JPH11323489A - High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production - Google Patents

High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production

Info

Publication number
JPH11323489A
JPH11323489A JP14673198A JP14673198A JPH11323489A JP H11323489 A JPH11323489 A JP H11323489A JP 14673198 A JP14673198 A JP 14673198A JP 14673198 A JP14673198 A JP 14673198A JP H11323489 A JPH11323489 A JP H11323489A
Authority
JP
Japan
Prior art keywords
less
steel sheet
thickness
rolled steel
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP14673198A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kusumi
和久 楠見
Masayoshi Suehiro
正芳 末廣
Hidekuni Murakami
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14673198A priority Critical patent/JPH11323489A/en
Publication of JPH11323489A publication Critical patent/JPH11323489A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength cold rolled steel sheet excellent in shape fixability in bending and hat bending. SOLUTION: The surface layer in the range between the surface and a position at a depth of 5 to 35% of sheet thickness from the surface has an average composition in which C is contained in an amount higher by 0.05 to 0.5% by weight than the average C content in the central part of sheet thickness and the other chemical components are similar to those in the central part of sheet thickness and also has a metallic structure consisting of, by volume ratio, 10-35% retained austenite, <=2% martensite, and the balance ferrite or bainite. The inner layer in the range between a position at a depth of 5% of sheet thickness from the surface and the central part of sheet thickness has an average composition consisting of, by weight, 0.06-0.4% C, 0.5-4.0% of either or both of Si and Al, 0.5-2.0% Mn, and the balance Fe with inevitable impurities and also has a metallic structure consisting of, by volume, 3-20% retained austenite, <=2% martensite, and the balance ferrite or bainite.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状凍結性に優れ
た良加工性高強度冷延鋼板とその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties and a method for producing the same.

【0002】[0002]

【従来の技術】便利で快適な移動手段として自動車の国
民生活にしめる地位は年毎に高まっており、環境破壊と
地球温暖化を防止するために燃費を低減し化石燃料の消
費を抑制することが従来にも増して重要となってきてい
る。このため、エンジン性能の向上と共に車体の軽量化
が要求され、主要な車体構成材料である鋼板に対しては
成形性を損わずに一層の強度増加を図ることが求められ
ている。また、直近では自動車事故を想定した耐衝突安
全性に関する法規制が急速に拡大・強化されつつあり、
高強度鋼板への期待がますます高まっている。ここで、
成形性の指標値には引張試験による伸びをはじめとして
n値やr値があるが、一体成形によるプレス工程の簡略
化が課題となっている昨今では均一伸びに相当するn値
の大きいことが中でも重要となってきている。
2. Description of the Related Art The status of automobiles as a convenient and comfortable means of transportation is increasing year by year, and it is necessary to reduce fuel consumption and fossil fuel consumption in order to prevent environmental destruction and global warming. It is more important than ever. For this reason, it is required to reduce the weight of the vehicle body while improving the engine performance, and it is required to further increase the strength of the steel sheet, which is a main constituent material of the vehicle body, without impairing the formability. In recent years, laws and regulations on collision safety in anticipation of car accidents have been rapidly expanding and strengthening.
Expectations for high-strength steel sheets are increasing. here,
Index values of formability include n-value and r-value, including elongation by a tensile test, but simplification of the pressing process by integral molding has become an issue in recent years. Among them, it is becoming important.

【0003】このため、残留オーステナイトの変態誘起
塑性の活用が提唱され、高価な合金元素を含まずに、
0.06〜0.4%程度のCと0.5〜2.0%程度の
Si、0.2〜2.5%程度のMnのみを基本的な合金
元素とし、2相共存温度域で焼鈍後に300〜600℃
程度の温度で、ベイナイト変態を行うことが特徴の熱処
理により残留オーステナイトを金属組織中に含む鋼板が
特開平1−230715号公報に開示されている。これ
を以下残留γハイテンと呼ぶ。他の成分として、Siの
代わりにAlを利用した鋼板が特開平6−145788
号公報に開示されている。この種の鋼板は連続焼鈍で製
造された冷延鋼板ばかりでなく、特開平1−79345
号公報のようにランアウトテーブルでの冷却と捲取温度
を制御することにより熱延鋼板でも得ることができる。
また、加工硬化特性が優れていることより、自動車衝突
時の吸収エネルギーに優れるという知見を特願平9−2
8296号で出願した。このように残留γハイテンは、
広範な実用化が期待されるところである。
[0003] Therefore, utilization of transformation-induced plasticity of retained austenite has been proposed, and without using expensive alloying elements.
Only C of about 0.06 to 0.4%, Si of about 0.5 to 2.0%, and Mn of about 0.2 to 2.5% are used as basic alloying elements in a two-phase coexisting temperature range. 300-600 ° C after annealing
Japanese Patent Application Laid-Open No. 1-230715 discloses a steel sheet containing retained austenite in a metal structure by a heat treatment characterized by performing bainite transformation at a temperature of about the same. This is hereinafter referred to as residual γ hyten. As another component, a steel plate using Al instead of Si is disclosed in Japanese Patent Laid-Open No. 6-145788.
No. 6,086,045. Such a steel sheet is not only a cold-rolled steel sheet manufactured by continuous annealing, but also disclosed in JP-A-1-79345.
By controlling the cooling at the run-out table and the winding temperature as in the publication, hot rolled steel sheets can also be obtained.
In addition, the inventor has found that the excellent work hardening property leads to excellent absorption energy at the time of vehicle collision.
No. 8296. Thus, the residual γ hyten is
Extensive practical use is expected.

【0004】このような高強度鋼板は自動車構成部品の
中でもメンバーなどに使用されることが考えられ、要求
される成形特性としては曲げ加工やハット曲げ加工時の
形状凍結性が挙げられる。この形状凍結性に影響を及ぼ
す材料因子としては、降伏強度や引張強度が挙げられ、
一般的に強度が上昇すると形状凍結性は低下する傾向が
あることが、「プレス成形難易ハンドブック」(日刊工
業新聞社発行)に示されている。したがって、高強度鋼
板を使用した場合、寸法精度を充分満足する部品をプレ
ス成形するためには金型調整回数が多くなり、コスト上
不利である。
[0004] Such a high-strength steel sheet is considered to be used for members and the like among automobile components, and required forming characteristics include shape freezing during bending and hat bending. Material factors that affect this shape freezing property include yield strength and tensile strength,
It is shown in the "Press Forming Difficulty Handbook" (published by Nikkan Kogyo Shimbun) that generally the shape freezing property tends to decrease as the strength increases. Therefore, when a high-strength steel sheet is used, in order to press-mold a part that sufficiently satisfies the dimensional accuracy, the number of mold adjustments increases, which is disadvantageous in cost.

【0005】この高強度鋼板の形状凍結性を改善する知
見としては、成形方法として特開平7−148527号
公報や特開平7−185663号公報などに開示されて
いる。しかし、これらの知見では、成形方法が制限され
るため、デザインの自由度が低下するため望ましくな
い。また、鋼板としては特開昭62−259839号公
報、特開平7−268484号公報などに開示されてい
る、ラミネート鋼板を利用した技術がある。しかし、こ
れらは鋼板の製造コストが高くなるため、望ましくな
い。また、特開平7−275938号公報には表内層の
強度が異なる複層鋼板により、形状凍結性が改善される
知見が開示されている。しかし、この知見は具体的な複
層鋼板の製造方法についてはなにも言及されていない。
形状凍結性については言及していないが、残留γハイテ
ンの表面を浸炭にて強化した鋼板が、特開平6−100
92号公報に開示されている。しかし、強化に必要な浸
炭量についてはなにも言及していない。
[0005] The knowledge to improve the shape freezing property of the high-strength steel sheet is disclosed in Japanese Patent Application Laid-Open Nos. 7-148527 and 7-185563 as a forming method. However, these findings are not desirable because the molding method is limited and the degree of freedom in design is reduced. As a steel sheet, there is a technique using a laminated steel sheet, which is disclosed in JP-A-62-259839 and JP-A-7-268484. However, these are not desirable because they increase the production cost of the steel sheet. Further, Japanese Patent Application Laid-Open No. 7-275938 discloses a finding that the shape freezing property is improved by using a multi-layer steel sheet having different inner layer strengths. However, this finding does not mention anything about a specific method for producing a multilayer steel sheet.
No mention is made of the shape freezing property, but a steel sheet in which the surface of the residual γ-hyten was strengthened by carburization was disclosed in
No. 92 is disclosed. However, it does not mention the amount of carburization required for reinforcement.

【0006】すなわち、自動車用部品に使用される良加
工性高強度鋼板の課題としては、成形方法によらず、曲
げ加工やハット曲げ加工時の形状凍結性を改善すること
が挙げられる。
[0006] That is, an object of a high-workability high-strength steel sheet used for automobile parts is to improve the shape freezing property during bending or hat bending regardless of the forming method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、成形方法に
よらず、曲げ加工やハット曲げ加工時の形状凍結性の問
題点を克服し得る良加工性高強度冷延鋼板およびその製
造方法を、提供することを目的とする。
SUMMARY OF THE INVENTION The present invention relates to a high-workability, high-strength cold-rolled steel sheet capable of overcoming the problem of shape freezing during bending and hat bending, regardless of the forming method, and a method for producing the same. , To provide.

【0008】[0008]

【課題を解決するための手段】本発明者は、形状凍結性
に優れた良加工性高強度冷延鋼板を検討した結果、鋼板
の表内層のC含有量を適当に制御することと熱処理条件
との組合わせにより、表層の金属組織を制御して表層を
内層よりも強化し、曲げ加工時の板厚断面の応力状態を
変化させることにより、形状凍結性が向上することを見
いだした。また、適当な熱処理条件をとることにより、
その鋼板を工業的に安定的に製造できることを見いだし
た。
Means for Solving the Problems The present inventor studied a good workability high strength cold rolled steel sheet having excellent shape freezing properties. As a result, it was found that the C content of the surface inner layer of the steel sheet was appropriately controlled and heat treatment conditions were improved. By controlling the metal structure of the surface layer, the surface layer is strengthened more than the inner layer, and the stress state of the plate thickness section at the time of bending is changed, thereby improving the shape freezing property. Also, by taking appropriate heat treatment conditions,
It has been found that the steel sheet can be manufactured industrially stably.

【0009】即ち、曲げ成形では、板厚中心から外側で
は材料が伸びるため離形後に縮みの応力が、板厚中心か
ら内側では逆に材料が縮むため伸びの応力が発生し、離
形後に板厚方向の応力差を低減するようにモーメントが
発生し角度変化が起こる。これがスプリングバックであ
る。このスプリングバックを低減する方法としては、引
張曲げがよく知られている。これは、曲げ加工の際に鋼
板に張力を加えて、板厚中心から内側の材料も伸び変形
をさせて、離形後の板厚方向の応力差を低減してスプリ
ングバックを減少させる方法である。この際、付加する
張力を大きくした時、歪みが0の面である中立面は、板
厚中心から曲げ内側に移動していき、ついには鋼板の全
てが伸び変形することになる。このように板厚断面の応
力状態を制御することにより、中立面を板厚中心から移
動させて、スプリングバックが低減できる。
That is, in bending, the material expands from the center of the thickness of the sheet to the outside, so that shrinkage stress occurs after release, and from the center of the thickness of the sheet, the material shrinks conversely, and the elongation stress occurs. A moment is generated so as to reduce the stress difference in the thickness direction, and an angle change occurs. This is springback. As a method for reducing the springback, tensile bending is well known. This is a method of applying tension to the steel sheet during bending, causing the material inside from the center of the sheet thickness to also elongate and deform, reducing the stress difference in the thickness direction after release and reducing springback. is there. At this time, when the applied tension is increased, the neutral plane, which is a plane where the distortion is 0, moves from the center of the sheet thickness to the inside of the bend, and eventually all of the steel sheet is elongated and deformed. By controlling the stress state of the plate thickness section in this way, the neutral surface is moved from the plate thickness center, and springback can be reduced.

【0010】成形方法によらず、歪みの中立面を板厚中
心から移動させて、スプリングバックを低減する方法と
しては、変形が大きい表層と中立面が移動する内層との
強度差をつけることが挙げられる。
Regarding the method of reducing the springback by moving the neutral surface of the strain from the center of the plate thickness regardless of the forming method, a difference in strength between the surface layer having large deformation and the inner layer in which the neutral surface moves is provided. It is mentioned.

【0011】これは以下のように説明される。This is explained as follows.

【0012】メンバーなどの部品を成形する場合の曲げ
加工の場合、曲げ部はほぼ降伏変形しており、その応力
は鋼板の降伏強度にほぼ比例すると考えても良い。表内
層の強度が異なる場合、曲げ加工時の応力は、表層と内
層で異なる。ここで、板厚変動を考える。すなわち、曲
げ内側では圧縮変形となるために板厚が増加し、曲げ外
側では伸び変形となるため板厚が減少する。そのため、
圧縮部が多くなり、伸び部は減少する。このとき、応力
の釣り合いを考えると中立面は移動するが、表層が内層
より強度が高い場合は曲げ内側に、表層が内層より強度
が低い場合は曲げ外側に移動することになる。このよう
に中立面が板厚中心から移動し、スプリングバックが減
少する。
[0012] In the case of bending work for forming a component such as a member, it may be considered that the bent portion is substantially yield deformed, and the stress is substantially proportional to the yield strength of the steel sheet. When the strength of the inner surface layer is different, the stress at the time of bending is different between the outer layer and the inner layer. Here, the thickness variation is considered. That is, the sheet thickness increases due to compression deformation inside the bend, and decreases due to elongation deformation outside the bend. for that reason,
The compression part increases and the elongation part decreases. At this time, the neutral plane moves in consideration of the balance of stress, but moves inward when the surface layer is higher in strength than the inner layer, and moves outward when the surface layer is lower in strength than the inner layer. As described above, the neutral surface moves from the center of the plate thickness, and the springback is reduced.

【0013】この方法を残留γハイテンに適用した。残
留γハイテンの強度は鋼中のC含有量に大きく影響され
る。そこで、表内層でC含有量を変化させ、強度差を生
じさせることとした。表層のC量は、特開平8−120
341号公報に開示されているように連続鋳造でワイヤ
ー添加などにより増加させることが可能である。また浸
炭により増加させることが可能であるため、表層のC含
有量を内層より多くすることとした。
This method was applied to residual gamma hyten. The strength of the residual γ-hyten is greatly affected by the C content in the steel. Therefore, the C content was changed in the inner layer to cause a difference in strength. The amount of C in the surface layer is as described in JP-A-8-120.
As disclosed in JP-A-341-341, it is possible to increase the amount by continuous casting and the like by adding a wire. In addition, since the content can be increased by carburization, the C content in the surface layer is set to be larger than that in the inner layer.

【0014】このような残留γハイテンを製造する方法
としては、連続鋳造でワイヤー添加等により表層C含有
量を増加させたスラブを熱間圧延した鋼板、もしくは表
層C含有量が内層より多いクラッド鋼板を、冷間圧延後
に2相共存温度域で再結晶焼鈍し、その後急速冷却して
ベイナイト変態域で適当な時間保持した後、室温まで冷
却する方法、もしくは、表内層のC含有量差が無い熱間
圧延板を、冷間圧延後に2相共存温度域で再結晶焼鈍
し、その後再結晶焼鈍と同じ温度にて、浸炭雰囲気中に
保持することにより、所定のC含有量まで浸炭し、その
後急速冷却してベイナイト変態温度域で適当な時間保持
した後、室温まで冷却する方法を適用できる。
[0014] As a method for producing such residual γ-hyten, a steel plate obtained by hot rolling a slab having an increased surface C content by continuous casting or the like by adding a wire or a clad steel plate having a surface C content larger than that of the inner layer is used. Is subjected to recrystallization annealing in a two-phase coexisting temperature range after cold rolling, followed by rapid cooling and holding for an appropriate time in a bainite transformation region, and then cooling to room temperature, or there is no difference in the C content of the surface layer. After cold rolling, the hot-rolled sheet is recrystallized and annealed in a two-phase coexisting temperature range, and thereafter, at the same temperature as the recrystallization annealing, is kept in a carburizing atmosphere to be carburized to a predetermined C content. A method of rapidly cooling and maintaining the bainite transformation temperature range for an appropriate time and then cooling to room temperature can be applied.

【0015】本発明の要旨とするところは、(1) 表
面から板厚の5%以上35%以下の表層の平均組成が、
重量比で、C:板厚中心部の平均C量より0.05%以
上、0.5%以下だけ高い量を含み、その他の化学成分
は板厚中心部と同様であり、金属組織中に残留オーステ
ナイトを体積率で10〜35%、マルテンサイトを2%
以下、残部がフェライトもしくはベイナイトであり、表
層の板厚5%内側から板厚中心部までの内層の平均組成
が、重量比で、C:0.06%以上、0.4%以下、S
i、Alの内少なくとも一種以上を0.5%以上、4.
0%以下、Mn:0.5%以上、2.0%以下を含み、
残部Feおよび不可避的不純物からなり、金属組織中に
残留オーステナイトを体積率で3〜20%、マルテンサ
イトを2%以下、残部がフェライトもしくはベイナイト
である、形状凍結性に優れた良加工性高強度冷延鋼板
と、(2) 表面から板厚の5%以上35%以下の表層
の平均組成が、重量比で、板厚中心部の平均C量より
0.05%以上、0.5%以下だけ高いC量を含有し、
その他の化学成分は、板厚中心部と同様である冷間圧延
後の鋼板を、(Ac1変態点+10℃)以上、(Ar3
態点−5℃)以下の温度で20秒以上再結晶焼鈍を行
い、3℃/s以上の冷却速度にて300℃から600℃
の温度まで冷却し、この温度で60秒以上600秒以下
保持してから、室温まで冷却することを特徴とする、形
状凍結性に優れた良加工性高強度冷延鋼板の製造方法
と、(3) 冷間圧延後の鋼板を、(Ac1変態点+1
0℃)以上、(Ar3変態点−5℃)以下の温度で20
秒以上再結晶焼鈍を行い、その後同様の温度にて、連続
焼鈍炉中にて浸炭性雰囲気により、表面から板厚の5%
以上35%以下の表層の平均組成が、重量比で、板厚中
心部の平均C量より0.05%以上、0.5%以下だけ
高いC量を含有し、その他の化学成分は板厚中心部と同
様となるように浸炭した後、3℃/s以上の冷却速度に
て300℃から600℃の温度まで冷却し、この温度で
60秒以上600秒以下保持してから、室温まで冷却す
ることを特徴とする、形状凍結性に優れた良加工性高強
度冷延鋼板の製造方法にある。
The gist of the present invention is as follows: (1) The average composition of the surface layer from 5% to 35% of the plate thickness from the surface is as follows:
In terms of weight ratio, C: contains an amount of 0.05% or more and 0.5% or less higher than the average C amount in the center of the plate thickness, and other chemical components are the same as those in the center of the plate thickness. 10% to 35% by volume of retained austenite, 2% martensite
Hereinafter, the balance is ferrite or bainite, and the average composition of the inner layer from the inside of the surface thickness of 5% to the center of the thickness is C: 0.06% or more, 0.4% or less, and
3. 0.5% or more of at least one of i and Al;
0% or less, Mn: 0.5% or more and 2.0% or less,
Good workability and high strength excellent in shape freezing, consisting of the balance of Fe and unavoidable impurities, containing 3-20% by volume of retained austenite, 2% or less of martensite, and the balance of ferrite or bainite in the metal structure. The average composition of the cold-rolled steel sheet and the surface layer of 5% or more and 35% or less of the sheet thickness from the surface is 0.05% or more and 0.5% or less as the weight ratio of the average C content at the center of the sheet thickness. Contains only high C content,
The other chemical components are as follows: The cold-rolled steel sheet, which is the same as the central part of the sheet thickness, is recrystallized at a temperature of (Ac 1 transformation point + 10 ° C.) or more and (Ar 3 transformation point −5 ° C.) or less for 20 seconds or more. Anneal, 300 ° C to 600 ° C at a cooling rate of 3 ° C / s or more
A method for producing a high-strength cold-rolled steel sheet having good shape-freezing properties, characterized in that it is cooled to a temperature of 60 to 600 seconds and then cooled to room temperature; 3) The cold-rolled steel sheet is (Ac 1 transformation point +1)
0 ° C.) and (Ar 3 transformation point −5 ° C.) or less.
After recrystallization annealing for more than 2 seconds, at the same temperature, 5% of the sheet thickness from the surface by a carburizing atmosphere in a continuous annealing furnace.
The average composition of the surface layer of not less than 35% or less contains a C amount that is 0.05% or more and 0.5% or less higher than the average C amount at the center of the sheet thickness by weight, and the other chemical components are the sheet thickness. After carburizing so as to be the same as the central part, it is cooled at a cooling rate of 3 ° C./s or more from 300 ° C. to 600 ° C., kept at this temperature for 60 seconds to 600 seconds, and then cooled to room temperature. A method for producing a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties.

【0016】[0016]

【発明の実施の形態】本発明の成分および金属組織の限
定理由は次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the components and metal structure of the present invention are as follows.

【0017】Cはオーステナイト安定化元素であり、2
相共存温度域およびベイナイト変態温度域でフェライト
中から移動しオーステナイト中に濃化する。その結果、
化学的に安定化されたオーステナイトが室温までの冷却
後に3〜35%残留し、変態誘起塑性により成形性を良
好とする。Cが0.06%未満であると3%以上の残留
オーステナイトを確保するのが困難であり、0.4%以
上であると残留オーステナイトを確保するのは容易であ
るが、共存する組織が比較的大きなサイズの炭化物が密
に存在するベイナイトを主体とすることになるため、靭
性が劣化し実用に耐えない。
C is an austenite stabilizing element, and 2
In the phase coexisting temperature range and the bainite transformation temperature range, it moves from ferrite and concentrates in austenite. as a result,
3 to 35% of chemically stabilized austenite remains after cooling to room temperature, and improves formability by transformation induced plasticity. If C is less than 0.06%, it is difficult to secure 3% or more of retained austenite, and if C is 0.4% or more, it is easy to secure retained austenite. Since bainite in which carbides of a target size are densely present is mainly used, the toughness is deteriorated and it is not practical.

【0018】Si、Alはオーステナイトを残留させる
ための必須元素であり、フェライトの生成を促進し、炭
化物の生成を抑制することにより、残留オーステナイト
を確保する作用があると同時に脱酸素元素、強化元素と
しても作用する。これよりSiとAlの内の少なくとも
1種以上の添加の下限量は0.5%以上とする必要があ
る。ただしSi、Alを過度に添加しても上記効果は飽
和し、かえって鋼を脆化させるため、SiとAlの内の
少なくとも一種以上の添加上限量は4.0%とする。
Si and Al are essential elements for retaining austenite, and promote the formation of ferrite and suppress the formation of carbides, so that they have the effect of securing the retained austenite, and at the same time have the function of deoxidizing and strengthening elements. Also acts as. Therefore, the lower limit of the addition of at least one of Si and Al needs to be 0.5% or more. However, even if Si and Al are excessively added, the above-mentioned effect is saturated and the steel is rather embrittled. Therefore, the upper limit of the addition of at least one of Si and Al is set to 4.0%.

【0019】Mnはオーステナイトを安定化して残留オ
ーステナイトを確保する作用があると共に強化元素であ
る。この観点から、Mnの添加下限量は0.5%以上と
する必要がある。ただし、Mnを過度に添加しても上記
効果は飽和し、かえってフェライト変態抑制等の悪影響
を生ずるため、Mnの添加量の上限量は2.0%以下と
する。
Mn has an effect of stabilizing austenite and securing retained austenite and is a strengthening element. From this viewpoint, the lower limit of Mn addition must be 0.5% or more. However, even if Mn is excessively added, the above effect is saturated, and adverse effects such as suppression of ferrite transformation are caused. Therefore, the upper limit of the amount of Mn added is set to 2.0% or less.

【0020】また、上記で規定した以外の元素は原則添
加されないことが望ましいことは言うまでもないが、C
aやREMは硫化物系介在物が球状化して穴拡げ性を向
上させるので、上限が0.01%まで許容できる。N
b、Ti、Cr、Cu、Ni、V、Bを1種または2種
以上添加して、強度確保、細粒化を図っても良いが、そ
の添加量の合計が0.2%を超えると本発明の金属組織
を得ることが困難となると共に、コストが増大するた
め、その上限は0.2%まで許容できる。
It is needless to say that it is desirable that no element other than those specified above be added in principle.
For a and REM, the sulfide-based inclusions are spheroidized to improve the hole expandability, so that the upper limit is 0.01%. N
One or two or more of b, Ti, Cr, Cu, Ni, V, and B may be added to secure the strength and reduce the grain size, but if the total amount exceeds 0.2%. Since it becomes difficult to obtain the metallographic structure of the present invention and the cost increases, the upper limit is acceptable up to 0.2%.

【0021】Pは残留オーステナイトの確保に効果があ
るが、靭性を低下させるので、0.02%以下まで許容
できる。
Although P is effective in securing retained austenite, it reduces toughness, so that it can be tolerated to 0.02% or less.

【0022】Sは硫化物系介在物による穴拡げ性等の成
形性低下のため、0.01%以下まで許容できる。
S is acceptable up to 0.01% or less due to a reduction in formability such as hole expandability due to sulfide-based inclusions.

【0023】MoはMnと同等に残留オーステナイトを
安定化する元素であり、0.3%まで許容できる。それ
以上であると、炭化物が金属組織中に顕在化して、プレ
ス成形性劣化を引き起こす。
Mo is an element that stabilizes retained austenite as well as Mn, and can be tolerated up to 0.3%. If it is more than that, carbides become apparent in the metallographic structure, causing deterioration of press formability.

【0024】内層の残留オーステナイトの体積分率を3
〜20%としたのは、制限未満の残留オーステナイト量
では、変体誘起塑性の効果が充分得られないためであ
る。上限は、C含有量の上限により得られる残留オース
テナイト量の限界である。
The volume fraction of retained austenite in the inner layer is 3
The reason for setting it to 20% is that if the amount of retained austenite is less than the limit, the effect of deformation-induced plasticity cannot be sufficiently obtained. The upper limit is the limit of the amount of retained austenite obtained from the upper limit of the C content.

【0025】表層のC含有量を平均C量より0.05%
以上、0.5%以下としたのは、制限未満では曲げ加工
時に中立面の移動が生じるのに必要な強度差が得られな
いためであり、制限以上では、強度が高すぎるために、
曲げ加工時に割れを生じてしまうためである。
The C content of the surface layer is 0.05% of the average C content.
The reason why the content is set to 0.5% or less is that if the strength is less than the limit, a difference in strength required to cause the movement of the neutral plane during bending is not obtained. If the strength is more than the limit, the strength is too high.
This is because cracks occur during bending.

【0026】表層を表面からの板厚の5%以上35%以
下としたのは、制限未満では曲げ加工時に中立面の移動
が生じるのに必要な応力変化が得られないためであり、
制限以上では複層化の効果が小さくなるからである。
The reason for making the surface layer 5% or more and 35% or less of the plate thickness from the surface is that if it is less than the limit, a change in stress necessary for the movement of the neutral surface during bending cannot be obtained.
This is because the effect of multi-layering is reduced when the amount is more than the limit.

【0027】表層の残留オーステナイトの体積分率を1
0〜35%としたのは、制限未満の残留オーステナイト
量では、内層との強度が小さくなり、曲げ加工時に中立
面の移動が生じるのに必要な応力変化が得られないため
である。上限は、C含有量の上限により得られる残留オ
ーステナイト量の限界である。
The volume fraction of retained austenite in the surface layer is 1
The reason for setting the amount to 0 to 35% is that if the amount of retained austenite is less than the limit, the strength with the inner layer becomes small, and a change in stress necessary for movement of the neutral surface during bending cannot be obtained. The upper limit is the limit of the amount of retained austenite obtained from the upper limit of the C content.

【0028】表内層のマルテンサイトの体積率を2%以
下としたのは、それ以上のマルテンサイト量では加工性
が劣化するためである。
The reason why the volume fraction of martensite in the inner layer is set to 2% or less is that the workability is deteriorated when the amount of martensite is more than that.

【0029】本発明の製造工程の限定理由は次の通りで
ある。
The reasons for limiting the manufacturing process of the present invention are as follows.

【0030】冷延鋼板はまず、オーステナイトとフェラ
イトの2相共存温度域で再結晶焼鈍される。この際に、
CやMn等のオーステナイト安定化元素がオーステナイ
ト中に濃化し、その後の熱処理による残留オーステナイ
ト安定化を容易にする。再結晶焼鈍温度を(Ac1変態
点+10℃)以上、(Ar3変態点−5℃)以下とした
のは、制限未満であると充分な量のオーステナイトが形
成せず、また炭化物の溶解が充分でなくてオーステナイ
トへのCの濃化が充分でなくなるからであり、制限以上
であると、フェライトが極わずかしか存在せず、またさ
らに全く存在せずにオーステナイト単相となるため、合
金元素の分布が全体として希薄となり、残留オーステナ
イトを安定化できるだけの量が濃化しないためである。
また、再結晶焼鈍時間を20秒以上としたのは、制限未
満の時間であれば、未溶解の炭化物が存在する可能性が
あるためである。
First, the cold-rolled steel sheet is recrystallized and annealed in a temperature range where two phases of austenite and ferrite coexist. At this time,
Austenite stabilizing elements such as C and Mn are concentrated in austenite, facilitating stabilization of retained austenite by subsequent heat treatment. The reason why the recrystallization annealing temperature is not less than (Ac 1 transformation point + 10 ° C.) and not more than (Ar 3 transformation point −5 ° C.) is that if it is less than the limit, a sufficient amount of austenite will not be formed, and the dissolution of carbides will not occur. This is because the concentration of C in the austenite is not sufficient and the ferrite is not sufficient, and if it is more than the limit, only a very small amount of ferrite is present, and further, it is a single phase of austenite without any ferrite. This is because, as a whole, the distribution becomes thin, and the amount that can stabilize retained austenite is not concentrated.
The reason for setting the recrystallization annealing time to 20 seconds or more is that if the time is less than the limit, undissolved carbides may be present.

【0031】表層のC含有量が請求項1の条件となって
いない場合は、再結晶焼鈍終了後に、再結晶焼鈍と同等
の温度にて浸炭を行う。浸炭方法は特に制限しないが、
連続焼鈍炉中での浸炭性雰囲気による浸炭が、生産性の
点から望ましい。
If the C content of the surface layer does not satisfy the condition of claim 1, after the recrystallization annealing is completed, carburizing is performed at a temperature equivalent to that of the recrystallization annealing. The carburizing method is not particularly limited,
Carburization in a carburizing atmosphere in a continuous annealing furnace is desirable in terms of productivity.

【0032】表層のC含有量が請求項1の条件を満たし
た場合、2相共存温度域から3℃/s以上の冷却速度に
て、ベイナイト変態温度域である300℃から600℃
の温度域まで冷却する。冷却速度を3℃/s以上と制限
したのは、2相共存温度域で生成したオーステナイトを
パーライト変態させることなく、ベイナイト変態温度域
まで冷却するためである。600℃以上で冷却を終了す
ると、パーライトへの分解が急激に生じ、オーステナイ
トを残存できない。また、300℃未満で冷却を終了す
ると、オーステナイトの過半がマルテンサイトに変態す
るため、プレス成形性が劣化する。
When the C content of the surface layer satisfies the condition of claim 1, the bainite transformation temperature range from 300 ° C. to 600 ° C. at a cooling rate of 3 ° C./s or more from the two-phase coexistence temperature range.
Cool to the temperature range. The cooling rate was limited to 3 ° C./s or more in order to cool the austenite formed in the two-phase coexisting temperature range to the bainite transformation temperature range without causing pearlite transformation. When cooling is completed at 600 ° C. or more, decomposition to pearlite occurs rapidly, and austenite cannot remain. Further, when cooling is completed at a temperature lower than 300 ° C., the majority of austenite is transformed into martensite, so that press formability is deteriorated.

【0033】その後、300〜600℃において60〜
600秒保持してから室温に冷却する。この目的はベイ
ナイト変態時に未変態オーステナイト中へのCの濃化を
さらに進めて、残留オーステナイトを安定化させるため
である。保持時間を60秒以上、600秒以下と制限し
たのは、制限未満では残留オーステナイトを安定化する
ために必要な、未変態オーステナイトへのCの濃化が不
足しているためであり、制限以上ではベイナイト変態が
進行して、未変態オーステナイトが消滅するためであ
る。
Then, at 300 to 600 ° C., 60 to
Hold for 600 seconds and then cool to room temperature. The purpose of this is to further promote the enrichment of C in untransformed austenite at the time of bainite transformation to stabilize retained austenite. The reason why the holding time was limited to 60 seconds or more and 600 seconds or less was that the concentration of C in the untransformed austenite required to stabilize the retained austenite was insufficient below the limit. This is because bainite transformation proceeds and untransformed austenite disappears.

【0034】上記の条件を満たすことで、形状凍結性に
優れた良加工性高強度鋼板を実現できる。
By satisfying the above conditions, a high-workability, high-strength steel sheet having excellent shape freezing properties can be realized.

【0035】[0035]

【実施例】表1に示した成分組成を有する連続鋳造スラ
ブを1200℃程度で加熱し、910℃で仕上圧延して
冷却の後に約550℃で捲き取った4mm厚の熱延鋼板
を70%冷延した。ここで、鋼Nは連続鋳造のモールド
にてCを表層のみワイヤー添加したスラブであり、鋼O
は熱間の圧着により製造したクラッド鋼板用のスラブで
ある。冷延後に連続焼鈍を行った。連続焼鈍中に必要な
試料は浸炭を行った。その後、0.8%のスキンパス圧
延を施した後にJIS5号引張試験片にて引張特性を行
い、引張強度と全伸びの積が20000以上を、加工性
良とした。また、ハット成形により形状凍結性を評価し
た。ハット成形は図1に示すような金型にて行った。成
形条件は、以下の通りである。
EXAMPLE A continuous cast slab having the composition shown in Table 1 was heated at about 1200 ° C., finish rolled at 910 ° C., cooled, and then rolled up at about 550 ° C. to obtain a hot rolled steel sheet having a thickness of 4 mm. Cold rolled. Here, steel N is a slab to which only the surface layer of C is added in a continuous casting mold, and steel O
Is a slab for a clad steel sheet manufactured by hot pressing. After the cold rolling, continuous annealing was performed. The samples required during continuous annealing were carburized. Then, after performing 0.8% skin pass rolling, the tensile properties were measured with a JIS No. 5 tensile test piece, and the product of the tensile strength and the total elongation of 20,000 or more was defined as good workability. The shape freezing property was evaluated by hat molding. Hat molding was performed using a mold as shown in FIG. The molding conditions are as follows.

【0036】・工具条件 (1)ポンチ 辺長:100mm、肩R:5mm (2)ダイ肩R:5mm (3)クリアランス:0.7mm (4)しわ押さえ力:150kN (5)潤滑:防錆油 (6)成形高さ:75mm ・評価 幅広がり量:ΔW=W−W0 W:ポンチ辺長 100mm W0:ハットの底から65mmでの幅Tool conditions (1) Punch side length: 100 mm, shoulder R: 5 mm (2) Die shoulder R: 5 mm (3) Clearance: 0.7 mm (4) Wrinkle holding force: 150 kN (5) Lubrication: rust prevention Oil (6) Molding height: 75 mm · Evaluation Width spread amount: ΔW = W-W 0 W: punch side length 100 mm W 0 : width at 65 mm from the bottom of the hat

【0037】[0037]

【表1】 測定部位を図2に示す。この試験より、複層化していな
い鋼板のΔWと引張強度の関係を求めた。同じ引張強度
でΔWが、複層化していない鋼板のΔWの0.85倍以
下であれば、形状凍結性が改善されているとした。引張
強度とΔWの関係を図3に示す。
[Table 1] The measurement site is shown in FIG. From this test, the relationship between ΔW and the tensile strength of the steel sheet not having a multilayer structure was determined. If ΔW is equal to or less than 0.85 times ΔW of the non-multi-layered steel sheet at the same tensile strength, it is determined that the shape freezing property has been improved. FIG. 3 shows the relationship between the tensile strength and ΔW.

【0038】表2、3に焼鈍条件、浸炭後の表層C含有
量、表層厚、表内層のオーステナイト体積率(γ率)と
マルテンサイト体積率(M率)、引張強度、全伸び、形
状凍結性の評価を示す。
Tables 2 and 3 show annealing conditions, surface layer C content after carburization, surface layer thickness, austenite volume ratio (γ ratio) and martensite volume ratio (M ratio) of the inner layer, tensile strength, total elongation, shape freezing. The evaluation of sex is shown.

【0039】実験番号1は内層のC含有量が制限より少
ないため、加工性が良くなかった。実験番号2はSi含
有量が、制限より少ないために残留オーステナイトが安
定化しなかったため、加工性が良くなかった。また、表
内層の強度差も小さいと思われ、形状凍結性も良くなか
った。
In Experiment No. 1, the workability was not good because the C content of the inner layer was less than the limit. In Experiment No. 2, workability was not good because the retained austenite was not stabilized because the Si content was less than the limit. Also, the difference in strength between the inner and outer layers was considered to be small, and the shape freezing property was not good.

【0040】実験番号3〜10は、鋼Cを使用して、表
層厚さとC含有量を変化させた実験である。実験番号4
と10は、表層厚さが制限外であるため、形状凍結性が
良くなかった。実験番号5〜9は本発明の条件を全て満
たしているため、形状凍結性の優れた良加工性高強度冷
延鋼板が実現できた。
Experiment Nos. 3 to 10 are experiments in which steel C was used and the surface layer thickness and C content were changed. Experiment number 4
Nos. 10 and 10 had poor shape freezing properties because the surface layer thickness was out of the limit. Experiment Nos. 5 to 9 all satisfied the conditions of the present invention, and thus a good workability high-strength cold-rolled steel sheet having excellent shape freezing properties was realized.

【0041】実験番号11〜17は、鋼Cを使用して、
熱処理条件の影響を検討した。実験番号11は焼鈍温度
が制限より高かったために残留オーステナイトが残ら
ず、加工性が良くなかった。また、表内層の強度差も小
さいと思われ、形状凍結性も良くなかった。実験番号1
2は焼鈍時間が制限より短くて未溶解の炭化物が残った
ため、Cのオーステナイトへの濃化が充分でなかったた
め、残留オーステナイトが残らず、加工性が良くなかっ
た。また、表内層の強度差も小さいと思われ、形状凍結
性も良くなかった。実験番号13は焼鈍後の冷却速度が
小さく、冷却中にパーライト変態が生じたために、残留
オーステナイトが残らず、加工性が良くなかった。ま
た、表内層の強度差も小さいと思われ、形状凍結性も良
くなかった。実験番号14、15は保定温度の影響を検
討した。実験番号14は制限よりも保定温度が低かった
ために、オーステナイトの過半がマルテンサイトに変態
したため、加工性が良くなかった。実験番号15は制限
よりも保定温度が高かったために、オーステナイトがパ
ーライト変態を起こして、残留オーステナイトが残らな
かったため、加工性が良くなかった。実験番号16、1
7は保定時間の影響を検討した。実験番号16は、保定
時間が制限より短かったために、残留オーステナイトの
安定化に充分な元素の濃化が不十分であったため、残留
オーステナイトがあまり残らずにマルテンサイトが残っ
たため、加工性が悪かった。実験番号17は、保定時間
が制限より長かったために、残留オーステナイトがあま
り残らず、加工性が悪かった。
Experiment Nos. 11 to 17 were performed using steel C,
The effects of heat treatment conditions were studied. In Experiment No. 11, since the annealing temperature was higher than the limit, retained austenite did not remain, and workability was not good. Also, the difference in strength between the inner and outer layers was considered to be small, and the shape freezing property was not good. Experiment number 1
In Sample No. 2, since the annealing time was shorter than the limit and undissolved carbide remained, the concentration of C into austenite was not sufficient, so that no residual austenite remained and workability was poor. Also, the difference in strength between the inner and outer layers was considered to be small, and the shape freezing property was not good. In Experiment No. 13, the cooling rate after annealing was low, and pearlite transformation occurred during cooling, so that no retained austenite remained and workability was poor. Also, the difference in strength between the inner and outer layers was considered to be small, and the shape freezing property was not good. In Experiment Nos. 14 and 15, the influence of the retention temperature was examined. In Experiment No. 14, since the holding temperature was lower than the limit, the majority of the austenite was transformed into martensite, and the workability was not good. In Experiment No. 15, since the retention temperature was higher than the limit, austenite underwent pearlite transformation and no residual austenite remained, so that workability was poor. Experiment No. 16, 1
7 examined the effect of retention time. In Experiment No. 16, since the retention time was shorter than the limit, the concentration of elements sufficient for stabilization of retained austenite was insufficient, and martensite remained without much retained austenite, resulting in poor workability. Was. In Experiment No. 17, since the retention time was longer than the limit, much retained austenite did not remain, and the workability was poor.

【0042】実験番号18〜20は同等のC含有量のも
とで成分を検討した。実験番号18、19は本発明の条
件を全て満たしているため、形状凍結性の優れた良加工
性高強度冷延鋼板が実現できた。実験番号20はMn含
有量が制限以上であったため、靭性が劣化した。
In Experiment Nos. 18 to 20, the components were examined under the same C content. Experiment Nos. 18 and 19 all satisfied the conditions of the present invention, and thus a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties was realized. In Experiment No. 20, since the Mn content was higher than the limit, the toughness was deteriorated.

【0043】実験番号21〜25は鋼Gを使用して、表
層厚さとC含有量を変化させた実験である。実験番号2
1、25は表層厚さが制限外であるため、形状凍結性が
良くなかった。実験番号22〜24は本発明の条件を全
て満たしているため、形状凍結性の優れた良加工性高強
度冷延鋼板が実現できた。
Experiment Nos. 21 to 25 are experiments using steel G and changing the surface layer thickness and C content. Experiment number 2
In Nos. 1 and 25, since the surface layer thickness was out of the limit, the shape freezing property was not good. Since Experiment Nos. 22 to 24 satisfied all the conditions of the present invention, a good-workability high-strength cold-rolled steel sheet having excellent shape freezing properties was realized.

【0044】実験番号26〜28はC含有量が0.2%
程度の時の、鋼成分の影響を検討した。実験番号26は
本発明の条件を全て満たしているため、形状凍結性の優
れた良加工性高強度冷延鋼板が実現できた。実験番号2
8はSiとAlの含有量の和が制限以上であるために、
加工性が良くなかった。実験番号27はMn含有量が制
限より多かったために、靭性が劣化した。
In Experiment Nos. 26 to 28, the C content was 0.2%.
In this case, the effect of steel composition was examined. Experiment No. 26 satisfies all the conditions of the present invention, so that a good workability high-strength cold-rolled steel sheet having excellent shape freezing properties was realized. Experiment number 2
8 is because the sum of the contents of Si and Al is more than the limit,
Workability was not good. In Experiment No. 27, since the Mn content was larger than the limit, the toughness was deteriorated.

【0045】実験番号29〜33は、鋼K及び鋼Lを使
用して、表層厚さとC含有量を変化させた実験である。
実験番号29は表層厚さが制限以下であったため、形状
凍結性が良くなかった。実験番号30〜32は本発明の
条件を全て満たしているため、形状凍結性の優れた良加
工性高強度冷延鋼板が実現できた。実験番号33は表層
厚さが制限以上であるために、形状凍結性が良くなかっ
た。また、表層のC含有量も多いため、加工性も劣化し
た。
Experiment Nos. 29 to 33 are experiments using steel K and steel L and changing the surface layer thickness and the C content.
In Experiment No. 29, since the surface layer thickness was below the limit, the shape freezing property was not good. Experiment Nos. 30 to 32 satisfy all the conditions of the present invention, and thus a good workability high-strength cold-rolled steel sheet having excellent shape freezing properties was realized. In Experiment No. 33, the shape freezing property was not good because the surface layer thickness was more than the limit. In addition, since the C content of the surface layer was large, the workability was also deteriorated.

【0046】実験番号34、35は内層C含有量が多か
ったために靭性が劣化した。
In Experiment Nos. 34 and 35, the toughness was deteriorated because the content of the inner layer C was large.

【0047】実験番号36、37は複層スラブから製造
した実験であるが、本発明の条件を全て満たしているた
め、形状凍結性の優れた良加工性高強度冷延鋼板が実現
できた。
Experiment Nos. 36 and 37 are experiments made from multilayer slabs, and all the conditions of the present invention were satisfied. Therefore, good workability and high strength cold-rolled steel sheets having excellent shape freezing properties were realized.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】[0050]

【発明の効果】本発明によれば、自動車部品などに使用
される、形状凍結性に優れた良加工性高強度冷延鋼板を
提供できるため、工業的に価値の高い発明である。
According to the present invention, it is possible to provide a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties and used for automobile parts and the like, which is an industrially valuable invention.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の効果を評価するための金型を示す図で
ある。
FIG. 1 is a diagram showing a mold for evaluating the effect of the present invention.

【図2】本発明の効果を評価するための試験片の測定部
位を示す図である。
FIG. 2 is a diagram showing a measurement site of a test piece for evaluating the effect of the present invention.

【図3】引張強度とΔWの関係を示す図である。FIG. 3 is a diagram showing a relationship between tensile strength and ΔW.

【符号の説明】[Explanation of symbols]

1 ポンチ 2 ダイ 3 試験片 W 幅 DESCRIPTION OF SYMBOLS 1 Punch 2 Die 3 Test piece W width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 表面から板厚の5%以上35%以下の表
層の平均組成が、重量比で、板厚中心部の平均C量より
0.05%以上、0.5%以下だけ高いC量を含み、そ
の他の化学成分は板厚中心部と同様であり、金属組織中
に残留オーステナイトを体積率で10〜35%、マルテ
ンサイトを2%以下、残部がフェライトもしくはベイナ
イトであり、表層の板厚5%内側から板厚中心部までの
内層の平均組成が、重量比で、C:0.06%以上、
0.4%以下、Si、Alの内少なくとも一種以上を
0.5%以上、4.0%以下、Mn:0.5%以上、
2.0%以下を含み、残部Feおよび不可避的不純物か
らなり、金属組織中に残留オーステナイトを体積率で3
〜20%、マルテンサイトを2%以下、残部がフェライ
トもしくはベイナイトである、形状凍結性に優れた良加
工性高強度冷延鋼板。
An average composition of a surface layer having a thickness of 5% to 35% of the sheet thickness from the surface is 0.05% to 0.5% higher than the average C content at the center of the sheet thickness by weight. The other chemical components are the same as those in the central part of the thickness of the sheet, the retained austenite in the metal structure is 10 to 35% by volume, the martensite is 2% or less, and the balance is ferrite or bainite. The average composition of the inner layer from the inside of the plate thickness 5% to the center of the plate thickness is C: 0.06% or more by weight ratio,
0.4% or less, at least one of Si and Al is 0.5% or more, 4.0% or less, Mn: 0.5% or more,
2.0% or less, with the balance being Fe and unavoidable impurities.
Good workability, high-strength cold-rolled steel sheet excellent in shape freezing property, having a martensite content of 2% or less and a balance of ferrite or bainite.
【請求項2】 表面から板厚の5%以上35%以下の表
層の平均組成が、重量比で、板厚中心部の平均C量より
0.05%以上、0.5%以下だけ高いC量を含有し、
その他の化学成分は、板厚中心部と同様である冷間圧延
後の鋼板を、(Ac1変態点+10℃)以上、(Ar3
態点−5℃)以下の温度で20秒以上再結晶焼鈍を行
い、3℃/s以上の冷却速度にて300℃から600℃
の温度まで冷却し、この温度で60秒以上600秒以下
保持してから、室温まで冷却することを特徴とする、形
状凍結性に優れた良加工性高強度冷延鋼板の製造方法。
2. The average composition of the surface layer of 5% or more and 35% or less of the sheet thickness from the surface is 0.05% or more and 0.5% or less higher than the average C amount at the center of the sheet thickness by weight. Containing quantity,
The other chemical components are as follows: The cold-rolled steel sheet, which is the same as the central part of the sheet thickness, is recrystallized at a temperature of (Ac 1 transformation point + 10 ° C.) or more and (Ar 3 transformation point −5 ° C.) or less for 20 seconds or more. Anneal, 300 ° C to 600 ° C at a cooling rate of 3 ° C / s or more
A method for producing a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties, comprising cooling to a temperature of 60 to 600 seconds, and then cooling to room temperature.
【請求項3】 冷間圧延後の鋼板を、(Ac1変態点+
10℃)以上、(Ar3変態点−5℃)以下の温度で2
0秒以上再結晶焼鈍を行い、その後同様の温度にて、連
続焼鈍炉中にて浸炭性雰囲気により、表面から板厚の5
%以上35%以下の表層の平均組成が、重量比で、板厚
中心部の平均C量より0.05%以上、0.5%以下だ
け高いC量を含有し、その他の化学成分は板厚中心部と
同様となるように浸炭した後、3℃/s以上の冷却速度
にて300℃から600℃の温度まで冷却し、この温度
で60秒以上600秒以下保持してから、室温まで冷却
することを特徴とする、形状凍結性に優れた良加工性高
強度冷延鋼板の製造方法。
3. The cold-rolled steel sheet is referred to as (Ac 1 transformation point +
10 ° C. or more and (Ar 3 transformation point −5 ° C.) or less
The recrystallization annealing is performed for 0 second or more, and then, at the same temperature, in a continuous annealing furnace, in a carburizing atmosphere, a thickness of 5 mm from the surface.
% Or more of 35% or less of the average composition of the surface layer contains 0.05% or more and 0.5% or less of the C content by weight in comparison with the average C content at the center of the sheet thickness. After carburizing so as to be the same as the thick center part, it is cooled from 300 ° C. to 600 ° C. at a cooling rate of 3 ° C./s or more, kept at this temperature for 60 seconds to 600 seconds, and then to room temperature. A method for producing a high-workability, high-strength cold-rolled steel sheet having excellent shape freezing properties, characterized by cooling.
JP14673198A 1998-05-13 1998-05-13 High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production Withdrawn JPH11323489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14673198A JPH11323489A (en) 1998-05-13 1998-05-13 High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14673198A JPH11323489A (en) 1998-05-13 1998-05-13 High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production

Publications (1)

Publication Number Publication Date
JPH11323489A true JPH11323489A (en) 1999-11-26

Family

ID=15414314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14673198A Withdrawn JPH11323489A (en) 1998-05-13 1998-05-13 High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production

Country Status (1)

Country Link
JP (1) JPH11323489A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024968A1 (en) * 2000-09-21 2002-03-28 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP2002173737A (en) * 2000-12-04 2002-06-21 Kawasaki Steel Corp High strength and high ductility cold rolled steel sheet having excellent press formability
WO2003076673A3 (en) * 2002-03-11 2004-04-22 Usinor High-resistant, low-density hot laminated sheet steel and method for the production thereof
EP1389639A3 (en) * 2002-07-29 2005-06-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel sheet with excellent bendability
EP2690191A3 (en) * 2004-10-06 2017-03-01 Nippon Steel & Sumitomo Metal Corporation A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002024968A1 (en) * 2000-09-21 2002-03-28 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
US6962631B2 (en) 2000-09-21 2005-11-08 Nippon Steel Corporation Steel plate excellent in shape freezing property and method for production thereof
JP2002173737A (en) * 2000-12-04 2002-06-21 Kawasaki Steel Corp High strength and high ductility cold rolled steel sheet having excellent press formability
WO2003076673A3 (en) * 2002-03-11 2004-04-22 Usinor High-resistant, low-density hot laminated sheet steel and method for the production thereof
CN1306046C (en) * 2002-03-11 2007-03-21 于西纳公司 High-resistant, low-density hot laminated sheet steel and method for the production thereof
US7416615B2 (en) 2002-03-11 2008-08-26 Usinor Very-high-strength and low-density, hot-rolled steel sheet and manufacturing process
EP1389639A3 (en) * 2002-07-29 2005-06-08 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Steel sheet with excellent bendability
EP2690191A3 (en) * 2004-10-06 2017-03-01 Nippon Steel & Sumitomo Metal Corporation A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability

Similar Documents

Publication Publication Date Title
US9475113B2 (en) Process for producing hot press-formed product
US8888934B2 (en) Method for producing a formed steel part having a predominantly ferritic-bainitic structure
EP2719787B1 (en) Hot press molded article, method for producing same, and thin steel sheet for hot press molding
US20140065007A1 (en) Hot press-formed product, process for producing same, and thin steel sheet for hot press forming
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP3858146B2 (en) Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
WO2016079675A1 (en) Method for manufacturing a high strength steel product and steel product thereby obtained
WO2012169638A1 (en) Hot press molded article, method for producing same, and thin steel sheet for hot press molding
EP3421629B1 (en) High strength high ductility steel with superior formability
KR20130036763A (en) High-strength cold-rolled steel sheet having excellent workability and impact resistance, and method for manufacturing same
EP3529392A1 (en) High strength cold rolled steel sheet for automotive use
US6319338B1 (en) High-strength steel plate having high dynamic deformation resistance and method of manufacturing the same
JP7111252B2 (en) Coated steel member, coated steel plate and manufacturing method thereof
JP2704350B2 (en) Manufacturing method of high strength steel sheet with good press formability
CN114729429A (en) Coated steel member, coated steel sheet, and methods for producing same
JP4975245B2 (en) Manufacturing method of high strength parts
CN113316649A (en) High-strength high-ductility complex-phase cold-rolled steel strip or plate
CN110621794B (en) High-strength steel sheet having excellent ductility and stretch flangeability
JP2001226741A (en) High strength cold rolled steel sheet excellent in stretch flanging workability and producing method therefor
KR20110027075A (en) Steel sheet having excellent spot weldabity, strength and elongation for automobile and method for manufacturing the same
JP3037767B2 (en) Low yield ratio high strength hot-dip galvanized steel sheet and method for producing the same
CN113348255A (en) Cold rolled steel sheet
JPH11323489A (en) High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production
JPH11323490A (en) High strength cold rolled steel sheet having superior workability and excellent in shape fixability and its production
JP2006104527A (en) Method for producing high strength component and high strength component

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050802