JP3828466B2 - Steel sheet with excellent bending properties - Google Patents

Steel sheet with excellent bending properties Download PDF

Info

Publication number
JP3828466B2
JP3828466B2 JP2002219662A JP2002219662A JP3828466B2 JP 3828466 B2 JP3828466 B2 JP 3828466B2 JP 2002219662 A JP2002219662 A JP 2002219662A JP 2002219662 A JP2002219662 A JP 2002219662A JP 3828466 B2 JP3828466 B2 JP 3828466B2
Authority
JP
Japan
Prior art keywords
mass
less
steel sheet
present
residual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002219662A
Other languages
Japanese (ja)
Other versions
JP2004059996A (en
Inventor
周之 池田
浩一 槙井
宏 赤水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=30768001&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3828466(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002219662A priority Critical patent/JP3828466B2/en
Priority to EP03254606A priority patent/EP1389639B1/en
Priority to US10/626,612 priority patent/US20040159373A1/en
Publication of JP2004059996A publication Critical patent/JP2004059996A/en
Application granted granted Critical
Publication of JP3828466B2 publication Critical patent/JP3828466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/185Hardening; Quenching with or without subsequent tempering from an intercritical temperature
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、曲げ特性、特に密着曲げ加工性(極限変形能)に優れた高強度鋼板に関し、殊に600〜1400MPa級の高強度および超高強度域において、優れた曲げ特性を発揮する高強度鋼板に関するものである。
【0002】
【従来の技術】
自動車や産業用機械等にプレス成形して使用される鋼板は、優れた強度と延性を兼ね備えていることが要求され、この様な要求特性は近年、益々、高まっている。
【0003】
従来より、強度と延性の両立を図った鋼板として、フェライト素地中に主としてマルテンサイトからなる低温変態組織を含むフェライト・マルテンサイトの複合組織鋼板[デュアルフェイズ(DP)鋼板]が知られている(例えば、特開昭55−122820号等)。上記鋼板は、延性が良好なだけでなく、マルテンサイト生成域に導入された多量の自由転位のために降伏伸びが現れず、降伏応力が低くなる為、加工時の形状凍結特性が良好である。上記組織に制御することにより、引張強度(TS)が高く、伸び(El)特性にも優れた鋼板が得られている。
【0004】
一方、組織中に残留オーステナイト(以下、「残量γ」と記すことがある)を生成させ、加工変形中に残留γが誘起変態(歪み誘起変態:TRIP)して延性を向上させる残留γ鋼板も知られている。例えば特開昭60−43425号には、複合組織鋼板としての組織を、体積分率で10%以上のフェライトと10%以上の残留γを有し、残部がベイナイトまたはマルテンサイト若しくはそれらの混合組織に制御することにより、高強度で、且つ極めて延性に優れた鋼板が開示されている。上記組織とすることにより、残留γの加工誘起変態効果に加えて、軟質のフェライトによる高延性が発揮される結果、延性はフェライトおよび残留γによって、強度はベイナイトまたはマルテンサイトによって確保される旨記載されている。
【0005】
上記いずれの鋼板においても、伸び特性(特に均一伸び)に優れており、とりわけTRIP鋼板では残留γを含むことによって非常に伸びが高く、成形性(張出し性や絞り成形性)が良好であるという特徴を有するものである。しかしながらこれらの鋼板では、いずれも局部変形特性(曲げ加工性や穴拡げ性)や極限変形特性(密着曲げ加工性)等が固溶強化鋼と比べて一般的に悪いということが知られている。特に、自動車用鋼板の様にプレス成形して使用される鋼板においては、曲げ特性(曲げ加工性および密着曲げ加工性)が良好であることは必要不可欠な要件であるが、これまで開発されている鋼板では曲げ特性、特に密着曲げ加工性が良好であるものは実現されていないのが実状である。
【0006】
【発明が解決しようとする課題】
本発明は上記事情に着目してなされたものであり、その目的は、600〜1400MPa級の高強度および超高強度域において、優れた曲げ特性(曲げ加工性および密着曲げ加工性)を発揮し、自動車用鋼板として最適な高強度鋼板を提供することにある。
【0007】
【課題を解決するための手段】
上記課題を解決し得た本発明の鋼板とは、残留オーステナイト:5〜30面積%およびフェライト:50面積%以上を含有する組織を主体とすると共に、残留オーステナイトとフェライトの界面に存在する炭化物の個数が2000(μm)2当たり40個以下である点に要旨を有するものである。
【0008】
本発明の鋼板における基本成分としては、C:0.06〜0.25質量%未満、Si+Al:0.5〜3質量%、Mn:0.5〜3質量%、P:0.15質量%以下(0質量%を含まない)、S:0.02質量%以下(0質量%を含まない)を夫々含有し、残部鉄および不可避的不純物であるものが挙げられる。
【0009】
また、本発明の鋼板には上記基本成分の他、必要によって(a)Mo:1質量%以下(0質量%を含まない),Ni:0.5質量%以下(0質量%を含まない)およびCu:0.5質量%以下(0質量%を含まない)の少なくとも1種、(b)Ca:0.003質量%以下(0質量%を含まない)等を含有させることも有効であり、含有させる成分に応じて鋼板の特性が更に改善される。
【0010】
【発明の実施の形態】
本発明者らは、良好な曲げ特性を発揮する鋼板を実現するべく様々な角度から検討してきた。これまで開発されてきたDP鋼板やTRIP鋼板では、母相と第2相の強度比が高くなっており、母相と第2相の界面(母相側)に変形が集中することによって、曲げ特性が悪くなると考えられる。
【0011】
そして本発明者らが更に検討したところによれば、TRIP鋼板における極限変形特性(密着曲げ加工性)には、母相と第2相の強度比ばかりでなく、塑性変形しない(第2相よりも硬い)炭化物(セメンタイト)の存在が影響していることを突き止めた。この炭化物は残留γとフェライトの界面に存在するのであるが、こうした炭化物を極力低減することによって、優れた曲げ特性を発揮する鋼板(TRIP鋼板)が実現できることを見出し、本発明を完成した。
【0012】
上記の如く本発明の鋼板は、炭化物(即ち残留オーステナイトとフェライトの界面に存在する炭化物)の個数をできるだけ低減したものであるが、具体的にはこの炭化物の個数は2000(μm)2当たり40個以下とする必要がある。この炭化物の個数が40個を超えると、曲げ特性(特に密着曲げ加工性)が劣化することになる。尚、この炭化物は、より好ましくは30個以下に低減するのが良い。
【0013】
本発明の鋼板は、その組織も適切に制御する必要がある。即ち、本発明の鋼板では、高い強度と良好な伸びを確保する観点から、その組織を残留γ:5〜30面積%およびフェライト:50面積%以上を含む組織を主体とするものであるが、こうした組織を構成する各相の範囲限定理由は次の通りである。
【0014】
残留γ:5〜30面積%
残留γは全伸びの向上に有用であり、この様な作用を有効に発揮させる為には、5面積%(好ましくは8面積%以上)存在することが必要である。一方、30面積%を超えて存在すると、逆に曲げ加工性が劣化するので、その上限を30面積%に定めた。より好ましくは20面積%以下である。
【0015】
フェライト:50面積%以上
本発明におけるフェライトは、鋼板における良好な延性を確保するた為に、その面積率(占積率)は少なくとも50面積%以上とする必要がある。
【0016】
本発明の鋼板では、上記の残留γとフェライトを含む組織を主体(例えば、70面積%以上)とするものであるが、本発明の作用を損なわない範囲で、他の異種組織として、ベイナイトやマルテンサイトを一部有していても良い。これらの組織は本発明の製造過程で必然的に残存し得るものであるが、マルテンサイトは少なければ少ない程、好ましい。
【0017】
従来のTRIP鋼板の熱処理(熱間圧延および冷間圧延後の熱処理)においては、A1点以上A3点以下の温度で60〜180秒程度加熱保持した後、10℃/s以上の平均冷却速度でベイナイト変態域(例えば400±50℃程度)まで冷却し、その温度域で長時間(例えば300秒程度)保持することによって、γ相へのC濃化を促進してγ相を安定化させ、所定量の残留γを確保するようにしている。しかしながら、こうした方法では残留γ相の内部と外部のC濃度勾配が大きくなってセメンタイト(炭化物)が生成し易くなって、曲げ特性が劣化することになる。
【0018】
炭化物の形態を制御して本発明鋼板を製造するには、例えば次の方法を実施すればよい。即ち、上記のような熱処理に先立ち、フェライト変態域(例えば700±30℃程度)で所定時間保持することによって(即ち、2段階の熱処理を行うことによって)、残留γ相の内部と外部のC濃度勾配を小さくし、残留γとフェライトの界面での炭化物の生成を抑制することが有効である。但し、上記のフェライト変態域はパーライト変態域と重なることになるので、その温度で余り長時間加熱保持するとパーライト組織が析出することによる特性劣化が生じることになる。従って、この温度での保持時間は上記効果が生じる範囲内で適切に調整する必要があり、好ましくは10〜30秒程度である。またフェライト変態域では、γ相へのC濃化が迅速に進行するのであまり長時間保持する必要はなので、こうした熱処理は熱間圧延に引き続いて行う焼鈍工程(連続焼鈍工程)の一環として行うことができる。
【0019】
尚、こうした熱処理に先立って行う熱延工程および冷延工程は、特に限定されず、通常実施されている条件を適宜選択して採用することができる。また、各熱処理温度からの冷却速度は、適宜調整すれば良いが、例えばフェライト変態域で所定時間保持した後、ベイナイト変態域まで冷却する際の平均冷却速度はセメンタイトの生成を防止するという観点から、10℃/s以上であることが好ましい。
【0020】
本発明の残留γ鋼板は、上記のように組織および炭化物の存在個数を適切に制御することによって、本発明の目的を達成することができ、鋼板の化学成分組成については特に限定するものではないが、C,Si,Al,Mn,P,S等の基本成分については下記の様に成分範囲を制御することが好ましい。
【0021】
C:0.06〜0.25質量%未満
Cは、高強度を確保し、且つ、残留γを確保するために必須の元素である。詳細には、γ相中に充分なC量を含み、室温でも所望のγ相を残留させる為に重要な元素である。こうした効果を発揮させるためには、0.06質量%以上含有させることが好ましいが、0.25質量%以上含有させると溶接性が劣化する。
【0022】
Si+Al:0.5〜3質量%
SiおよびAlは、残留γが分解して炭化物が生成するのを有効に抑える元素である。特にSiは、固溶強化元素としても有用である。この様な作用を有効に発揮させる為には、SiおよびAlを合計で0.5実量%以上含有させることが好ましい。好ましくは0.7質量%以上、より好ましくは質量1%以上とするのが良い。但し、上記元素を合計で、3質量%を超えて含有させても上記効果は飽和してしまい、経済的に無駄である他、多量に添加すると、熱間脆性を起こす為、その上限を3質量%とする。より好ましくは2.5実量%以下、更に好ましくは2実量%以下とするのが良い。
【0023】
Mn:0.5〜3質量%
Mnは、γを安定化し、所望の残留γを得る為に必要な元素である。この様な作用を有効に発揮させる為には、0.5質量%以上含有させるのが良い。より好ましくは0.7質量%以上、更に好ましくは1質量%以上とするのが良い。但し、3質量%を超えて含有させるとと、鋳片割れが生じる等の悪影響が見られる。より好ましくは2.5質量%以下、更に好ましくは2質量%以下とするのが良い。
【0024】
P:0.15質量%以下(0質量%を含まない)
Pは、所望の残留γを確保するのに有効な元素である。この様な作用を有効に発揮させる為には、0.03質量%以上(より好ましくは0.05実量%以上)含有することが推奨される。但し、0.15質量%を超えて含有させると二次加工性が劣化する。より好ましくは0.1質量%以下とするのが良い。
【0025】
S:0.02質量%以下(0質量%を含まない)
Sは、MnS等の硫化物系介在物を形成し、割れの起点となって加工性を劣化させる元素であるので、できるだけ抑制するのが良く、こうした観点から0.02質量%以下とするのが良い。より好ましくは0.015質量%以下である。
【0026】
本発明の鋼板には、上記基本成分の他必要によってMo,Ni,Cu,Caおよび希土類元素等を含有することも有効であり、含有される元素の種類に応じて鋼板の特性が更に改善される。必要によって含有される各元素の範囲限定理由は下記の通りである。
【0027】
Mo:1質量%以下(0質量%を含まない),Ni:0.5質量%以下(0質量%を含まない)およびCu:0.5質量%以下(0質量%を含まない)の少なくとも一種
これらの元素は、鋼の強化元素として有用であると共に、残留γの安定化や所定量の確保に有効な元素である。この様な作用を有効に発揮させる為には、Mo:0.05質量%以上(より好ましくは0.1質量%以上)、Ni:0.05質量%以上(より好ましくは0.1質量%以上)、Cu:0.05質量%以上(より好ましくは0.1質量%以上)、Cr:0.05質量%以上(より好ましくは0.1質量%以上)を、夫々含有させることが推奨される。但し、Moは1質量%、NiおよびCuは0.5質量%を超えて含有させても上記効果が飽和してしまい、経済的に無駄である。より好ましくはMo:0.8質量%以下、Ni:0.4質量%以下、Cu:0.4%質量以下、Cr:0.8%質量以下である。
【0028】
Ca:0.003質量%以下(0質量%を含まない)
Caは、鋼中硫化物の形態を制御し、加工性向上に有効な元素である。ここで、本発明に、こうした効果を発揮させる為には、Caは0.0003質量%以上(より好ましくは0.0005質量%以上)含有させることが推奨される。但し、0.003質量%を超えて添加しても上記効果が飽和してしまい、経済的に無駄である。より好ましくは0.0025質量%以下である。
【0029】
本発明の鋼板においては、上記成分の他(残部)基本的には鉄からなるものであるが、これら以外にも微量成分(例えば、Ti,Nb,V等)を含み得るものであり、こうした成分を含むものも本発明の技術的範囲に含まれるものである。また本発明の鋼板には、不可避的に不純物(例えば、Zr,B等)が含まれることになるが、それらは本発明の効果を損なわない限度(0.001質量%以下)で許容される。
【0030】
以下本発明を実施例によって更に具体的に示すが、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施することは全て本発明の技術的範囲に含まれるものである。
【0031】
【実施例】
[実施例1]
下記表1に示す化学成分組成からなる供試鋼を真空溶製してスラブとした後に、熱間圧延および連続焼鈍を行い、板厚:1.2mmの鋼板を得た。具体的には、1300℃に加熱したスラブを、Ar3変態点以上の温度である約900℃で熱間圧延を終了し(仕上温度:FDT)、約450℃で巻き取り処理した。こうして得られた熱延鋼板(厚さ:2〜3mm)を冷間圧延により板厚:1.2mmに圧延した後、下記各種パターンの熱処理(連続焼鈍)を施して鋼板とした。
【0032】
(熱処理パターン)
No.1〜10
850℃(A1変態点以上A3点以下の温度)で120秒加熱保持(焼鈍)した後、平均冷却速度:5℃/sで700℃まで冷却して15秒保持し、次いで平均冷却速度15℃/sで420℃まで冷却して15秒保持(オーステンパ処理)し、空冷(平均冷却速度5℃/s)で室温まで冷却した。
【0033】
No.11
850℃(A1変態点以上A3点以下の温度)で120秒加熱保持(焼鈍)した後、平均冷却速度:5℃/sで700℃まで冷却して60秒保持し、次いで平均冷却速度15℃/sで420℃まで冷却して15秒保持(オーステンパ処理)し、空冷(平均冷却速度5℃/s)で室温まで冷却した。
【0034】
No.12
850℃(A1変態点以上A3点以下の温度)で120秒加熱保持(焼鈍)した後、平均冷却速度:15℃/sで420℃まで冷却して15秒保持(オーステンパ処理)し、空冷(平均冷却速度5℃/s)で室温まで冷却した。
【0035】
No.13
850℃(A1変態点以上A3点以下の温度)で120秒加熱保持(焼鈍)した後、平均冷却速度:15℃/sで420℃まで冷却して200秒保持(オーステンパ処理)した後、空冷(平均冷却速度5℃/s)で室温まで冷却した。
【0036】
【表1】

Figure 0003828466
【0037】
この様にして得られた鋼板について、2000(μm)2当たりの炭化物の個数、引張強度(TS)、伸び[全伸び(EI)]、各組織の面積率(占積率)および曲げ特性(完全密着曲げ加工性R0および曲げ加工性R1)を、下記要領で夫々測定した。これらの結果を、下記表2に示す。
【0038】
[炭化物の個数]
(5%過塩素酸+酢酸)溶液で電解研磨(60V−0.5A)した後、10%アセチルアセトン+90%メタノール溶液に1gのテトラメチルアンモニウムクロライドを加えた溶液でエッチング(2V−20mA,2min)し、カーボン蒸着剥離して作製した抽出レプリカを、倍率7500倍の透過型電子顕微鏡(TEM)で任意の3箇所を写真撮影し(1箇所当たり40μm×17μm)、その合計[2000(μm)2当たり]で残留γとフェライトの界面に存在する炭化物個数を計算した。
【0039】
[引張強度(TS)、伸び(El)]
引張試験はJIS5号試験片を用い引張試験を行い、引張強度(TS)および伸び(El)を測定した。
【0040】
[各組織の面積率]
上記鋼板中の組織を、レペラー腐食による光学顕微鏡観察および透過型電子顕微鏡(TEM)観察を行うと共に、写真による面積率、更に残留γについては、X線測定によって面積率を測定した(ISIJ Int.Vol.33.(1933),No.7,P.776)。
【0041】
[曲げ特性]
上記鋼板から試験片(幅:40mm×長さ:100mm×厚さ:1.2mm)を切り出し、完全密着曲げR0と1mmの鋼板を挟んでの曲げR1(いずれも180°曲げ)を行い、割れの有無(有:「×」、無:「○」)によって曲げ特性を評価した。
【0042】
【表2】
Figure 0003828466
【0043】
これらの結果より、以下の様に考察することができる。まず、No.2〜5、7〜10はいずれも、本発明で規定する要件を満足しているので、曲げ特性の良好な高強度鋼板が得られている。参考までに、図1に、本発明鋼板(No.4)のTEM写真(倍率:7500倍)を示す。この写真より、本発明鋼板は、残留γとフェライトの界面に存在する炭化物が少なくなっていることが分かる。
【0044】
これに対し、No.1,6,11〜13のものは、本発明で規定する要件(または好ましい要件)のいずれかを満足しない例であり、夫々以下の不具合を有している。まず、No.1はC量が少ない例であり、強度が低くなっている。またNo.6のものでは、Mn量および(Si+Al)の合計量が少ない例であり、所望の残留γが得られず、またパーライト組織が生じているので、強度およびElが低くなっていると共に、曲げ特性も劣化している。
【0045】
一方、No.11のものでは、熱処理の際に700℃での保持時間が長くなり、パーライト組織が多くなって所定の残留γが得られない為、Elが低くなっていると共に、曲げ特性も劣化している。また、No.12のものでは700℃における保持時間が短い(700℃で保持していない)ので、炭化物の個数が多くなって、曲げ特性が劣化している。更に、No.13のものでは、700℃で保持せずしかも400℃における保持時間が長いので、C濃度の高い安定な残留γが生成することによって曲げ加工性は良好であるが、炭化物の個数が多くなって特に密着曲げ加工性R0が劣化している。参考までに、図2に、No.13で得られた鋼板のTEM写真(倍率:7500倍)を示す。この写真より、従来の鋼板では、残留γとフェライトの界面に存在する炭化物が多いことが分かる。
【0046】
【発明の効果】
本発明は上記の様に構成されているので、600〜1400MPa級の高強度および超高強度域において、優れた曲げ特性を発揮する高強度鋼板が実現でき、こうした鋼板は自動車用鋼板として最適である。
【図面の簡単な説明】
【図1】本発明鋼板(No.4)のTEM写真である。
【図2】従来鋼板(No.13)のTEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel sheet having excellent bending characteristics, particularly close-contact bending workability (extreme deformability), and particularly high strength exhibiting excellent bending characteristics in a high strength and ultrahigh strength range of 600 to 1400 MPa class. It relates to steel plates.
[0002]
[Prior art]
Steel sheets used for press forming in automobiles, industrial machines and the like are required to have both excellent strength and ductility, and such required characteristics have been increasingly increased in recent years.
[0003]
Conventionally, a ferrite-martensitic composite steel sheet [dual phase (DP) steel sheet] including a low-temperature transformation structure mainly composed of martensite in a ferrite base is known as a steel sheet that achieves both strength and ductility ( For example, Japanese Patent Laid-Open No. 55-122820). The steel sheet not only has good ductility, but also yield elongation does not appear due to a large amount of free dislocations introduced into the martensite formation region, yield stress is low, and shape freezing characteristics during processing are good. . By controlling to the above structure, a steel sheet having high tensile strength (TS) and excellent elongation (El) characteristics is obtained.
[0004]
On the other hand, residual austenite (hereinafter sometimes referred to as “residual amount γ”) is generated in the structure, and residual γ is induced transformation (strain-induced transformation: TRIP) during work deformation to improve ductility. Is also known. For example, in Japanese Patent Laid-Open No. 60-43425, a structure as a composite structure steel sheet has a volume fraction of ferrite of 10% or more and a residual γ of 10% or more, and the balance is bainite, martensite or a mixed structure thereof. A steel sheet having a high strength and extremely excellent ductility is disclosed by controlling to. As a result of the above structure, in addition to the processing-induced transformation effect of residual γ, high ductility due to soft ferrite is exhibited, and as a result, ductility is ensured by ferrite and residual γ, and strength is secured by bainite or martensite. Has been.
[0005]
In any of the above steel plates, the elongation properties (particularly uniform elongation) are excellent, and in particular, the TRIP steel plate has a very high elongation by containing residual γ, and the formability (extrusion property and drawability) is good. It has characteristics. However, it is known that these steel plates generally have poor local deformation characteristics (bending workability and hole expandability), extreme deformation characteristics (adhesion bending workability), etc. compared to solid solution strengthened steel. . In particular, in steel sheets used for press forming, such as automotive steel sheets, good bending characteristics (bending workability and adhesion bending workability) are indispensable requirements. In fact, the steel sheets that have good bending characteristics, particularly good adhesion bending workability, have not been realized.
[0006]
[Problems to be solved by the invention]
The present invention has been made paying attention to the above circumstances, and its purpose is to exhibit excellent bending characteristics (bending workability and adhesion bending workability) in a high strength and ultrahigh strength range of 600 to 1400 MPa class. An object of the present invention is to provide an optimum high-strength steel plate as a steel plate for automobiles.
[0007]
[Means for Solving the Problems]
The steel sheet of the present invention that has solved the above problems is mainly composed of a structure containing residual austenite: 5 to 30 area% and ferrite: 50 area% or more, and is a carbide present at the interface between residual austenite and ferrite. The gist is that the number is 40 or less per 2000 (μm) 2 .
[0008]
As basic components in the steel sheet of the present invention, C: 0.06 to less than 0.25% by mass, Si + Al: 0.5 to 3% by mass, Mn: 0.5 to 3% by mass, P: 0.15% by mass The following are included (excluding 0% by mass) and S: 0.02% by mass or less (not including 0% by mass), respectively, and the remainder is iron and inevitable impurities.
[0009]
In addition to the basic components described above, the steel plate of the present invention, if necessary, (a) Mo: 1% by mass or less (not including 0% by mass), Ni: 0.5% by mass or less (not including 0% by mass) And Cu: 0.5% by mass or less (not including 0% by mass), (b) Ca: 0.003% by mass or less (not including 0% by mass), etc. are also effective. The properties of the steel sheet are further improved depending on the components to be contained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors have studied from various angles in order to realize a steel sheet that exhibits good bending characteristics. In DP steel plates and TRIP steel plates that have been developed so far, the strength ratio between the parent phase and the second phase is high, and the deformation concentrates on the interface between the parent phase and the second phase (the parent phase side), so that bending occurs. It is thought that the characteristics deteriorate.
[0011]
According to further investigation by the present inventors, not only the strength ratio of the parent phase and the second phase but also the plastic deformation (from the second phase) is not limited to the ultimate deformation characteristics (adhesion bending workability) of the TRIP steel sheet. (Hard) was found to be affected by the presence of carbide (cementite). This carbide is present at the interface between residual γ and ferrite, but by reducing such carbide as much as possible, it has been found that a steel plate (TRIP steel plate) exhibiting excellent bending characteristics can be realized, and the present invention has been completed.
[0012]
As described above, the steel sheet of the present invention has a reduced number of carbides (that is, carbides present at the interface between retained austenite and ferrite) as much as possible. Specifically, the number of carbides is 40 per 2000 (μm) 2. Must be less than If the number of carbides exceeds 40, bending characteristics (particularly adhesion bending workability) will deteriorate. This carbide is preferably reduced to 30 or less.
[0013]
The steel sheet of the present invention needs to be appropriately controlled in its structure. That is, in the steel sheet of the present invention, from the viewpoint of ensuring high strength and good elongation, the structure is mainly composed of a structure containing residual γ: 5 to 30 area% and ferrite: 50 area% or more. The reasons for limiting the range of each phase constituting such a structure are as follows.
[0014]
Residual γ: 5-30 area%
Residual γ is useful for improving the total elongation, and it is necessary that 5% by area (preferably 8% by area or more) be present in order to effectively exhibit such an action. On the other hand, if it exceeds 30 area%, the bending workability deteriorates conversely, so the upper limit was set to 30 area%. More preferably, it is 20 area% or less.
[0015]
Ferrite: 50 area% or more The ferrite in the present invention needs to have an area ratio (space factor) of at least 50 area% or more in order to ensure good ductility in the steel sheet.
[0016]
In the steel sheet of the present invention, the structure containing the above residual γ and ferrite is the main component (for example, 70 area% or more), but as long as the other different structures are not impaired, bainite, You may have some martensite. Although these structures can inevitably remain in the production process of the present invention, the less martensite, the better.
[0017]
In the conventional heat treatment of TRIP steel sheet (heat treatment after hot rolling and cold rolling), an average cooling of 10 ° C./s or more is performed after heating and holding at a temperature of A 1 point or more and A 3 point or less for about 60 to 180 seconds. By cooling to the bainite transformation region (eg, about 400 ± 50 ° C) at a high speed and maintaining the temperature range for a long time (eg, about 300 seconds), C concentration to the γ phase is promoted to stabilize the γ phase. And a predetermined amount of residual γ is secured. However, in such a method, the C concentration gradient inside and outside the residual γ phase becomes large and cementite (carbide) is easily generated, and the bending characteristics are deteriorated.
[0018]
In order to manufacture the steel sheet of the present invention by controlling the form of carbide, for example, the following method may be carried out. That is, prior to the heat treatment as described above, by holding the ferrite transformation region (for example, about 700 ± 30 ° C.) for a predetermined time (that is, by performing a two-step heat treatment), the residual γ-phase inside and outside C It is effective to reduce the concentration gradient and suppress the formation of carbides at the interface between residual γ and ferrite. However, since the ferrite transformation region is overlapped with the pearlite transformation region, if it is heated and held at that temperature for an excessively long time, characteristic deterioration due to precipitation of the pearlite structure occurs. Therefore, the holding time at this temperature needs to be appropriately adjusted within the range where the above-described effect occurs, and is preferably about 10 to 30 seconds. Also, in the ferrite transformation region, C concentration into the γ phase proceeds rapidly, so it is necessary to keep it for a long time, so such heat treatment should be performed as part of the annealing process (continuous annealing process) that follows hot rolling. Can do.
[0019]
In addition, the hot rolling process and the cold rolling process performed prior to the heat treatment are not particularly limited, and the conditions that are usually performed can be appropriately selected and employed. In addition, the cooling rate from each heat treatment temperature may be adjusted as appropriate.For example, the average cooling rate when cooling to the bainite transformation region after holding for a predetermined time in the ferrite transformation region prevents the formation of cementite. It is preferable that it is 10 degrees C / s or more.
[0020]
The residual γ steel sheet of the present invention can achieve the object of the present invention by appropriately controlling the structure and the number of carbides as described above, and the chemical composition of the steel sheet is not particularly limited. However, for basic components such as C, Si, Al, Mn, P, and S, it is preferable to control the component ranges as described below.
[0021]
C: Less than 0.06 to 0.25% by mass C is an essential element for securing high strength and securing residual γ. Specifically, it is an important element for containing a sufficient amount of C in the γ phase and for leaving the desired γ phase even at room temperature. In order to exhibit such an effect, it is preferable to contain 0.06 mass% or more, but if it contains 0.25 mass% or more, weldability deteriorates.
[0022]
Si + Al: 0.5-3 mass%
Si and Al are elements that effectively suppress the decomposition of residual γ and the formation of carbides. In particular, Si is useful as a solid solution strengthening element. In order to effectively exhibit such an action, it is preferable to contain 0.5% by mass or more of Si and Al in total. The content is preferably 0.7% by mass or more, more preferably 1% by mass or more. However, even if the total amount of the above elements exceeds 3% by mass, the above effect is saturated, which is economically wasteful, and when added in a large amount causes hot brittleness. Mass%. More preferably, it is 2.5% or less by actual amount, and further preferably 2% or less by actual amount.
[0023]
Mn: 0.5-3 mass%
Mn is an element necessary for stabilizing γ and obtaining a desired residual γ. In order to exhibit such an action effectively, it is preferable to contain 0.5% by mass or more. More preferably, it is 0.7 mass% or more, More preferably, it is good to set it as 1 mass% or more. However, if the content exceeds 3% by mass, adverse effects such as slab cracking are observed. More preferably, it is 2.5 mass% or less, More preferably, it is good to set it as 2 mass% or less.
[0024]
P: 0.15% by mass or less (excluding 0% by mass)
P is an element effective for securing a desired residual γ. In order to effectively exhibit such an action, it is recommended to contain 0.03% by mass or more (more preferably 0.05% by mass or more). However, if it exceeds 0.15 mass%, the secondary workability deteriorates. More preferably, it is good to set it as 0.1 mass% or less.
[0025]
S: 0.02% by mass or less (excluding 0% by mass)
S is an element that forms sulfide inclusions such as MnS and becomes a starting point of cracks and deteriorates workability. Therefore, S should be suppressed as much as possible, and from this point of view, it should be 0.02% by mass or less. Is good. More preferably, it is 0.015 mass% or less.
[0026]
It is also effective for the steel sheet of the present invention to contain Mo, Ni, Cu, Ca and rare earth elements as necessary in addition to the basic components described above, and the characteristics of the steel sheet are further improved according to the type of element contained. The The reasons for limiting the range of each element contained as necessary are as follows.
[0027]
Mo: 1% by mass or less (not including 0% by mass), Ni: 0.5% by mass or less (not including 0% by mass) and Cu: 0.5% by mass or less (not including 0% by mass) Type 1 These elements are useful elements for strengthening steel and are effective in stabilizing residual γ and securing a predetermined amount. In order to effectively exhibit such an action, Mo: 0.05% by mass or more (more preferably 0.1% by mass or more), Ni: 0.05% by mass or more (more preferably 0.1% by mass) Above), Cu: 0.05% by mass or more (more preferably 0.1% by mass or more), and Cr: 0.05% by mass or more (more preferably 0.1% by mass or more) are recommended. Is done. However, even if Mo is contained in an amount of more than 1% by mass and Ni and Cu are contained in an amount exceeding 0.5% by mass, the above effect is saturated, which is economically wasteful. More preferably, Mo: 0.8% by mass or less, Ni: 0.4% by mass or less, Cu: 0.4% by mass or less, and Cr: 0.8% by mass or less.
[0028]
Ca: 0.003 mass% or less (excluding 0 mass%)
Ca is an element that controls the form of sulfide in steel and is effective in improving workability. Here, in order to exert such effects in the present invention, it is recommended that Ca is contained in an amount of 0.0003 mass% or more (more preferably 0.0005 mass% or more). However, even if added over 0.003% by mass, the above effect is saturated, which is economically useless. More preferably, it is 0.0025 mass% or less.
[0029]
In the steel sheet of the present invention, in addition to the above components (remainder) basically consists of iron, but in addition to these, trace components (for example, Ti, Nb, V, etc.) may be included. Those containing components are also included in the technical scope of the present invention. In addition, the steel sheet of the present invention inevitably contains impurities (for example, Zr, B, etc.), but these are allowed as long as the effects of the present invention are not impaired (0.001% by mass or less). .
[0030]
Hereinafter, the present invention will be described more specifically by way of examples. However, the following examples are not intended to limit the present invention, and all modifications may be made within the technical scope of the present invention without departing from the spirit described above and below. It is included.
[0031]
【Example】
[Example 1]
A test steel having the chemical composition shown in Table 1 below was vacuum-melted into a slab, followed by hot rolling and continuous annealing to obtain a steel sheet having a thickness of 1.2 mm. Specifically, the slab heated to 1300 ° C. was hot-rolled at a temperature equal to or higher than the Ar 3 transformation point at about 900 ° C. (finishing temperature: FDT) and wound at about 450 ° C. The hot-rolled steel sheet (thickness: 2 to 3 mm) thus obtained was rolled to a thickness of 1.2 mm by cold rolling, and then subjected to heat treatment (continuous annealing) in the following various patterns to obtain a steel sheet.
[0032]
(Heat treatment pattern)
No. 1-10
After heating and holding (annealing) at 850 ° C. (temperature from A 1 transformation point to A 3 point) for 120 seconds, cooling to 700 ° C. at 5 ° C./s and holding for 15 seconds, then average cooling rate It cooled to 420 degreeC at 15 degreeC / s, hold | maintained for 15 seconds (austempering process), and cooled to room temperature by air cooling (average cooling rate 5 degreeC / s).
[0033]
No. 11
After heating and holding (annealing) at 850 ° C. (temperature of A 1 transformation point to A 3 point) for 120 seconds, average cooling rate: 5 ° C./s, cooling to 700 ° C. and holding for 60 seconds, then average cooling rate It cooled to 420 degreeC at 15 degreeC / s, hold | maintained for 15 seconds (austempering process), and cooled to room temperature by air cooling (average cooling rate 5 degreeC / s).
[0034]
No. 12
After heating and holding (annealing) at 850 ° C. (temperature of A 1 transformation point to A 3 point), cooling to 420 ° C. at an average cooling rate of 15 ° C./s and holding for 15 seconds (austempering) It cooled to room temperature by air cooling (average cooling rate 5 degrees C / s).
[0035]
No. 13
After heating and holding (annealing) at 850 ° C. (temperature of A 1 transformation point to A 3 point), after cooling to 420 ° C. at an average cooling rate of 15 ° C./s and holding for 200 seconds (austempering) And cooled to room temperature by air cooling (average cooling rate 5 ° C./s).
[0036]
[Table 1]
Figure 0003828466
[0037]
About the steel plate thus obtained, the number of carbides per 2000 (μm) 2 , tensile strength (TS), elongation [total elongation (EI)], area ratio (space factor) of each structure and bending characteristics ( The complete adhesion bending workability R0 and bending workability R1) were measured in the following manner. These results are shown in Table 2 below.
[0038]
[Number of carbides]
After electropolishing with (5% perchloric acid + acetic acid) solution (60V-0.5A), etching with a solution of 1% tetramethylammonium chloride in 10% acetylacetone + 90% methanol solution (2V-20mA, 2min) Then, the extraction replica prepared by carbon vapor deposition was photographed at three arbitrary positions with a transmission electron microscope (TEM) at a magnification of 7500 times (40 μm × 17 μm per position), and the total [2000 (μm) 2 The number of carbides present at the interface between residual γ and ferrite was calculated.
[0039]
[Tensile strength (TS), elongation (El)]
The tensile test was conducted using a JIS No. 5 test piece, and the tensile strength (TS) and elongation (El) were measured.
[0040]
[Area ratio of each organization]
The structure in the steel sheet was subjected to optical microscope observation and transmission electron microscope (TEM) observation by repeller corrosion, and the area ratio by photographs and the remaining γ were measured by X-ray measurement (ISIJ Int. Vol.33. (1933), No.7, P.776).
[0041]
[Bending characteristics]
A test piece (width: 40 mm × length: 100 mm × thickness: 1.2 mm) is cut out from the above steel plate, and a completely intimate bend R0 and a bend R1 with a 1 mm steel plate sandwiched between them (both 180 ° bends) and cracked. The bending characteristics were evaluated based on the presence or absence (existence: “x”, absence: “◯”).
[0042]
[Table 2]
Figure 0003828466
[0043]
From these results, it can be considered as follows. First, no. Since Nos. 2 to 5 and 7 to 10 satisfy the requirements defined in the present invention, a high-strength steel sheet having good bending characteristics is obtained. For reference, a TEM photograph (magnification: 7500 times) of the steel sheet of the present invention (No. 4) is shown in FIG. From this photograph, it can be seen that the steel sheet of the present invention has less carbides present at the interface between residual γ and ferrite.
[0044]
In contrast, no. Those of 1, 6, 11 to 13 are examples that do not satisfy any of the requirements (or preferable requirements) defined in the present invention, and each has the following problems. First, no. 1 is an example in which the amount of C is small, and the strength is low. No. No. 6 is an example in which the total amount of Mn and (Si + Al) is small, the desired residual γ cannot be obtained, and a pearlite structure is formed, so that the strength and El are lowered, and the bending characteristics Has also deteriorated.
[0045]
On the other hand, no. In the case of No. 11, since the holding time at 700 ° C. becomes longer during the heat treatment, the pearlite structure increases and the predetermined residual γ cannot be obtained, the El is lowered and the bending characteristics are also deteriorated. . No. In the case of No. 12, since the holding time at 700 ° C. is short (not held at 700 ° C.), the number of carbides increases, and the bending characteristics deteriorate. Furthermore, no. No. 13 is not held at 700 ° C. and has a long holding time at 400 ° C., so that a stable residual γ having a high C concentration is produced, so that bending workability is good, but the number of carbides increases. In particular, the close contact bending workability R0 is deteriorated. For reference, FIG. 13 shows a TEM photograph (magnification: 7500 times) of the steel plate obtained in FIG. From this photograph, it can be seen that in the conventional steel sheet, there are many carbides present at the interface between residual γ and ferrite.
[0046]
【The invention's effect】
Since the present invention is configured as described above, it is possible to realize a high-strength steel sheet exhibiting excellent bending characteristics in a high strength and ultrahigh strength range of 600 to 1400 MPa class, and such a steel sheet is optimal as a steel sheet for automobiles. is there.
[Brief description of the drawings]
FIG. 1 is a TEM photograph of a steel plate (No. 4) of the present invention.
FIG. 2 is a TEM photograph of a conventional steel plate (No. 13).

Claims (4)

残留オーステナイト:5〜30面積%およびフェライト:50面積%以上を含有する組織を主体とすると共に、残留オーステナイトとフェライトの界面に存在する炭化物の個数が2000(μm)当たり40個以下であることを特徴とする曲げ特性に優れた鋼板。Residual austenite: 5 to 30 area% and ferrite: The structure containing 50 area% or more is the main component, and the number of carbides present at the interface between retained austenite and ferrite is 40 or less per 2000 (μm) 2. A steel sheet with excellent bending characteristics characterized by C:0.06〜0.25質量%未満、Si+Al:0.5〜3質量%、Mn:0.5〜3質量%、P:0.15質量%以下(0質量%を含まない)、S:0.02質量%以下(0質量%を含まない)を夫々含有し、残部鉄および不可避的不純物である請求項1に記載の鋼板。C: 0.06 to less than 0.25% by mass, Si + Al: 0.5 to 3% by mass, Mn: 0.5 to 3% by mass, P: 0.15% by mass or less (excluding 0% by mass), The steel sheet according to claim 1, wherein S: 0.02% by mass or less (not including 0% by mass) is contained, and the balance is iron and inevitable impurities . 更に、Mo:1質量%以下(0質量%を含まない),Ni:0.5質量%以下(0質量%を含まない)およびCu:0.5質量%以下(0質量%を含まない)よりなる群から選択される1種以上を含有するものである請求項2に記載の鋼板。  Furthermore, Mo: 1% by mass or less (not including 0% by mass), Ni: 0.5% by mass or less (not including 0% by mass) and Cu: 0.5% by mass or less (not including 0% by mass) The steel plate according to claim 2, which contains one or more selected from the group consisting of: 更に、Ca:0.003質量%以下(0質量%を含まない)含有するものである請求項2または3に記載の鋼板。Furthermore, Ca: 0.003 steel sheet according to claim 2 or 3 wt% or less (excluding 0 wt%) are those which contain.
JP2002219662A 2002-07-29 2002-07-29 Steel sheet with excellent bending properties Expired - Fee Related JP3828466B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002219662A JP3828466B2 (en) 2002-07-29 2002-07-29 Steel sheet with excellent bending properties
EP03254606A EP1389639B1 (en) 2002-07-29 2003-07-24 Steel sheet with excellent bendability
US10/626,612 US20040159373A1 (en) 2002-07-29 2003-07-25 Steel sheet with excellent bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002219662A JP3828466B2 (en) 2002-07-29 2002-07-29 Steel sheet with excellent bending properties

Publications (2)

Publication Number Publication Date
JP2004059996A JP2004059996A (en) 2004-02-26
JP3828466B2 true JP3828466B2 (en) 2006-10-04

Family

ID=30768001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002219662A Expired - Fee Related JP3828466B2 (en) 2002-07-29 2002-07-29 Steel sheet with excellent bending properties

Country Status (3)

Country Link
US (1) US20040159373A1 (en)
EP (1) EP1389639B1 (en)
JP (1) JP3828466B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431406A1 (en) * 2002-12-20 2004-06-23 Sidmar N.V. A steel composition for the production of cold rolled multiphase steel products
US7314532B2 (en) * 2003-03-26 2008-01-01 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High-strength forged parts having high reduction of area and method for producing same
EP1512760B1 (en) * 2003-08-29 2011-09-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High tensile strength steel sheet excellent in processibility and process for manufacturing the same
US20050150580A1 (en) * 2004-01-09 2005-07-14 Kabushiki Kaisha Kobe Seiko Sho(Kobe Steel, Ltd.) Ultra-high strength steel sheet having excellent hydrogen embrittlement resistance, and method for manufacturing the same
EP1559798B1 (en) * 2004-01-28 2016-11-02 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength and low yield ratio cold rolled steel sheet and method of manufacturing the same
DE602005013442D1 (en) * 2004-04-22 2009-05-07 Kobe Steel Ltd High-strength and cold-rolled steel sheet with excellent ductility and clad steel sheet
JP4288364B2 (en) * 2004-12-21 2009-07-01 株式会社神戸製鋼所 Composite structure cold-rolled steel sheet with excellent elongation and stretch flangeability
JP4716358B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High-strength cold-rolled steel sheet and plated steel sheet with excellent balance between strength and workability
JP4716359B2 (en) * 2005-03-30 2011-07-06 株式会社神戸製鋼所 High strength cold-rolled steel sheet excellent in uniform elongation and method for producing the same
EP1767659A1 (en) * 2005-09-21 2007-03-28 ARCELOR France Method of manufacturing multi phase microstructured steel piece
KR100985298B1 (en) 2008-05-27 2010-10-04 주식회사 포스코 Low Density Gravity and High Strength Hot Rolled Steel, Cold Rolled Steel and Galvanized Steel with Excellent Ridging Resistibility and Manufacturing Method Thereof
JP5867436B2 (en) * 2013-03-28 2016-02-24 Jfeスチール株式会社 High strength galvannealed steel sheet and method for producing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2952624B2 (en) * 1991-05-30 1999-09-27 新日本製鐵株式会社 High yield ratio type hot rolled high strength steel sheet excellent in formability and spot weldability and its manufacturing method and high yield ratio type hot rolled high strength steel sheet excellent in formability and its manufacturing method
TW363082B (en) * 1994-04-26 1999-07-01 Nippon Steel Corp Steel sheet having high strength and being suited to deep drawing and process for producing the same
CA2278841C (en) * 1997-01-29 2007-05-01 Nippon Steel Corporation High strength steels having excellent formability and high impact energy absorption properties, and a method for producing the same
JP3320013B2 (en) * 1997-05-29 2002-09-03 川崎製鉄株式会社 High strength and high workability hot rolled steel sheet with excellent impact resistance
JP3320014B2 (en) * 1997-06-16 2002-09-03 川崎製鉄株式会社 High strength, high workability cold rolled steel sheet with excellent impact resistance
JP3619357B2 (en) * 1997-12-26 2005-02-09 新日本製鐵株式会社 High strength steel sheet having high dynamic deformation resistance and manufacturing method thereof
JP3172505B2 (en) * 1998-03-12 2001-06-04 株式会社神戸製鋼所 High strength hot rolled steel sheet with excellent formability
JPH11323489A (en) * 1998-05-13 1999-11-26 Nippon Steel Corp High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production
JP2000256789A (en) * 1999-03-10 2000-09-19 Kobe Steel Ltd Cold-rolled steel sheet excellent in workability and spot weldability and pre-galvannealed steel sheet and production thereof
JP2000313936A (en) * 1999-04-27 2000-11-14 Kobe Steel Ltd Galvannealed steel sheet excellent in ductility and production thereof
FR2801061B1 (en) * 1999-11-12 2001-12-14 Lorraine Laminage PROCESS FOR PRODUCING A VERY HIGH STRENGTH HOT LAMINATED SHEET METAL FOR USE IN FORMING AND IN PARTICULAR FOR STAMPING
JP3750789B2 (en) * 1999-11-19 2006-03-01 株式会社神戸製鋼所 Hot-dip galvanized steel sheet having excellent ductility and method for producing the same
JP2001152287A (en) * 1999-11-26 2001-06-05 Kobe Steel Ltd High strength cold rolled steel sheet excellent in spot weldability
EP1201780B1 (en) * 2000-04-21 2005-03-23 Nippon Steel Corporation Steel plate having excellent burring workability together with high fatigue strength, and method for producing the same
CA2387322C (en) * 2001-06-06 2008-09-30 Kawasaki Steel Corporation High-ductility steel sheet excellent in press formability and strain age hardenability, and method for manufacturing the same

Also Published As

Publication number Publication date
US20040159373A1 (en) 2004-08-19
EP1389639A2 (en) 2004-02-18
EP1389639A3 (en) 2005-06-08
EP1389639B1 (en) 2011-01-05
JP2004059996A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3764411B2 (en) Composite steel sheet with excellent bake hardenability
KR102119333B1 (en) High-strength steel sheet and its manufacturing method
EP3372703B1 (en) Ultra-high strength steel plate having excellent formability and hole-expandability, and method for manufacturing same
JP3857939B2 (en) High strength and high ductility steel and steel plate excellent in local ductility and method for producing the steel plate
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP4952236B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3729108B2 (en) Ultra-high tensile cold-rolled steel sheet and manufacturing method thereof
JP4528137B2 (en) Manufacturing method of high strength and high ductility steel sheet with excellent hole expandability
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP2005097725A (en) Steel sheet for hot press having hydrogen embrittlement resistance, automobile member and its production method
JP2017048412A (en) Hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet and production methods therefor
JP4085826B2 (en) Duplex high-strength steel sheet excellent in elongation and stretch flangeability and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
JP2014159610A (en) High strength cold rolled steel sheet excellent in bendability
JP3233743B2 (en) High strength hot rolled steel sheet with excellent stretch flangeability
JP5860343B2 (en) High strength cold-rolled steel sheet with small variations in strength and ductility and method for producing the same
JP4119758B2 (en) High-strength steel sheet excellent in workability and shape freezing property, and its production method
JP3828466B2 (en) Steel sheet with excellent bending properties
JP4156889B2 (en) Composite steel sheet with excellent stretch flangeability and method for producing the same
JP4362319B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
KR101747584B1 (en) High-strength galvanized steel sheet and method for manufacturing the same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JPH1180890A (en) High strength hot rolled steel plate and its production
JP5076691B2 (en) Manufacturing method of high-strength cold-rolled steel sheet

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040810

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060706

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3828466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees