できる。この複合組織を得るための熱処理の前の熱延鋼
板の表面に、20〜100μの表面脱炭層を形成させる
方法としては、(1)脱スケール処理された熱延鋼板の
オーブンコイルを、N2.N20およびN2からなる混
合ガスの存在下で箱焼鈍して形成させる方法、(21,
脱スケールしないままの熱延鋼板のタイ1−コイルを箱
焼鈍することにより表面スケールとの反応によって形成
させる方法、または(3)、熱延巻取温度を600〜8
00℃とし1巻取後の徐冷間に表面スゲールとの反応に
よって形成さ→lる方法によるのがよい。
5. When producing a hot-rolled steel sheet with a composite structure that has good bending workability, a surface decarburized layer of 20 to 100 μm is formed on the surface of the hot-rolled steel sheet, and then this hot-rolled steel sheet is divided into ferrite phase and austenite phase. It can be advantageously produced by heating to a temperature in the two-phase coexistence region and then cooling to perform a heat treatment to obtain a metal structure in which a low-temperature transformed phase is dispersed in a ferrite phase matrix. As a method for forming a surface decarburized layer of 20 to 100 microns on the surface of a hot rolled steel sheet before heat treatment to obtain this composite structure, (1) an oven coil of a hot rolled steel sheet that has been descaled is heated with N2. A method of box annealing and forming in the presence of a mixed gas consisting of N20 and N2, (21,
A method of box annealing a tie 1 coil of a hot rolled steel sheet without descaling to form it by reaction with surface scale, or (3) a method of forming the tie 1 coil of a hot rolled steel sheet by reaction with surface scale, or (3) a method of forming the tie 1 coil of a hot rolled steel sheet without descaling;
It is preferable to use a method in which the film is formed by reaction with surface sgale during slow cooling after one winding at 00°C.

以上に本発明を試験例に基づいて詳述する。The present invention will be described in detail above based on test examples.

第1表に示す化学成分の鋼を90トン転炉で熔製後、連
続鋳造したスラブを通常条件で熱間圧延して、板厚3.
6町nの熱延鋼板とし、この鋼板の表面状態を一定にす
るために1表裏の面を0.3mmづつ研削して板厚3.
 Ommの鋼板試ネ、1とした。この試料の一部は1表
面脱炭処理を施した。表面脱炭処理は、 H2/ N 
2の体積比が3/19混合ガス、露点50℃の雰囲気中
で700℃に加熱して行った。そのさい、この700℃
に試料を保持する時間を変化させて表面脱炭層の深さを
20〜250μの範囲に調節した。
After melting steel with the chemical composition shown in Table 1 in a 90-ton converter, the continuously cast slab was hot-rolled under normal conditions to a thickness of 3.
A hot-rolled steel plate with a thickness of 6 mm and a thickness of 3 mm was prepared by grinding the front and back surfaces by 0.3 mm to make the surface condition of the steel plate constant.
Omm steel plate test was set to 1. A portion of this sample was subjected to one surface decarburization treatment. Surface decarburization treatment is H2/N
The test was carried out by heating to 700°C in an atmosphere with a mixed gas having a volume ratio of 3/19 and a dew point of 50°C. At that time, this 700℃
The depth of the surface decarburized layer was adjusted to a range of 20 to 250 μm by changing the time for which the sample was held.

以上の研削ままの試料と2表面脱炭をした試料を8複合
組織化のだめの熱処理を施した。この熱処理は、試料を
フェライトとオーステナイトの2相共存域である800
℃に加熱後、約10℃/s、ecの平均冷却速度で空冷
し、約500℃まで降温したときに水冷し、て2 フェ
ライト相とマルテンサイト相の複合組織とする処理であ
る。得られた複合組織鋼板の引張試験と曲げ試験を行い
、第2表に示す結果を得た。
The as-ground sample and the two-surface decarburized sample were heat-treated to form an 8-composite structure. This heat treatment heats the sample to 800°C, which is the two-phase coexistence region of ferrite and austenite.
After heating to 10°C, it is air cooled at an average cooling rate of about 10°C/s, ec, and when the temperature has decreased to about 500°C, it is water cooled to form a composite structure of a ferrite phase and a martensitic phase. The obtained composite structure steel plate was subjected to a tensile test and a bending test, and the results shown in Table 2 were obtained.

また、第2表のlklの試料(研削ままで複合組織化の
熱処理を施したもの)と、N03の試料(80μの表面
脱炭層を施してから複合組織化の熱処理を施したもの)
の表層部…r面な金属組織写真を第1図および第2図に
示した。この写真にみられるように、N01の試料では
表層にフルテンサイ1−相が存在するが、NO,3の試
料では鋼板表層はマルチンサイト相を含まない軟質なフ
ェライト相で覆われている。
In addition, the lkl sample in Table 2 (which was subjected to heat treatment for composite texture while being ground) and the N03 sample (which was subjected to heat treatment for composite texture after applying a surface decarburization layer of 80μ).
Photographs of the r-plane metallographic structure of the surface layer are shown in Figures 1 and 2. As seen in this photograph, the full tensile 1-phase exists in the surface layer of the No. 1 sample, but the steel plate surface layer of the No. 3 sample is covered with a soft ferrite phase that does not contain the martinsite phase.

第2表の結果から明らかなように2表面脱炭のないもの
に比べ1表面脱炭したものは、引張試験の伸びが向上し
かつ曲げ試験における限界曲げ半径が減少して曲げ加工
性が向上している。しかし表面脱炭層が240μの試料
No、4では、引張強さが表面脱炭なしのものに比べて
明らかな低下が見られ、あまり表面脱炭層を深くすると
強度の面で問題が生じることがわかる。
As is clear from the results in Table 2, compared to those without two-surface decarburization, those with one surface decarburized have improved elongation in the tensile test and a reduced limit bending radius in the bending test, improving bending workability. are doing. However, for samples No. 4 with a surface decarburized layer of 240μ, a clear decrease in tensile strength is seen compared to the sample without surface decarburization, indicating that problems will occur in terms of strength if the surface decarburized layer is too deep. .

以上の試験結果に示されるように、フェライト+オース
テナイトの2相共存域に加熱後冷却する熱処理を施して
フェライト素地に低温変態相が分1ik した複合組織
の鋼板を製造するさいに、この複合組織化の熱処理前の
熱延鋼板に適度の表面脱炭層を形成させておけば1強度
の低下を招くごとなく曲げ加工性の改善を図ることがで
きろ。より具体的には、20μ未満の表面脱炭層では曲
り加工性改善効果が小さく、100μを越える表面脱炭
層では強度の低下を招くので、J度の表面脱炭層の深さ
は20〜100 μの範囲であると言える。
As shown in the above test results, when manufacturing a steel sheet with a composite structure in which a low-temperature transformed phase is separated into a ferrite base by applying heat treatment to the two-phase coexistence region of ferrite + austenite by heating and then cooling, this composite structure is If a suitable surface decarburization layer is formed on the hot-rolled steel sheet before the heat treatment, bending workability can be improved without causing a decrease in strength. More specifically, a surface decarburized layer with a thickness of less than 20 μm has little effect on improving bending workability, and a surface decarburized layer with a thickness of more than 100 μm causes a decrease in strength. It can be said that it is within the range.

このように、適度の表面脱炭層を形成させてから複合組
織化の熱処理を実施して表層部には低温変態相の実質上
存在しないフェライト単層の組織とすることによって、
複合組織鋼の特質である強度と低降伏比の性質を損ねる
ことなく複合組織鋼の欠点である曲げ加工性を向上させ
ることができることが明らかとなったが、この曲げ加工
性が向」二する理由については1次のように考えること
ができる。
In this way, by forming an appropriate surface decarburized layer and then performing a heat treatment for composite structure, the surface layer becomes a single layer of ferrite with virtually no low-temperature transformed phase.
It has become clear that the bending workability, which is a drawback of composite structure steel, can be improved without impairing the properties of strength and low yield ratio, which are the characteristics of composite structure steel. The reason can be considered as follows.

すなわち1本発明者らが行った低降伏比複合組織鋼板の
曲げ加工試験によると、従来の複合組織鋼板の曲げ加工
時のクランクの状況を観察したところ、引張試験で発生
ずるクランクと同様に、フェライト相と低温変態相との
界面に発生したボイドが連結してクラックとなっていた
。一方1曲げ加工では曲げの外側の表層にもっとも大き
な歪が加えられる。したがって、この表層に硬質な低温
変態相が分散していると、上に述べたようなりシックの
発生が起こりやずく、ごれが切欠きとなって曲げ加工性
の劣化を招くことになる。しかし。
That is, according to the bending test of a low yield ratio composite structure steel plate conducted by the present inventors, when the state of the crank during bending of a conventional composite structure steel plate was observed, it was found that, similar to the crank that occurs in a tensile test, The voids generated at the interface between the ferrite phase and the low-temperature transformed phase were connected to form cracks. On the other hand, in one bending process, the largest strain is applied to the surface layer outside the bend. Therefore, if a hard, low-temperature transformed phase is dispersed in this surface layer, the above-mentioned thickening is likely to occur, and the dirt becomes a notch, leading to deterioration in bending workability. but.

鋼板表面に低温変態相が存在しない本発明鋼板の場合に
は、フェライト相だげで鋼板表面が覆われるので、前記
の切欠きとなる表面のクラック発生が抑制されることに
なり、その結果9曲げ加工性が向上することになるので
あろう。通学は2表面脱炭層の形成はできるだけ防止さ
れるべきものとされているが2本発明の場合には、引張
強さや疲れ強さに大きな影響を及ぼさない範囲で適度に
表面脱炭して複合組織化の熱処理を施し、これによって
表層部をフェライト単層で覆うので3複合組織鋼の特質
を失うことなく曲げ加工性の向上という利点が得られる
のである。
In the case of the steel sheet of the present invention in which there is no low-temperature transformed phase on the surface of the steel sheet, the surface of the steel sheet is covered only with the ferrite phase, so the generation of cracks on the surface that will become the notches is suppressed, and as a result 9 This will probably improve bending workability. It is believed that the formation of a surface decarburized layer should be prevented as much as possible, but in the case of the present invention, the surface decarburized to an appropriate degree without significantly affecting the tensile strength and fatigue strength. Since the surface layer is covered with a single layer of ferrite by heat treatment for texturing, it is possible to obtain the advantage of improved bending workability without losing the characteristics of steel with three composite structures.

なお、熱延鋼板に対して表面脱炭層を形成させるには、
先に述べた(11. f21および(3)の方法による
のが実操業上有利であるが、(1)のオープンコイルの
脱炭焼鈍による方法では、脱スケールした熱延鋼板表面
で雰囲気ガスにまり脱炭反応を進行さセるものであり、
ガスの流入時間や箱焼鈍温度を制御することによって表
面脱炭層の深さを20〜100μの範囲に調整すること
ができる。また(2)の方法は、鋼板表面に付着したス
ケールを酸化剤とすることにより脱炭反応を生じさせる
ものであり1箱焼鈍塩度の制御によって表面脱炭層の深
さを20〜100μの範囲に調整することができる。(
3)の熱延工程での巻取温度の制御の方法では、(2〕
の方法と同様に、スケールを酸化剤とすることによりコ
イルに巻き取った後の徐冷の間に脱炭反応を進行させる
ものであり、この場合には脱炭のための焼鈍は特に必要
としない。この巻取後の徐冷の間に脱炭反応を促進させ
るには2巻取塩度を比較的高くする必要があり、20〜
100μの表面脱炭層を得るには、600℃以上の巻取
温度が必要である。しかし、800℃を越える巻取温度
ではスケールの生成が厚くなっ゛ζ脱スケール性が悪く
なるので800℃以下とするのがよい。
In addition, in order to form a surface decarburized layer on a hot rolled steel sheet,
Methods (11. This is what accelerates the decarburization reaction.
By controlling the gas inflow time and the box annealing temperature, the depth of the surface decarburized layer can be adjusted within the range of 20 to 100 microns. In addition, method (2) causes a decarburization reaction by using the scale attached to the surface of the steel sheet as an oxidizing agent, and the depth of the surface decarburization layer is controlled in the range of 20 to 100μ by controlling the salinity of one box annealing. can be adjusted to (
In the method of controlling the coiling temperature in the hot rolling process of 3), (2)
Similar to the above method, this method uses scale as an oxidizing agent to advance the decarburization reaction during slow cooling after winding into a coil, and in this case, annealing for decarburization is not particularly necessary. do not. In order to promote the decarburization reaction during the slow cooling after winding, it is necessary to make the salinity of the second winding relatively high.
To obtain a surface decarburized layer of 100 μm, a coiling temperature of 600° C. or higher is required. However, if the winding temperature exceeds 800°C, the scale will become thick and the descaling performance will deteriorate, so it is preferable to set the winding temperature to 800°C or less.

実施例 第3表に示す化学成分の鋼を90トン転炉で溶製後、連
続鋳造にて厚さ250■のスラブとし、 1.250℃
に加熱後通常の条件で板厚3 、0mmに熱間圧延した
。熱延後の巻取温度は第4表に示すように520〜73
0℃の範囲で変化させな−得られた熱延コイルに対し8
箱4表に示す表面脱炭処理を行った。
Example Steel with the chemical composition shown in Table 3 was melted in a 90-ton converter, then continuously cast into a slab with a thickness of 250 cm and heated at 1.250°C.
After heating, it was hot-rolled under normal conditions to a plate thickness of 3.0 mm. The coiling temperature after hot rolling is 520 to 73 as shown in Table 4.
Do not change in the range of 0℃ - 8 for the obtained hot rolled coil
Box 4 The surface decarburization treatment shown in Table 4 was performed.

その後、780℃に加熱後空冷する熱処理を施して低降
伏比複合組織熱延綱板とした。
Thereafter, heat treatment was performed by heating to 780° C. and cooling in air to obtain a hot-rolled steel sheet with a low yield ratio composite structure.

この熱処理後の各鋼板の機械的性質を第5表に示した。Table 5 shows the mechanical properties of each steel plate after this heat treatment.

第5表の結果から明らかなように、 20〜100μの
表面脱炭を施して表層部20〜100μに低温変態相を
形成さセながった本発明鋼板は、複合組織鋼板の強度と
低降伏比の特性を失−)ことなく曲げ特性が向上してい
る。
As is clear from the results in Table 5, the steel sheet of the present invention, which has been subjected to surface decarburization of 20 to 100μ to form a low-temperature transformed phase in the surface layer of 20 to 100μ, has the strength and low The bending properties are improved without losing the yield ratio properties.

(この頁以下余白)(Margins below this page)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は表面脱炭処理しないで複合組織化の熱処理した
複合組織鋼板の表層部の金属組織を示す顕微鏡写真、第
2図は表面脱炭処理したあとで複合組織化の熱処理した
複合組織鋼板の表層部の金属組織を示す顕微鏡写真であ
る。 出願人 日新製鋼株式会社 第1閃 竿2図 (X2.、、l()、)
Figure 1 is a micrograph showing the metallographic structure of the surface layer of a composite texture steel sheet that was heat-treated to create a composite texture without surface decarburization, and Figure 2 is a composite texture steel plate that was heat-treated to create a composite texture after surface decarburization. 2 is a micrograph showing the metallographic structure of the surface layer. Applicant Nisshin Steel Co., Ltd. No. 1 flashing rod Figure 2 (X2.,,l(),)

Claims (4)

【特許請求の範囲】[Claims] (1)、フェライト相の素地に低温変態相が分散した金
属組織をもつ低降伏比複合組織鋼板において。 この1し7板の表面から深さ20μ〜100μに至る表
層部に低温変態相が実質上存在しないフェライト単相の
組織の層を形成させてなる曲げ加工性の優れた低降伏比
複合組織鋼板。
(1) In a low-yield-ratio composite steel sheet with a metal structure in which a low-temperature transformed phase is dispersed in a ferrite phase matrix. A low-yield-ratio composite-structure steel plate with excellent bending workability formed by forming a layer of ferrite single-phase structure in which there is virtually no low-temperature transformed phase in the surface layer from the surface of the 1st to 7th plates to a depth of 20μ to 100μ. .
(2)、熱延鋼板をフェライト相とオーステナイト相の
2相共存域の温度に加熱したあと冷却してフェライト相
の素地に低温変態相が分散し、た金属組織を得る低降伏
比複合組織の熱延鋼板の製造法にA3い乙 この加熱冷
却を実施する前の熱延網板の表面に20〜100μの表
面脱炭層を形成させておくことを特徴とする曲げ加工性
の優れた低降伏比複合組111i熱延鋼板の製造法。
(2) A hot-rolled steel sheet is heated to a temperature in the two-phase coexistence region of ferrite and austenite phases, and then cooled to disperse low-temperature transformed phases in the ferrite phase matrix, resulting in a low yield ratio composite structure. A3 B for the manufacturing method of hot-rolled steel sheet A low yield with excellent bending workability characterized by forming a surface decarburized layer of 20 to 100μ on the surface of the hot-rolled mesh sheet before heating and cooling. A method for manufacturing composite composite 111i hot-rolled steel sheet.
(3)8表面脱炭層ば、脱スケール処理された熱延鋼板
のオーブンコイルを、N2.N20およびN2からなる
混合ガスの存在下で箱焼鈍して形成させる特許請求の範
囲第2項記載の製造法。
(3) If there are 8 surface decarburized layers, an oven coil made of a descaled hot rolled steel sheet is heated to an N2. The manufacturing method according to claim 2, wherein the manufacturing method is formed by box annealing in the presence of a mixed gas consisting of N20 and N2.
(4)9表面脱炭層は1mスケールしないままの熱延m
板のタイトコイルを箱焼鈍することにより表面スケール
との反応によって形成させる特許請求の範囲第2項記載
の製造法。 (4)6表面j挽炭層は、熱延巻取温度を600〜80
0 ℃とし、S取後の徐冷間に表面スケールとの反応に
よ、って形成させる特許請求の範囲第2項記載の製造法
(4) 9 surface decarburized layer is 1 m hot rolled without scaling
3. The manufacturing method according to claim 2, wherein the tight coil of the plate is formed by box annealing and reaction with surface scale. (4) 6 surface j ground coal layer, hot rolling coiling temperature 600~80
The manufacturing method according to claim 2, wherein the manufacturing method is formed by reaction with surface scale during slow cooling after S removal at 0°C.
JP1406484A 1984-01-28 1984-01-28 Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture Pending JPS60159120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1406484A JPS60159120A (en) 1984-01-28 1984-01-28 Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1406484A JPS60159120A (en) 1984-01-28 1984-01-28 Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture

Publications (1)

Publication Number Publication Date
JPS60159120A true JPS60159120A (en) 1985-08-20

Family

ID=11850656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1406484A Pending JPS60159120A (en) 1984-01-28 1984-01-28 Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture

Country Status (1)

Country Link
JP (1) JPS60159120A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431847B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
JP2010138458A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Ind Ltd Cr-CONTAINING STEEL SHEET AND MANUFACTURING METHOD THEREOF
WO2011069906A2 (en) 2009-12-10 2011-06-16 Thyssenkrupp Steel Europe Ag Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
WO2012133244A1 (en) * 2011-03-25 2012-10-04 日新製鋼株式会社 Steel plate with excellent durability for band-shaped die-cutting blade, and band-shaped die-cutting blade

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952726A (en) * 1972-09-25 1974-05-22
JPS539170A (en) * 1976-07-13 1978-01-27 Seiko Instr & Electronics Ltd Circuit block of electronic watch
JPS5594444A (en) * 1979-01-09 1980-07-17 Kawasaki Steel Corp Production of high carbon hot rolled steel plate of high strength and toughness and good workability
JPS5655520A (en) * 1979-10-09 1981-05-16 Kawasaki Steel Corp Production of surface decarbonized high carbon steel strip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952726A (en) * 1972-09-25 1974-05-22
JPS539170A (en) * 1976-07-13 1978-01-27 Seiko Instr & Electronics Ltd Circuit block of electronic watch
JPS5594444A (en) * 1979-01-09 1980-07-17 Kawasaki Steel Corp Production of high carbon hot rolled steel plate of high strength and toughness and good workability
JPS5655520A (en) * 1979-10-09 1981-05-16 Kawasaki Steel Corp Production of surface decarbonized high carbon steel strip

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100431847B1 (en) * 1999-12-28 2004-05-20 주식회사 포스코 Method for manufacturing high Si added medium carbon wire rod by forming decarburized ferritic layer
JP2010138458A (en) * 2008-12-12 2010-06-24 Sumitomo Metal Ind Ltd Cr-CONTAINING STEEL SHEET AND MANUFACTURING METHOD THEREOF
WO2011069906A2 (en) 2009-12-10 2011-06-16 Thyssenkrupp Steel Europe Ag Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
DE102009044861B3 (en) * 2009-12-10 2011-06-22 ThyssenKrupp Steel Europe AG, 47166 Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product
CN102652177A (en) * 2009-12-10 2012-08-29 蒂森克虏伯钢铁欧洲股份公司 Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product
US9234253B2 (en) 2009-12-10 2016-01-12 Thyssenkrupp Steel Europe Ag Method for producing a flat steel product which can be readily formed, flat steel product and method for producing a component from such a flat steel product
WO2012133244A1 (en) * 2011-03-25 2012-10-04 日新製鋼株式会社 Steel plate with excellent durability for band-shaped die-cutting blade, and band-shaped die-cutting blade

Similar Documents

Publication Publication Date Title
JPS5850300B2 (en) Method for manufacturing a high strength, low yield ratio, high ductility composite steel sheet with excellent workability and high artificial age hardenability after processing
JP2006506534A (en) Cold-worked steel with pocket-laser martensite / austenite microstructure
KR100665443B1 (en) Method for controlling structure of two-phase steel
JP3828466B2 (en) Steel sheet with excellent bending properties
JP3814134B2 (en) High formability, high strength cold-rolled steel sheet excellent in shape freezing property and impact energy absorption ability during processing and its manufacturing method
JPS60159120A (en) Steel sheet having composite structure, superior bendability and low yield ratio and its manufacture
JP4524894B2 (en) Multi-layer structure Cr-based stainless steel and method for producing the same
JPH02133563A (en) Production of high al-content stainless steel sheet
JP3448454B2 (en) High-strength cold-rolled steel sheet with excellent surface properties and formability, and method for producing the same
JP4166657B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP3096268B2 (en) Finishing treatment method for silicon steel plate manufactured by direct casting method
JP3275712B2 (en) High silicon steel sheet excellent in workability and method for producing the same
JP2000178647A (en) Production of high silicon steel high in magnetic flux density
JPH0941110A (en) Production of high tensile strength hot dip galvanized steel sheet
JPH08325633A (en) Production of high strength hot rolled steel sheet
TWI711706B (en) Automobile steel material with high yield strength and method of manufacturing the same
JPH09176729A (en) Shape memory alloy having texture and method for allowing the above alloy to show superelastic effect
SU996475A1 (en) Method for thermomechanical treatment of ferrite steel
JPH0250908A (en) Method for preventing intergranular oxidation of high-strength cold-rolled steel sheet
JPH086136B2 (en) Manufacturing method of grain-oriented high silicon steel sheet
JP2662486B2 (en) Steel sheet excellent in low-temperature toughness and method for producing the same
JPS5884924A (en) Production of electrical steel plate utilizing warm rolling
JPH0774412B2 (en) High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same
JPS5935664A (en) Production of hot-rolled alpha+beta type titanium alloy sheet having excellent suitability to cold rolling
CN114381580A (en) Cover type annealing process and manufacturing method of high-corrosion-resistance weathering steel