JP2006104527A - Method for producing high strength component and high strength component - Google Patents

Method for producing high strength component and high strength component Download PDF

Info

Publication number
JP2006104527A
JP2006104527A JP2004293456A JP2004293456A JP2006104527A JP 2006104527 A JP2006104527 A JP 2006104527A JP 2004293456 A JP2004293456 A JP 2004293456A JP 2004293456 A JP2004293456 A JP 2004293456A JP 2006104527 A JP2006104527 A JP 2006104527A
Authority
JP
Japan
Prior art keywords
mold
strength
component
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004293456A
Other languages
Japanese (ja)
Inventor
Kazuhisa Kusumi
和久 楠見
Jun Maki
純 真木
Masahiro Ogami
正浩 大神
Masayuki Abe
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004293456A priority Critical patent/JP2006104527A/en
Publication of JP2006104527A publication Critical patent/JP2006104527A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member requiring strengths used for automobile structural members and reinforcing members, to provide a component having excellent strengths particularly after high temperature forming, and to provide a production method therefor. <P>SOLUTION: In the subject method for producing a high strength component, at the time when a steel sheet having a composition comprising, by mass, 0.05 to 0.55% C, ≤2% Si, 0.1 to 3% Mn, ≤0.1% P and ≤0.03% S, and the balance Fe with inevitable impurities composed of Al, Cr, N, Ti, B, or the like, is heated to Ac<SB>3</SB>to a melting point in an atmosphere having a hydrogen content of ≤10% in a volume fraction and a dew point of ≤30°C, thereafter, press forming is started at a temperature higher than a temperature at which ferritic, pearlitic and martensitic transformations occur, and, after the forming, in a die, it is cooled and quenched, so as to produce a component having high strengths, the cooling rate in a part of the component is reduced, thus the part having strengths lower than those of the other part is provided, and the part is subjected to shearing working. The high strength component is produced by this method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車の構造部材や補強部材に使用されるような強度が必要とされる部材に関し、特に高温成形後の強度に優れた部品とその製造方法に関するものである。   The present invention relates to a member that requires strength such as that used for a structural member or a reinforcing member of an automobile, and particularly relates to a component having excellent strength after high-temperature molding and a manufacturing method thereof.

地球環境問題に端を発する自動車の軽量化のためには、自動車に使用される鋼板をできるだけ高強度化することが必要となるが、一般に鋼板を高強度化していくと伸びやr値が低下し、成形性が劣化していく。このような課題を解決するために、温間で成形し、その際の熱を利用して強度上昇を図る技術が、特開2000−234153号公報(特許文献1)に開示されている。この技術では、鋼中成分を適切に制御し、フェライト温度域で加熱し、この温度域での析出硬化を利用して強度を上昇させることを狙っている。   In order to reduce the weight of automobiles that originate in global environmental problems, it is necessary to increase the strength of steel sheets used in automobiles as much as possible. Generally, as steel sheets are increased in strength, the elongation and r value decrease. However, the moldability deteriorates. In order to solve such a problem, Japanese Patent Application Laid-Open No. 2000-234153 (Patent Document 1) discloses a technique for forming a product warm and using the heat at that time to increase the strength. This technique aims to appropriately control the components in the steel, heat in the ferrite temperature range, and increase the strength using precipitation hardening in this temperature range.

また、特開2000−87183号公報(特許文献2)では、プレス成形精度を向上させる目的で成形温度での降伏強度を常温での降伏強度より大きく低下する高強度鋼板が提案されている。しかしながら、これらの技術では得られる強度に限度がある可能性がある。一方、より高強度を得る目的で、成形後に高温のオーステナイト単相域に加熱し、その後の冷却過程で硬質の相に変態させる技術が特開2000−38640号公報(特許文献3)に提案されている。   Japanese Patent Application Laid-Open No. 2000-87183 (Patent Document 2) proposes a high-strength steel sheet that lowers the yield strength at the forming temperature to be higher than the yield strength at room temperature for the purpose of improving the press forming accuracy. However, these techniques may limit the strength that can be obtained. On the other hand, for the purpose of obtaining higher strength, Japanese Patent Laid-Open No. 2000-38640 (Patent Document 3) proposes a technique of heating to a high-temperature austenite single-phase region after molding and then transforming to a hard phase in the subsequent cooling process. ing.

しかしながら、成形後に加熱・急速冷却を行なうと形状精度に問題が生じる可能性がある。この欠点を克服する技術としては、鋼板をオーステナイト単相域に加熱し、その後プレス成形過程にて冷却を施す技術が文献(SAE,2001−01−0078)(非特許文献1)や特開2001−181833号公報(特許文献4)に開示されている。   However, if heating and rapid cooling are performed after molding, there may be a problem in shape accuracy. As a technique for overcoming this drawback, a technique in which a steel sheet is heated to an austenite single-phase region and then cooled in a press forming process is disclosed in the literature (SAE, 2001-01-0078) (Non-patent Document 1) and Japanese Patent Laid-Open No. 2001. No. 181833 (Patent Document 4).

特開2000−234153号公報JP 2000-234153 A 特開2000−87183号公報JP 2000-87183 A 特開2000−38640号公報JP 2000-38640 A 特開2001−181833号公報JP 2001-181833 A 特開2003−328031号公報JP 2003-328031 A 文献(SAE,2001−01−0078)Literature (SAE, 2001-01-0078)

このように、自動車等に使用される高強度鋼板は高強度化されるほど、上述した成形性の問題や特に1000MPaを超えるような高強度材においては従来から知られているように水素脆化(置き割れや遅れ破壊と呼ばれることもある)という本質的な課題がある。ホットプレス用鋼板として用いられる場合、高温でのプレスによる残留応力は少ないものの、プレス前の加熱時に水素が鋼中に浸入すること、また、後工程での残留応力により水素脆化の感受性が高くなる。従って、単に高温でプレスするだけでは本質的な課題解決にならず、加熱工程および後加工までの一貫工程での工程条件最適化が必要となる。   Thus, as the strength of high-strength steel sheets used in automobiles and the like increases, hydrogen embrittlement as previously known in the above-mentioned problems of formability and particularly in high-strength materials exceeding 1000 MPa. There is an essential problem (sometimes called cracking or delayed fracture). When used as a hot-press steel sheet, although there is little residual stress due to pressing at high temperatures, hydrogen penetrates into the steel during heating before pressing, and it is highly susceptible to hydrogen embrittlement due to residual stress in the subsequent process. Become. Therefore, simply pressing at a high temperature does not solve the essential problem, and it is necessary to optimize the process conditions in the integrated process from the heating process to the post-processing.

剪断加工などの後加工時の残留応力を減らすためには、後加工を行なう部位の強度が低下しておればよい。後工程を行う部位の冷却速度を低下させて焼入れを不十分として、その部位の強度を低下させる技術としては、特開2003−328031号公報(特許文献5)に示されている。この方法によれば、部品の一部の強度が低下し、剪断加工などの後加工を容易に行うことができるとされている。しかし、この方法では水素脆化に対してはなんら言及しておらず、この方法によりも鋼板強度が若干低下して後加工後の残留応力がある程度低下した場合であっても、鋼中に水素が残存した状態であれば水素脆化が生じる可能性は否定できない。本発明は上記課題を解決するためになされたものであり、高温成形後に1200MPa以上の強度を得ることができる耐水素脆性に優れた高強度部品およびその製造方法を提供することにある。   In order to reduce the residual stress at the time of post-processing such as shearing, the strength of the portion to be post-processed should be lowered. Japanese Patent Application Laid-Open No. 2003-328031 (Patent Document 5) discloses a technique for reducing the cooling rate of a part where a post-process is performed to make quenching insufficient and reducing the strength of the part. According to this method, the strength of a part of the component is reduced, and post-processing such as shearing can be easily performed. However, this method does not mention hydrogen embrittlement at all, and even if the steel sheet strength is slightly reduced by this method and the residual stress after post-processing is reduced to some extent, If hydrogen remains, the possibility of hydrogen embrittlement cannot be denied. The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide a high-strength part excellent in hydrogen embrittlement resistance and capable of obtaining a strength of 1200 MPa or more after high-temperature molding and a method for producing the same.

本発明者らは、上記課題を解決するために種々の検討を実施した。その結果、水素脆化を抑制するためには、後加工を実施する部位の冷速を低下させて焼き入れを不十分とすると共に、成形前の加熱炉中の雰囲気を制御することが必要であることを見出した。
すなわち、本発明の要旨とするところは、下記の通りである。
(1)質量%で、C:0.05〜0.55%、Si:2%以下、Mn:0.1〜3%、P:0.1%以下、S:0.03%以下を含有し、残部FeとAl、Cr、N、Ti、Bなどの不可避的不純物からなる鋼板を用い、水素量が体積分率で10%以下、かつ露点が30℃以下である雰囲気にて、Ac3 〜融点までに鋼板を加熱した後、フェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度でプレス成形を開始し、成形後に金型中にて冷却して焼入れを行い高強度の部品を製造する際に、部品の一部の冷却速度を低下させて他の部位より低強度部を設け、その部位を剪断加工することを特徴とする高強度部品の製造方法。
The present inventors have conducted various studies to solve the above problems. As a result, in order to suppress hydrogen embrittlement, it is necessary to reduce the cooling rate of the part where post-processing is performed to make quenching insufficient and to control the atmosphere in the heating furnace before molding. I found out.
That is, the gist of the present invention is as follows.
(1) By mass%, C: 0.05 to 0.55%, Si: 2% or less, Mn: 0.1 to 3%, P: 0.1% or less, S: 0.03% or less Then, using a steel plate made of the remainder Fe and inevitable impurities such as Al, Cr, N, Ti, B, in an atmosphere where the hydrogen content is 10% or less in volume fraction and the dew point is 30 ° C. or less, Ac 3 After heating the steel plate to the melting point, start press forming at a temperature higher than the temperature at which ferrite, pearlite, bainite, martensite transformation occurs, and after forming, cool and quench in the mold to form high-strength parts A method for producing a high-strength component, comprising: lowering a cooling rate of a part of a component to provide a lower-strength portion than the other portion, and shearing the portion.

(2)前記(1)に記載の方法において、部品の一部の冷却速度を低下させる方法として、金型の一部に上金型と下金型の同位置に空隙を設けることを特徴とする高強度部品の製造方法。
(3)前記(1)に記載の方法において、部品の一部の冷却速度を低下させる方法として、金型の一部に断熱材を組み込むことを特徴とする高強度部品の製造方法。
(4)前記(1)〜(3)に記載の方法にて製造された高強度部品にある。
(2) In the method described in (1) above, as a method for reducing the cooling rate of a part of the component, a gap is provided in the same position of the upper mold and the lower mold in a part of the mold. To manufacture high-strength parts.
(3) In the method described in (1) above, a method for manufacturing a high-strength component, wherein a heat insulating material is incorporated in a part of a mold as a method for reducing the cooling rate of a part of the component.
(4) The high-strength part manufactured by the method described in (1) to (3) above.

以上述べたように、本発明により、成形後に金型中にて冷却して焼入れを行って高強度の部品を製造する際に、車体が軽量で衝突安全性に優れた自動車が製造できるため、社会的貢献が大きいものである。   As described above, according to the present invention, when a high-strength part is manufactured by cooling in a mold after molding and manufacturing a high-strength part, an automobile having a lightweight vehicle body and excellent collision safety can be manufactured. Social contribution is great.

以下に、本発明の制限範囲について詳細に説明する。
水素量が体積分率で、10%以下としたのは、水素量が制限以上であった場合には、加熱中に鋼板中に進入する水素量が多量となり、耐水素脆化特性が低下するためである。また、雰囲気中の露点を30℃以下としたのは、これ以上の露点である場合には加熱中に鋼板中に進入する水素量が多量となり、耐水素脆化特性が低下するためである。鋼板の加熱温度Ac3 以上、融点以下としたのは、成形後に焼入れ強化するために鋼板の組織をオーステナイトにしておくためである。また、加熱温度が融点以上であるとプレス成形が不可能であるためである。
Below, the limited range of this invention is demonstrated in detail.
The amount of hydrogen was set to 10% or less in the volume fraction. When the amount of hydrogen was more than the limit, the amount of hydrogen entering the steel sheet during heating became large, and the hydrogen embrittlement resistance was deteriorated. Because. The reason why the dew point in the atmosphere is 30 ° C. or lower is that when the dew point is higher than this, the amount of hydrogen that enters the steel sheet during heating becomes large, and the hydrogen embrittlement resistance is deteriorated. The reason why the heating temperature Ac 3 of the steel sheet is set to be not lower than the melting point and not higher than the melting point is to keep the structure of the steel sheet to be austenite for strengthening by quenching after forming. Moreover, it is because press molding is impossible when heating temperature is more than melting | fusing point.

成形開始温度をフェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度としたには、その温度以下で成形した場合には成形後の硬度が不十分であるためである。部品の一部の冷却速度を低下させるとしたのは、冷却速度が低下した場合は、マルテンサイト変態率が減少すること、または、冷却速度がさらに遅い場合にはフェライト、ベイナイト、パーライト変態が生じることにより、金型焼入れ部と比較して強度が低下するためである。   This is because when the molding start temperature is set to a temperature higher than the temperature at which ferrite, pearlite, bainite, and martensite transformation occurs, when molding is performed at a temperature lower than that temperature, the hardness after molding is insufficient. The reason why the cooling rate of a part of the component is reduced is that when the cooling rate decreases, the martensite transformation rate decreases, or when the cooling rate is slower, ferrite, bainite, and pearlite transformation occur. This is because the strength is reduced as compared with the mold quenching portion.

部品の一部の冷却速度を低下させる方法としては、いかなる方法を用いても良いが、工業的には請求項2、3に示す方法を用いればよい。請求項2に金型の一部に上金型と下金型の同位置に空隙を設けることとしたのは、熱間成形中に金型に接触しないことから冷却速度が低下するためであるが、上金型と下金型の同位置に空隙を設置しない場合には冷却速度が低下せず、強度低下が不十分であるためである。請求項3に金型の一部に断熱材を組み込むこととしたのは、断熱材を工具として熱間成形されて、その後金型焼き入れされた場合でも冷却速度は低下して、その部位の強度が低下するためである。   Any method may be used as a method of reducing the cooling rate of a part of the component, but industrially, the method shown in claims 2 and 3 may be used. The reason why the gap is provided in the same position of the upper mold and the lower mold in a part of the mold is that the cooling rate is lowered because the mold does not contact with the mold during hot forming. However, when no gap is provided at the same position in the upper mold and the lower mold, the cooling rate does not decrease and the strength is not sufficiently decreased. The reason why the heat insulating material is incorporated into a part of the mold in claim 3 is that even when the heat insulating material is hot-molded as a tool and then the mold is quenched, the cooling rate is reduced. This is because the strength decreases.

以下に素材についての制限について説明する。
C:0.05〜0.55%
Cは、冷却後の組織をマルテンサイトとして材質を確保するために添加する元素であり、強度1000MPa以上を確保するためには、0.05%以上、望ましくは0.1%以上添加することが望ましい。ところが、添加量が多すぎると、衝撃変形時の強度確保が困難となるため、その上限を0.55%とする。従って、その範囲を0.05〜0.55%とした。
The restrictions on the material will be described below.
C: 0.05-0.55%
C is an element added to secure the material with the cooled structure as martensite. To ensure a strength of 1000 MPa or more, 0.05% or more, preferably 0.1% or more may be added. desirable. However, if the addition amount is too large, it is difficult to ensure the strength during impact deformation, so the upper limit is made 0.55%. Therefore, the range was made 0.05 to 0.55%.

Si:2%以下
Siは、固溶強化型の合金元素であるが、2%を超えると、表面スケールの問題が生じるため、2%以下に制限する。また、鋼板表面にメッキ処理を行なう場合は、Siの添加量が多いとメッキ性が劣化するため、上限を0.5%とすることが望ましい。
Mn:0.1〜3%
Mnは、強度および焼入れ性を向上させる元素であり、0.1%未満では焼入れ時の強度を十分に得られず、また、3%を超えて添加しても効果が飽和するため、Mnは0.1〜3%の範囲に制限する。
Si: 2% or less Si is a solid solution strengthening type alloy element. However, if it exceeds 2%, a problem of surface scale occurs, so it is limited to 2% or less. In addition, when plating is performed on the steel sheet surface, if the amount of Si added is large, the plateability deteriorates, so the upper limit is desirably set to 0.5%.
Mn: 0.1 to 3%
Mn is an element that improves strength and hardenability. If it is less than 0.1%, sufficient strength at the time of quenching cannot be obtained, and even if added over 3%, the effect is saturated. It is limited to a range of 0.1 to 3%.

P:0.1%以下
Pは、溶接割れ性および靱性に悪影響を及ぼす元素であるため、Pは0.1%以下と制限する。なお、好ましくは0.02%以下である。また、更に好ましくは0.015%以下である。
S:0.03%以下
Sは、鋼中の非金属介在物に影響し、加工性を劣化させるとともに、靱性劣化、異方性および再熱割れ感受性の増大の原因となる。このため、Sは0.03%以下と制限する。なお、さらに好ましくは、0.01%以下である。また、Sを0.005%以下に規制することにより、衝撃特性が飛躍的に向上する。
P: 0.1% or less Since P is an element that adversely affects weld cracking and toughness, P is limited to 0.1% or less. In addition, Preferably it is 0.02% or less. Further, it is more preferably 0.015% or less.
S: 0.03% or less S affects non-metallic inclusions in steel and degrades workability and causes toughness deterioration, anisotropy and increased reheat cracking sensitivity. For this reason, S is limited to 0.03% or less. In addition, More preferably, it is 0.01% or less. Moreover, by restricting S to 0.005% or less, impact characteristics are dramatically improved.

その他、必要に応じて以下の元素を添加しても良い。
Alは、溶鋼の脱酸材として使われる必要な元素であり、また、Nを固定する元素でもあり、その量は結晶粒径や機械的性質に影響を及ぼす。このような効果を有するためには、0.005%以上の含有量が必要であるが、0.1%を超えると非金属介在物が多くなり製品に表面疵が発生しやすくなる。このため、Alは0.005〜0.1%の範囲が望ましい。ただ、脱酸元素としてAlを限定するものでは無く、Siなどの他の脱酸元素を用いても良い。その場合はAlの添加量は0.005%以下であってもかまわない。
In addition, the following elements may be added as necessary.
Al is a necessary element used as a deoxidizer for molten steel, and is also an element that fixes N, and its amount affects the crystal grain size and mechanical properties. In order to have such an effect, a content of 0.005% or more is necessary. However, if it exceeds 0.1%, nonmetallic inclusions increase and surface defects are likely to occur in the product. For this reason, Al is desirably in the range of 0.005 to 0.1%. However, Al is not limited as a deoxidizing element, and other deoxidizing elements such as Si may be used. In that case, the amount of Al added may be 0.005% or less.

Crは、焼入れ性を向上させる元素であり、また、マトリックス中へM236 型炭化物を析出させる効果を有し、強度を高めるとともに、炭化物を微細化する作用を有する。しかし、0.01%未満ではこれらの効果が十分期待できず、また、1%を超えると降伏強度が過度に上昇する傾向にあるため、Crは0.01〜1%の範囲が望ましい。より望ましくは、0.05〜1%である。 Cr is an element that improves hardenability, and has the effect of precipitating M 23 C 6 type carbide into the matrix, and has the effect of increasing the strength and miniaturizing the carbide. However, if less than 0.01%, these effects cannot be expected sufficiently, and if it exceeds 1%, the yield strength tends to increase excessively, so Cr is desirably in the range of 0.01 to 1%. More desirably, it is 0.05 to 1%.

Bは、プレス成形中、あるいはプレス成形後の冷却での焼入れ性を向上させるために添加するが、この効果を発揮させるためには、0.0002%以上の添加が必要である。しかしながら、この添加量がむやみに増加すると熱間での割れの懸念があることや、その効果が飽和するため、その上限を0.0050%が望ましい。   B is added to improve the hardenability during press molding or cooling after press molding, but 0.0002% or more of addition is necessary to exert this effect. However, if this amount increases excessively, there is a concern of hot cracking and the effect is saturated, so the upper limit is preferably 0.0050%.

Tiは、Bの効果を有効に発揮させるため、Bと化合物を生成するNを固着する目的で添加してもよい。この効果を発揮させるためには、(Ti−3.42×N)が0.001%以上必要であるが、Ti量がむやみに増加するとTiと結合していないC量が減少し冷却後に十分な強度が得られなくなるため、その上限として、Tiと結合していないC量が0.1%以上確保できるTi当量、すなわち、3.99×(C−0.1)%とした方がよい。   Ti may be added for the purpose of fixing B and N that forms a compound in order to effectively exhibit the effect of B. In order to exert this effect, 0.001% or more of (Ti-3.42 × N) is necessary. However, if the amount of Ti is increased unnecessarily, the amount of C that is not bonded to Ti decreases and is sufficient after cooling. Therefore, the upper limit is preferably the Ti equivalent that can secure 0.1% or more of the amount of C not bonded to Ti, that is, 3.99 × (C−0.1)%. .

スクラップから混入すると考えられるNi,Cu,Snなどの元素が含有してもよい。さらに、介在物の形態制御の観点から、Ca,Mg,Y,As,Sb,REMを添加してもよい。さらに、強度を向上する目的で、Ti,Nb,Zr,Mo,Vを添加してもよいが、これらの元素がむやみに増加するとこれらの元素と結合していないC量が減少し冷却後に十分な強度が得られなくなる。   Elements such as Ni, Cu, and Sn that are considered to be mixed from scrap may be contained. Furthermore, Ca, Mg, Y, As, Sb, and REM may be added from the viewpoint of inclusion morphology control. Furthermore, Ti, Nb, Zr, Mo, and V may be added for the purpose of improving the strength. However, if these elements increase unnecessarily, the amount of C that is not bonded to these elements decreases and is sufficient after cooling. A sufficient strength cannot be obtained.

Nについては、特に規制しないが、0.01%を超えると窒化物の粗大化および固溶Nによる時効硬化により、靱性が劣化する傾向がみられる。このため、Nは0.01%以下の含有が望ましい。
Oについても、特に規制しないが、過度の添加は靱性に悪影響を及ぼす酸化物の生成の原因となるとともに、疲労破壊の起点となる酸化物を生成するため、0.015%以下の含有が望ましい。
N is not particularly restricted, but if it exceeds 0.01%, the toughness tends to deteriorate due to coarsening of nitride and age hardening due to solute N. For this reason, the N content is desirably 0.01% or less.
O is not particularly restricted, but excessive addition causes generation of an oxide that adversely affects toughness and generates an oxide that becomes a starting point of fatigue fracture. Therefore, the content is preferably 0.015% or less. .

その他、不可避的に含まれる不純物が含有しても特に問題はない。以上の成分の鋼板にアルミめっき、アルミ−亜鉛めっき、亜鉛めっきを施してもよい。その製造方法は酸洗、冷間圧延は常法でよく、その後アルミめっき工程あるいはアルミ−亜鉛めっき工程、亜鉛めっきについても常法で問題ない。つまり、アルミめっきであれば浴中Si濃度は5〜12%が適しており、アルミ−亜鉛めっきでは浴中Zn濃度は40〜50%が適している。また、アルミめっき層中にMgやZnが混在しても、アルミ−亜鉛めっき層中にMgが混在しても特に問題なく同様の特性の鋼板を製造することができる。   In addition, there is no problem even if impurities inevitably included. The steel plate having the above components may be subjected to aluminum plating, aluminum-zinc plating, or galvanization. As for the production method, pickling and cold rolling may be performed by a conventional method, and thereafter, the aluminum plating step, the aluminum-zinc plating step, and the galvanizing may be performed by a conventional method. That is, 5 to 12% of the Si concentration in the bath is suitable for aluminum plating, and 40 to 50% of the Zn concentration in the bath is suitable for aluminum-zinc plating. Even if Mg or Zn is mixed in the aluminum plating layer or Mg is mixed in the aluminum-zinc plating layer, a steel plate having the same characteristics can be manufactured without any particular problem.

なお、めっき工程における雰囲気については、無酸化炉を有する連続式めっき設備でも無酸化炉を有しない連続式めっき設備でも通常の条件とすることでめっき可能であり、本鋼板だけ特別な制御を必要としないことから生産性を阻害することもない。また、亜鉛めっき方法であれば、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっきなどいかなる方法を取ってもよい。以上の製造条件ではめっき前に鋼板表面に金属プレめっきを施していないが、NiプレめっきやFeプレめっき、その他めっき性を向上させる金属プレめっきを施しても特に問題はない。また、めっき層表面に異種の金属めっきや無機系、有機系化合物の被膜などを付与しても特に問題はない。   As for the atmosphere in the plating process, it is possible to perform plating under normal conditions in either a continuous plating facility with a non-oxidizing furnace or a continuous plating facility without a non-oxidizing furnace, and only this steel plate needs special control. It does not hinder productivity. Moreover, as long as it is a galvanization method, what kind of methods, such as hot dip galvanization, electrogalvanization, and alloying hot dip galvanization, may be taken. Under the above manufacturing conditions, metal pre-plating is not performed on the steel plate surface before plating, but there is no particular problem even if Ni pre-plating, Fe pre-plating, or other metal pre-plating that improves plating properties is performed. Further, there is no particular problem even if different metal plating or a coating of inorganic or organic compound is applied to the surface of the plating layer.

以下、本発明について実施例によって具体的に説明する。
表1に示す化学成分のスラグを鋳造した。これらのスラブを1050〜1350℃に加熱し、熱間圧延にて仕上温度800〜900℃、巻取温度450〜680℃で板厚4mmの熱延鋼板とした。その後、酸洗を行なった後、冷間圧延により板厚1.6mmの冷間鋼板とした。また、その冷延板の一部に溶融アルミめっき、溶融アルミ−亜鉛めっき、合金化溶融亜鉛めっき、溶融亜鉛めっきを施した。表2にめっき種の凡例を示す。その後、それらの冷延鋼板、表面処理鋼板を炉加熱によりAc3 点以上である950℃のオーステナイト領域に加熱した後、熱間成型加工を行なった。加熱炉の雰囲気は水素量と露点を変化させた。その条件を表3〜表9に示す。成形は金型Aと金型Bを用いて行った。金型Aを用いてピアス加工、金型Bを用いてトリム加工での耐水素脆化特性を評価した。
Hereinafter, the present invention will be specifically described with reference to examples.
Slags of chemical components shown in Table 1 were cast. These slabs were heated to 1050 to 1350 ° C. and hot rolled to form hot rolled steel sheets having a finishing temperature of 800 to 900 ° C. and a winding temperature of 450 to 680 ° C. and a thickness of 4 mm. Then, after pickling, it was set as the cold steel plate of 1.6 mm thickness by cold rolling. Further, a part of the cold-rolled plate was subjected to hot-dip aluminum plating, hot-dip aluminum-zinc plating, alloyed hot-dip galvanizing, and hot-dip galvanizing. Table 2 shows the legend of plating types. Thereafter, the cold-rolled steel sheet and the surface-treated steel sheet were heated in an austenite region at 950 ° C., which is at least Ac 3 point, by furnace heating, and then hot-formed. The atmosphere of the heating furnace changed the amount of hydrogen and the dew point. The conditions are shown in Tables 3 to 9. Molding was performed using mold A and mold B. The hydrogen embrittlement resistance in the piercing process using the mold A and the trim process using the mold B was evaluated.

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

図1は、金型の断面を示す図である。この図1に示す符号1は、プレス成形ダイス、2はプレス成形パンチ、3は空隙、または断熱材を示す。また、図2は、パンチの形状を示す上面図である。図3は、ダイスの形状を示す下面図である。金型は成形パンチ形状に倣い、板厚1.6mmのクリアランスにて成形ダイスの形状と決定した。金型のパンチ底には、空冷部、断熱材をインサートした部位を設けた。断熱材にはセラミックを用いた。また、比較として図1〜3に示した金型形状と同形状で、空隙または断熱材をインサートした部位が無い金型についても実験を行った。ブランクサイズを1.6mm厚×300×500とした。成形条件としては、パンチ速度10mm/s、加圧力200トン、下死点での保持時間を5秒とした。図4は、成形品の全体概略図である。緩冷却方法を表3〜9に併せて示した。凡例としては、空隙を設けたものは「空冷」、セラミックをインサートしたものは、「断熱材」、比較として空隙または断熱材をインサートした部位が無い場合は「無し」とした。   FIG. 1 is a view showing a cross section of a mold. Reference numeral 1 shown in FIG. 1 indicates a press molding die, 2 indicates a press molding punch, 3 indicates a gap, or a heat insulating material. FIG. 2 is a top view showing the shape of the punch. FIG. 3 is a bottom view showing the shape of the die. The mold was determined as the shape of the forming die with a clearance of 1.6 mm, following the shape of the forming punch. On the punch bottom of the mold, an air cooling part and a part where a heat insulating material was inserted were provided. Ceramic was used for the heat insulating material. For comparison, an experiment was also conducted on a mold having the same shape as the mold shown in FIGS. The blank size was 1.6 mm thick × 300 × 500. The molding conditions were a punch speed of 10 mm / s, a pressing force of 200 tons, and a holding time at the bottom dead center of 5 seconds. FIG. 4 is an overall schematic view of the molded product. The slow cooling methods are also shown in Tables 3-9. As a legend, “air-cooled” was provided with a gap, “insulation” was inserted with ceramic, and “none” was indicated when there was no gap or insulation inserted.

耐水素脆化特性は、ピアス加工を行ない、その部位に水素脆化が生じるかどうかで評価した。ピアス加工は熱間加工後30分以内に行った。直径10mmφのパンチを用い、直径10.5mmのダイスを用いた。部品の加工位置は、図2、3に示した空冷部、または断熱材をインサートした部位の中央とした。評価基準はピアス加工後、1週間後にピアス穴を全周観察し、割れの有無を判定した。観察はルーペもしくは電子顕微鏡にて行った。判定結果は表3〜9に併せて示した。   The hydrogen embrittlement resistance was evaluated based on whether hydrogen embrittlement occurred at the site after piercing. Piercing was performed within 30 minutes after hot working. A punch with a diameter of 10 mmφ was used, and a die with a diameter of 10.5 mm was used. The processing position of the part was set to the center of the air cooling part shown in FIGS. The evaluation standard was that one week after piercing, the entire pierced hole was observed and the presence of cracks was determined. Observation was performed with a magnifying glass or an electron microscope. The determination results are shown in Tables 3-9.

また、図5は、金型Bの断面を示す図である。この図に示す符号4は、ディスタンスピースであり、符号5はしわ押えを示す。図6は、金型パンチの上面形状を示す図である。また、図7は、金型ダイス下面形状を示す図である。金型はパンチ形状に倣い、板厚1.6mmのクリアランスにてダイスの形状と決定した。ディスタンスピースを用いることにより、フランジ部に2.0mmのクリアランスを設けた。ブランクサイズは1.6mm厚×300×500とした。成形条件としては、パンチ速度10mm/s、しわ押え力を20トン、加圧力200トン、下死点での保持時間を5秒とした。図8は、成形過程の模式図である。成形品は金型Aと同様の形状であり図4に示す。   FIG. 5 is a view showing a cross section of the mold B. FIG. Reference numeral 4 shown in this figure is a distance piece, and reference numeral 5 indicates a wrinkle presser. FIG. 6 is a view showing the upper surface shape of the die punch. Moreover, FIG. 7 is a figure which shows the die die lower surface shape. The mold was determined to be a die shape with a clearance of 1.6 mm following the punch shape. By using a distance piece, a 2.0 mm clearance was provided in the flange portion. The blank size was 1.6 mm thick × 300 × 500. The molding conditions were a punch speed of 10 mm / s, a wrinkle pressing force of 20 tons, a pressing force of 200 tons, and a holding time at the bottom dead center of 5 seconds. FIG. 8 is a schematic diagram of the molding process. The molded product has the same shape as the mold A and is shown in FIG.

耐水素脆化特性はフランジ部をトリム加工を行ない、その部位に水素脆化が生じるかどうかで評価した。ピアス加工は熱間加工後30分以内に行った。トリム加工は、フランジをダイスR部から20mm残すように行った。評価基準はトリム加工後、1週間後にピアス穴を全周観察し、割れの有無を判定した。観察はルーペもしくは電子顕微鏡にて行った。判定結果は表3〜表9に併せて示した。   The hydrogen embrittlement resistance was evaluated based on whether or not hydrogen embrittlement occurred at the site after trimming the flange. Piercing was performed within 30 minutes after hot working. Trimming was performed so that the flange remained 20 mm from the die R portion. The evaluation standard was that the pierced holes were observed all around one week after trimming to determine the presence or absence of cracks. Observation was performed with a magnifying glass or an electron microscope. The determination results are also shown in Tables 3 to 9.

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

Figure 2006104527
Figure 2006104527

表3〜表9に示す、No.1〜249までは金型Aについて金型のパンチ底に空隙を設けた場合に鋼種、めっき種、雰囲気中の水素濃度、露点の影響を検討した結果であるが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。表7〜表9に示すNo.250〜305は金型Aについてパンチ底部の緩冷却方法について検討したが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。表9に示すNo.306〜323までは金型Bについて金型のパンチ底に空隙を設けた場合に鋼種、めっき種、雰囲気中の水素濃度、露点の影響を検討した結果であるが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。   No. 3 to Table 9 1 to 249 are the results of studying the influence of steel type, plating type, hydrogen concentration in the atmosphere, and dew point when a gap is provided in the punch bottom of the mold A, but within the scope of the present invention. For example, no cracks occurred after piercing. No. shown in Tables 7-9. For 250 to 305, the method of slowly cooling the bottom of the punch was examined for the mold A, but cracking did not occur after piercing if it was within the scope of the present invention. No. shown in Table 9 306 to 323 are the results of studying the influence of steel type, plating type, hydrogen concentration in the atmosphere, and dew point when a gap is provided in the punch bottom of the mold B, but within the scope of the present invention. For example, no cracks occurred after piercing.

金型の断面を示す図である。It is a figure which shows the cross section of a metal mold | die. パンチの形状を示す上面図である。It is a top view which shows the shape of a punch. ダイスの形状を示す下面図である。It is a bottom view which shows the shape of dice | dies. 成形品の全体概略図である。It is the whole molded article schematic. 金型Bの断面を示す図である。2 is a view showing a cross section of a mold B. FIG. 金型パンチの上面形状を示す図である。It is a figure which shows the upper surface shape of a metal mold | die punch. 金型ダイス下面形状を示す図である。It is a figure which shows the die die bottom surface shape. 成形過程の模式図である。It is a schematic diagram of a forming process.

符号の説明Explanation of symbols

1 プレス成形ダイス
2 プレス成形パンチ
3 空隙、または断熱材
4 ディスタンスピース
5 しわ押え


特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1


1 Press Molding Dies 2 Press Molding Punch 3 Gap or Heat Insulating Material 4 Distance Piece 5 Wrinkle Presser


Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1


Claims (4)

質量%で、
C:0.05〜0.55%、
Si:2%以下、
Mn:0.1〜3%、
P:0.1%以下、
S:0.03%以下
を含有し、残部FeとAl、Cr、N、Ti、Bなどの不可避的不純物からなる鋼板を用い、水素量が体積分率で10%以下、かつ露点が30℃以下である雰囲気にて、Ac3 〜融点までに鋼板を加熱した後、フェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度でプレス成形を開始し、成形後に金型中にて冷却して焼入れを行い高強度の部品を製造する際に、部品の一部の冷却速度を低下させて他の部位より低強度部を設け、その部位を剪断加工することを特徴とする高強度部品の製造方法。
% By mass
C: 0.05 to 0.55%,
Si: 2% or less,
Mn: 0.1 to 3%
P: 0.1% or less,
S: A steel sheet containing 0.03% or less and the balance Fe and inevitable impurities such as Al, Cr, N, Ti, B is used, the hydrogen content is 10% or less in volume fraction, and the dew point is 30 ° C. After heating the steel sheet to Ac 3 to melting point in the following atmosphere, press molding is started at a temperature higher than the temperature at which ferrite, pearlite, bainite, martensite transformation occurs, and the mold is cooled in the mold after molding. When manufacturing high-strength parts by quenching, the cooling rate of a part of the part is reduced to provide a lower-strength part than the other part, and the part is sheared. Production method.
請求項1に記載の方法において、部品の一部の冷却速度を低下させる方法として、金型の一部に上金型と下金型の同位置に空隙を設けることを特徴とする高強度部品の製造方法。 2. The method according to claim 1, wherein as a method of reducing the cooling rate of a part of the part, a gap is provided in the same position of the upper mold and the lower mold in a part of the mold. Manufacturing method. 請求項1に記載の方法において、部品の一部の冷却速度を低下させる方法として、金型の一部に断熱材を組み込むことを特徴とする高強度部品の製造方法。 The method according to claim 1, wherein a heat insulating material is incorporated into a part of the mold as a method of reducing the cooling rate of a part of the part. 請求項1〜3に記載の方法にて製造された高強度部品。 A high-strength part manufactured by the method according to claim 1.
JP2004293456A 2004-10-06 2004-10-06 Method for producing high strength component and high strength component Pending JP2006104527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004293456A JP2006104527A (en) 2004-10-06 2004-10-06 Method for producing high strength component and high strength component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004293456A JP2006104527A (en) 2004-10-06 2004-10-06 Method for producing high strength component and high strength component

Publications (1)

Publication Number Publication Date
JP2006104527A true JP2006104527A (en) 2006-04-20

Family

ID=36374599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004293456A Pending JP2006104527A (en) 2004-10-06 2004-10-06 Method for producing high strength component and high strength component

Country Status (1)

Country Link
JP (1) JP2006104527A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008266721A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp Method for producing high strength component and high strength component
JP2009197253A (en) * 2008-02-19 2009-09-03 Sumitomo Metal Ind Ltd Method for producing hot-pressed member
JP2009534196A (en) * 2006-04-24 2009-09-24 ティッセンクルップ スチール アクチェンゲゼルシャフト Apparatus and method for forming high tough steel and high tough steel blanks
JP2009274590A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Center pillar reinforcing member and its manufacturing method
WO2011118126A1 (en) 2010-03-24 2011-09-29 Jfeスチール株式会社 Method for producing ultra high strength member and use of ultra high strength member
WO2014156790A1 (en) * 2013-03-26 2014-10-02 株式会社神戸製鋼所 Press-molded article and method for manufacturing same
CN109070174A (en) * 2016-02-10 2018-12-21 奥钢联钢铁有限责任公司 Method and apparatus for producing hardening steel components
WO2019171868A1 (en) * 2018-03-09 2019-09-12 住友重機械工業株式会社 Molding device, molding method, and metal pipe
KR20230082295A (en) 2021-12-01 2023-06-08 주식회사 포스코 Forming apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2003082436A (en) * 2001-06-29 2003-03-19 Nippon Steel Corp Aluminum or aluminum - zinc plated steel sheet suitable for high temperature forming and having high strength after high temperature forming, and production method therefor
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts
JP2004058082A (en) * 2002-07-26 2004-02-26 Aisin Takaoka Ltd Method for producing tailored blank press formed article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002102980A (en) * 2000-07-28 2002-04-09 Aisin Takaoka Ltd Manufacturing method for collision reinforcing material for vehicle and collision reinforcing material
JP2003082436A (en) * 2001-06-29 2003-03-19 Nippon Steel Corp Aluminum or aluminum - zinc plated steel sheet suitable for high temperature forming and having high strength after high temperature forming, and production method therefor
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP2003328031A (en) * 2002-05-13 2003-11-19 Nissan Motor Co Ltd Method for quenching pressed parts, quenching device, and pressed parts
JP2004058082A (en) * 2002-07-26 2004-02-26 Aisin Takaoka Ltd Method for producing tailored blank press formed article

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
社団法人 日本工業炉協会, 新版 工業炉ハンドブック, JPN6009000461, 28 November 1997 (1997-11-28), pages 566 - 571, ISSN: 0001222939 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068239B2 (en) 2006-04-24 2015-06-30 Thyssenkrupp Steel Europe Ag Device and method for the forming of blanks from high and very high strength steels
JP2009534196A (en) * 2006-04-24 2009-09-24 ティッセンクルップ スチール アクチェンゲゼルシャフト Apparatus and method for forming high tough steel and high tough steel blanks
JP2008266721A (en) * 2007-04-20 2008-11-06 Nippon Steel Corp Method for producing high strength component and high strength component
JP2009197253A (en) * 2008-02-19 2009-09-03 Sumitomo Metal Ind Ltd Method for producing hot-pressed member
JP2009274590A (en) * 2008-05-14 2009-11-26 Nippon Steel Corp Center pillar reinforcing member and its manufacturing method
US9145594B2 (en) 2010-03-24 2015-09-29 Jfe Steel Corporation Method for manufacturing ultra high strength member
WO2011118126A1 (en) 2010-03-24 2011-09-29 Jfeスチール株式会社 Method for producing ultra high strength member and use of ultra high strength member
JP2014188542A (en) * 2013-03-26 2014-10-06 Kobe Steel Ltd Press-molded article and manufacturing method therefor
WO2014156790A1 (en) * 2013-03-26 2014-10-02 株式会社神戸製鋼所 Press-molded article and method for manufacturing same
CN105050743A (en) * 2013-03-26 2015-11-11 株式会社神户制钢所 Press-molded article and method for manufacturing same
US9744744B2 (en) 2013-03-26 2017-08-29 Kobe Steel, Ltd. Press-formed article and method for manufacturing same
CN109070174A (en) * 2016-02-10 2018-12-21 奥钢联钢铁有限责任公司 Method and apparatus for producing hardening steel components
WO2019171868A1 (en) * 2018-03-09 2019-09-12 住友重機械工業株式会社 Molding device, molding method, and metal pipe
CN111788019A (en) * 2018-03-09 2020-10-16 住友重机械工业株式会社 Molding device, molding method, and metal pipe
JPWO2019171868A1 (en) * 2018-03-09 2021-03-11 住友重機械工業株式会社 Molding equipment, molding methods, and metal pipes
US11440074B2 (en) 2018-03-09 2022-09-13 Sumitomo Heavy Industries, Ltd. Forming device, forming method, and metal pipe
KR20230082295A (en) 2021-12-01 2023-06-08 주식회사 포스코 Forming apparatus

Similar Documents

Publication Publication Date Title
JP4927236B1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP4288138B2 (en) Steel sheet for hot forming
JP4445365B2 (en) Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP5447741B1 (en) Steel plate, plated steel plate, and manufacturing method thereof
JP5194986B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP5092523B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP2015503023A (en) Steel plate for warm press forming, warm press forming member, and manufacturing method thereof
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
WO2015037060A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP4987272B2 (en) Manufacturing method of high-strength parts and high-strength parts
CN102822375A (en) Ultra high strength cold rolled steel sheet and method for producing same
KR101626233B1 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
CN114438418A (en) Hot-formed member and method for manufacturing same
JP2017145469A (en) Manufacturing method of high strength steel sheet
CN113403550B (en) High-plasticity fatigue-resistant cold-rolled hot-galvanized DH1180 steel plate and preparation method thereof
JP4975245B2 (en) Manufacturing method of high strength parts
JP2017145467A (en) Manufacturing method of high strength steel sheet
JP4551300B2 (en) Manufacturing method of high strength parts
JP2009173959A (en) High-strength steel sheet and producing method therefor
JP5857913B2 (en) Hot-formed steel plate member, method for producing the same, and hot-formed steel plate
JPWO2019069938A1 (en) Hot stamping molded article, hot stamping steel plate and method for producing them
JP6417977B2 (en) Steel plate blank
JP4317506B2 (en) Manufacturing method of high strength parts
JP4551169B2 (en) Manufacturing method of high strength parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090312

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090519