JP4317506B2 - Manufacturing method of high strength parts - Google Patents

Manufacturing method of high strength parts Download PDF

Info

Publication number
JP4317506B2
JP4317506B2 JP2004267790A JP2004267790A JP4317506B2 JP 4317506 B2 JP4317506 B2 JP 4317506B2 JP 2004267790 A JP2004267790 A JP 2004267790A JP 2004267790 A JP2004267790 A JP 2004267790A JP 4317506 B2 JP4317506 B2 JP 4317506B2
Authority
JP
Japan
Prior art keywords
temperature
strength
less
steel sheet
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004267790A
Other languages
Japanese (ja)
Other versions
JP2006083419A (en
Inventor
和久 楠見
純 真木
正浩 大神
阿部  雅之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004267790A priority Critical patent/JP4317506B2/en
Publication of JP2006083419A publication Critical patent/JP2006083419A/en
Application granted granted Critical
Publication of JP4317506B2 publication Critical patent/JP4317506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、自動車の構造部材・補強部材に使用されるような強度が必要とされる部材に関し、特に高温成形後の強度に優れた部品とその製造方法に関するものである。   The present invention relates to a member that requires strength such as that used for a structural member / reinforcing member of an automobile, and particularly relates to a component having excellent strength after high-temperature molding and a method for manufacturing the same.

地球環境問題に端を発する自動車の軽量化のためには、自動車に使用される鋼板をできるだけ高強度化することが必要となるが、一般に鋼板を高強度化していくと伸びやr値が低下し、成形性が劣化していく。このような課題を解決するために、温間で成形し、その際の熱を利用して強度上昇を図る技術が特許文献1に開示されている。この技術では、鋼中成分を適切に制御し、フェライト温度域で加熱し、この温度域での析出強化を利用して強度を上昇させることを狙っている。
また、特許文献2では、プレス成形精度を向上させる目的で成形温度での降伏強度を常温での降伏強度より大きく低下する高強度鋼板が提案されている。しかしながら、これらの技術では得られる強度に限度がある可能性がある。一方、より高強度を得る目的で、成形後に高温のオーステナイト単相域に加熱し、その後の冷却過程で硬質の相に変態させる技術が特許文献3に提案されている。
しかしながら、成形後に加熱・急速冷却を行うと形状精度に問題が生じる可能性があるため、この欠点を克服する技術として、鋼板をオーステナイト単相域に加熱し、その後プレス成形過程にて冷却を施す技術が、非特許文献1や特許文献4に開示されている。
特開2000−234153号公報 特開2000−87183号公報 特開2000−38640号公報 特開2001−181833号公報 特開2003−328031号公報 SAE,2001-01-0078
In order to reduce the weight of automobiles that originate in global environmental problems, it is necessary to increase the strength of steel sheets used in automobiles as much as possible. Generally, as steel sheets are increased in strength, the elongation and r value decrease. However, the moldability deteriorates. In order to solve such a problem, Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for forming the article warmly and using the heat at that time to increase the strength. This technique aims to appropriately control the components in the steel, heat in the ferrite temperature range, and increase the strength by utilizing precipitation strengthening in this temperature range.
Patent Document 2 proposes a high-strength steel sheet in which the yield strength at the forming temperature is significantly lower than the yield strength at room temperature for the purpose of improving press forming accuracy. However, these techniques may limit the strength that can be obtained. On the other hand, Patent Document 3 proposes a technique for heating to a high temperature austenite single phase region after molding and transforming to a hard phase in the subsequent cooling process for the purpose of obtaining higher strength.
However, since heating and rapid cooling after forming may cause problems in shape accuracy, as a technique to overcome this drawback, the steel sheet is heated to the austenite single-phase region and then cooled in the press forming process. Techniques are disclosed in Non-Patent Document 1 and Patent Document 4.
JP 2000-234153 A JP 2000-87183 A JP 2000-38640 A JP 2001-181833 A JP 2003-328031 A SAE, 2001-01-0078

前述のように、自動車等に使用される高強度鋼板は高強度化されるほど上述した成形性の問題や、特に1000MPaを超えるような高強度材においては従来から知られているように水素脆化(置き割れや遅れ破壊と呼ばれることもある)という本質的な課題がある。ホットプレス用鋼板として用いられる場合、高温でのプレスによる残留応力は少ないものの、プレス前の加熱時に水素が鋼中に浸入すること、また後加工での残留応力により水素脆化の感受性が高くなる。したがって単に高温でプレスするだけでは本質的な課題解決にならず、加熱工程および後加工までの一貫工程での工程条件最適化が必要となる。
剪断加工などの後加工時の残留応力を減らすためには、後加工を行う部位の強度が低下していればよい。後加工を行う部位の冷却速度を低下させて焼入れを不十分として、その部位の強度を低下させる技術としては、特許文献5に示されている。この方法によれば部品の一部の強度が低下し、剪断加工などの後加工を容易に行うことができるとされている。
しかし、この方法を用いる場合には、金型構造が複雑になり、経済的に不利であると考えられる。さらに、この方法では水素脆化に対しては何ら言及しておらず、この方法により鋼板強度が若干低下して後加工後の残留応力がある程度低下した場合であっても、鋼中に水素が残存した状態であれば水素脆化が生じる可能性は否定できない。
本発明は上記課題を解決するためになされたものであり、高温成形後に1200MPa以上の強度を得ることができる耐水素脆性に優れた高強度部品及びその製造方法を提供することを課題とする。
As described above, high strength steel sheets used in automobiles and the like have the above-mentioned problems of formability as the strength is increased, and particularly in high strength materials exceeding 1000 MPa, hydrogen embrittlement is conventionally known. There is an essential problem of conversion (sometimes called cracking or delayed destruction). When used as a steel sheet for hot pressing, although the residual stress due to pressing at high temperature is small, hydrogen penetrates into the steel during heating before pressing, and the sensitivity to hydrogen embrittlement increases due to residual stress in post-processing. . Therefore, simply pressing at a high temperature does not solve the essential problem, and it is necessary to optimize the process conditions in the integrated process from the heating process to the post-processing.
In order to reduce the residual stress at the time of post-processing such as shearing, it is only necessary that the strength of the portion to be post-processed is reduced. Patent Document 5 discloses a technique for reducing the cooling rate of a part to be post-processed to make quenching insufficient and reducing the strength of the part. According to this method, the strength of a part of the component is reduced, and post-processing such as shearing can be easily performed.
However, when this method is used, the mold structure becomes complicated, which is considered to be economically disadvantageous. Furthermore, this method makes no mention of hydrogen embrittlement, and even when the strength of the steel sheet is slightly reduced by this method and the residual stress after post-processing is reduced to some extent, hydrogen is not contained in the steel. If it remains, the possibility of hydrogen embrittlement cannot be denied.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a high-strength part excellent in hydrogen embrittlement resistance that can obtain a strength of 1200 MPa or more after high-temperature molding and a method for producing the same.

本発明者らは、上記課題を解決するために種々の検討を実施した。その結果、水素脆化を抑制するためには、成形前の加熱炉中の雰囲気を制御して鋼中の水素量を減少させ、続いて剪断加工を実施する部位を加熱して強度を低下させることが効果的であることを見出した。
すなわち、本発明の要旨とするところは下記のとおりである。
(1)質量%で、C:0.05〜0.55%、Mn:0.1%〜3%の化学成分を含有する鋼板を用い、体積分率で水素10%以下(0%を含む)、かつ露点が30℃以下である雰囲気にて、Ac3〜融点までに前記鋼板を加熱した後、フェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度で成形を開始し、成形後に金型中にて冷却して焼入れを行い高強度の部品を製造した後、該部品の一部の部位の温度を400℃以上、Ac3未満まで上昇させた後に、その部位を剪断加工することを特徴とする高強度部品の製造方法。
(2)前記部品の一部の部位の温度を400℃以上、Ac3以下まで上昇させた後に冷却し、その部位を剪断加工することを特徴とする(1)に記載の高強度部品の製造方法。
(3)前記鋼板の化学成分が質量%で、C:0.05〜0.55%、Mn:0.1%〜3%、Si:1.0%以下、Al:0.005〜0.1%、S:0.02%以下、P:0.03%以下、Cr:0.01〜1%、B:0.0002%〜0.0050%、Ti:(3.42*N+0.001)%以上、3.99×(C-0.1)%以下、N:0.01%以下、O:0.015%以下を含有し、残部Feおよび不可避的不純物からなることを特徴とする(1)または(2)に記載の高強度部品の製造方法。
(4)前記鋼板がアルミめっき、アルミ−亜鉛めっき、亜鉛めっきのいずれかを施したものであることを特徴とする(1)乃至(3)のいずれかに記載の高強度部品の製造方法。
(5)前記部品の一部の部位の温度を上昇させる方法として、レーザー光を用いることを特徴とする(1)乃至(4)のいずれかに記載の高強度部品の製造方法。
(6)前記部品の一部の部位の温度を上昇させる方法として、高周波加熱を用いることを特徴とする(1)乃至(4)のいずれかに記載の高強度部品の製造方法。
(7)前記部品の一部の部位の温度を上昇させる方法として、高温の工具を接触させることを特徴とする(1)乃至(4)のいずれかに記載の高強度部品の製造方法。
The present inventors have conducted various studies to solve the above problems. As a result, in order to suppress hydrogen embrittlement, the atmosphere in the heating furnace before forming is controlled to reduce the amount of hydrogen in the steel, and subsequently the site where shearing is performed is heated to lower the strength. Found that it was effective.
That is, the gist of the present invention is as follows.
(1) Using a steel sheet containing chemical components of C: 0.05 to 0.55% and Mn: 0.1% to 3% by mass%, the volume fraction of hydrogen is 10% or less (including 0%), and the dew point is 30 After heating the steel plate to an Ac3 to melting point in an atmosphere of ℃ or less, start forming at a temperature higher than the temperature at which ferrite, pearlite, bainite, martensite transformation occurs, and cool in the mold after forming After high-strength parts are quenched and hardened, the temperature of a part of the parts is increased to 400 ° C. or more and less than Ac3, and then the parts are sheared. Production method.
(2) The method for producing a high-strength part according to (1), wherein the temperature of a part of the part is raised to 400 ° C. or more and Ac3 or less, and then the part is cooled and sheared. .
(3) The chemical composition of the steel sheet is% by mass, C: 0.05 to 0.55%, Mn: 0.1% to 3%, Si: 1.0% or less, Al: 0.005 to 0.1%, S: 0.02% or less, P: 0.03 % Or less, Cr: 0.01 to 1%, B: 0.0002% to 0.0050%, Ti: (3.42 * N + 0.001)% or more, 3.99 × (C-0.1)% or less, N: 0.01% or less, O: 0.015% The method for producing a high-strength part according to (1) or (2), comprising: a balance Fe and inevitable impurities.
(4) The method for producing a high-strength part according to any one of (1) to (3), wherein the steel sheet is subjected to any one of aluminum plating, aluminum-zinc plating, and galvanization.
(5) The method for producing a high-strength component according to any one of (1) to (4), wherein a laser beam is used as a method for increasing the temperature of a part of the component.
(6) The method for manufacturing a high-strength component according to any one of (1) to (4), wherein high-frequency heating is used as a method for increasing the temperature of a part of the component.
(7) The method for producing a high-strength component according to any one of (1) to (4), wherein a high-temperature tool is brought into contact as a method for increasing the temperature of a part of the component.

本発明により、成形後に金型中にて冷却して焼入れを行って高強度の部品を製造する際に、車体が軽量で衝突安全性に優れた自動車が製造できるため、社会的貢献が大きいものである。   According to the present invention, when a high-strength part is manufactured by cooling in a die after molding and manufacturing a high-strength part, a vehicle having a light body and excellent in collision safety can be manufactured. It is.

以下に本発明について詳細に説明する。本発明の特徴は、高温成形に引き続く剪断加工において発生しやすい、水素脆化による割れを防止する手段として、(1)高温成形前の加熱雰囲気を厳密に規定すること、(2)高温成形に引き続く剪断加工の後、剪断加工部をに先立ち、加工する部位を、変態を生じない範囲に温度を上昇させるすること、を組み合わせたことにある。水素脆化割れは鋼中に水素が浸入し、かつ加工による残留応力が残っている部位に生じることから、加熱雰囲気中の水素源を減少し、かつ剪断加工を行う部位の強度を温度上昇により低下させることで、割れの発生を抑制することが可能となる。
はじめに、高温成形の条件について説明する。鋼板を加熱する際の雰囲気中の水素量を体積分率で10%以下(0%を含む)としたのは、水素量がこれを超えると、加熱中に鋼板中に進入する水素量が多量となり、耐水素脆化特性が低下するためにである。また、雰囲気中の露点を30℃以下としたのは、露点がこれを超えると、やはり加熱中に鋼板中に進入する水素量が多量となり、耐水素脆化特性が低下するためである。
鋼板の加熱温度をAc3以上、融点以下としたのは、成形後に焼入れ強化するために鋼板の組織をオーステナイトにしておくためである。また加熱温度が融点を超えると、プレス成形が不可能であるためである。
成形開始温度をフェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度としたのは、これらの変態が生じる温度以下で成形した場合には、成形後の硬度が不十分であるためである。
The present invention is described in detail below. The features of the present invention are as follows: (1) Strictly define the heating atmosphere before high-temperature molding, (2) High-temperature molding After the subsequent shearing process, prior to the shearing part, the temperature of the part to be processed is raised to a range where no transformation occurs. Hydrogen embrittlement cracking occurs at the site where hydrogen penetrates into the steel and the residual stress due to processing remains, so the hydrogen source in the heating atmosphere is reduced and the strength of the site where shearing is performed is increased by increasing the temperature. By lowering, it becomes possible to suppress the occurrence of cracks.
First, the conditions for high temperature molding will be described. The amount of hydrogen in the atmosphere when heating the steel sheet was set to 10% or less (including 0%) in terms of volume fraction. If the amount of hydrogen exceeded this amount, a large amount of hydrogen entered the steel sheet during heating. This is because the hydrogen embrittlement resistance is reduced. The reason why the dew point in the atmosphere is set to 30 ° C. or less is that if the dew point exceeds this, the amount of hydrogen that enters the steel sheet during heating will also increase, and the hydrogen embrittlement resistance will deteriorate.
The reason for setting the heating temperature of the steel sheet to Ac3 or more and the melting point or less is to keep the structure of the steel sheet to be austenite in order to strengthen the quenching after forming. Further, when the heating temperature exceeds the melting point, press molding is impossible.
The reason why the molding start temperature is set to a temperature higher than the temperature at which ferrite, pearlite, bainite, and martensite transformation occurs is because the hardness after molding is insufficient when molding at a temperature lower than the temperature at which these transformations occur. .

以上のような条件で鋼板を加熱後、プレス方法などを用いて成形し、成形後に金型中にて冷却して焼入れを行って、高強度の部品を製造する。以上の条件は常法で良い。
次に、高温成形後の条件について説明する。部品の一部の部位の温度を400℃以上まで上昇させるとしたのは、この温度よりも低温で加熱した場合は当該部位の強度が高いままのため、引き続く剪断加工時に割れを生じる場合があるためである。またAc3未満までとしたのは、この温度以上に加熱した場合、その後冷却する際に低温変態相が生じ、加熱部位の硬度がかえって高くなることがあるためである。
部品の一部を加熱する方法としては、いかなる方法を用いても良いか、工業的には、レーザー光による加熱、高周波加熱、加熱した工具を接触させる方法を用いると良い。
また、部品の一部の部位の温度を400℃以上Ac3未満まで上昇させた後に冷却するとしたのは、部品を冷却した場合に熱間加工品の取り扱いが容易となるためである。冷却速度や冷却温度は特に限定しない。
本発明においては、以上に述べた加熱もしくは加熱・冷却後に、その部位を剪断加工する。剪断加工は穴開けや切断など、製造する部品の形状にするための加工を常法で行う。
After heating the steel sheet under the above conditions, the steel sheet is formed using a press method or the like, and after forming, it is cooled in a mold and quenched to produce a high-strength part. The above conditions may be ordinary methods.
Next, conditions after high temperature molding will be described. The reason for raising the temperature of some parts of the part to 400 ° C or higher is that when heated at a temperature lower than this temperature, the strength of the part remains high, and cracking may occur during subsequent shearing Because. The reason why the temperature is less than Ac3 is that, when heated to a temperature higher than this temperature, a low-temperature transformation phase is generated during subsequent cooling, and the hardness of the heated part may be increased.
As a method for heating a part of the component, any method may be used, or industrially, heating by laser light, high-frequency heating, or a method of contacting a heated tool may be used.
The reason for cooling after raising the temperature of a part of the part to 400 ° C. or more and less than Ac 3 is that it is easy to handle hot-worked products when the part is cooled. The cooling rate and the cooling temperature are not particularly limited.
In the present invention, the portion is sheared after the heating or heating / cooling described above. In the shearing process, a process for forming the shape of the part to be manufactured, such as drilling or cutting, is performed by a conventional method.

次に、本発明に用いる鋼板の成分について説明する。
Cは冷却後の組織をマルテンサイトとして材質を確保するために添加する元素であり、強度1000MPa以上を確保するためには0.1%以上添加することが望ましい。ところが、添加量が多すぎると、衝撃変形時の強度確保が困難となるため、その上限を0.55%が望ましい。
Mnは強度および焼入れ性を向上させる元素であり、0.2%未満では焼入れ時の強度を十分に得られず、また、3%を超えて添加しても効果が飽和するため、0.2〜3%の範囲が望ましい。
その他、必要に応じて以下の元素を添加しても良い。
Siは固溶強化型の合金元素であるが、1.0%を超えると、表面スケールの問題が生じる。また、特に鋼板表面にメッキ処理を行う場合は、Siの添加量が多いとメッキ性が劣化するため、上限を0.5%とすることが好ましい。
Alは溶鋼の脱酸剤として使われる必要な元素であり、またNを固定する元素でもあり、その量は結晶粒径や機械的性質に影響を及ぼす。このような効果を有するためには0.005%以上の含有量が必要であるが、0.1%を超えると非金属介在物が多くなり製品に表面疵が発生しやすくなる。このため、Alは0.005〜0.1%の範囲が望ましい。
Next, the components of the steel sheet used in the present invention will be described.
C is an element added to secure the material with the cooled structure as martensite, and it is desirable to add 0.1% or more in order to secure the strength of 1000 MPa or more. However, if the addition amount is too large, it is difficult to ensure the strength during impact deformation, so the upper limit is preferably 0.55%.
Mn is an element that improves strength and hardenability. If it is less than 0.2%, sufficient strength at the time of quenching cannot be obtained, and even if added over 3%, the effect is saturated, so 0.2 to 3% A range is desirable.
In addition, the following elements may be added as necessary.
Si is a solid solution strengthened alloy element, but if it exceeds 1.0%, a problem of surface scale occurs. In particular, when plating is performed on the surface of the steel sheet, the plating performance deteriorates if the amount of Si added is large, so the upper limit is preferably set to 0.5%.
Al is a necessary element used as a deoxidizer for molten steel, and is also an element that fixes N, and its amount affects the crystal grain size and mechanical properties. In order to have such an effect, a content of 0.005% or more is necessary. However, if it exceeds 0.1%, nonmetallic inclusions increase and surface defects are likely to occur in the product. For this reason, Al is preferably in the range of 0.005 to 0.1%.

Sは鋼中の非金属介在物に影響し、加工性を劣化させるとともに、靱性劣化、異方性および再熱割れ感受性の増大の原因となる。このため、Sは0.02%以下が望ましい。なお、さらに好ましくは、0.01%以下である。また、Sを0.005%以下に規制することにより、衝撃特性が飛躍的に向上する。
Pは溶接割れ性および靱性に悪影響を及ぼす元素であるため、Pは0.03%以下が望ましい。なお、好ましくは、0.02%以下である。また、更に好ましくは0.015%以下である。
Crは焼入れ性を向上させる元素であり、またマトリックス中へM23C6 型炭化物を析出させる効果を有し、強度を高めるとともに、炭化物を微細化する作用を有する。0.01%未満ではこれらの効果が十分期待できず、また、1%を超えると降伏強度が過度に上昇する傾向にあるため、Crは0.01〜1%の範囲が望ましい。より望ましくは、0.05〜1%である。
Bはプレス成形中あるいはプレス成形後の冷却での焼入れ性を向上させるために添加すると良い。この効果を発揮させるためには0.0002%以上の添加が必要である。しかしながら、この添加量がむやみに増加すると熱間での割れの懸念があることや、その効果が飽和するためその上限は0.0050%が望ましい。
TiはBの効果を有効に発揮させるため、Bと化合物を生成するNを固着する目的で添加してもよい。この効果を発揮させるためには、Nと結合していないTiが0.001%以上、すなわち、(3.42*N+0.001)以上が必要であるが、Ti量がむやみに増加するとTiと結合していないC量が減少し冷却後に十分な強度が得られなくなるため、その上限として、Tiと結合していないC量が0.1%以上確保できるTi当量、すなわち、3.99×(C-0.1)%とした方がよい。
S affects non-metallic inclusions in steel and degrades workability, and causes toughness deterioration, anisotropy and increased reheat cracking sensitivity. For this reason, S is preferably 0.02% or less. More preferably, it is 0.01% or less. Further, by limiting S to 0.005% or less, impact characteristics are dramatically improved.
Since P is an element that adversely affects weld cracking and toughness, P is preferably 0.03% or less. In addition, Preferably, it is 0.02% or less. Further, it is more preferably 0.015% or less.
Cr is an element that improves hardenability and has the effect of precipitating M 23 C 6 type carbide in the matrix, and has the effect of increasing the strength and miniaturizing the carbide. If it is less than 0.01%, these effects cannot be sufficiently expected, and if it exceeds 1%, the yield strength tends to increase excessively, so Cr is desirably in the range of 0.01 to 1%. More desirably, it is 0.05 to 1%.
B is preferably added in order to improve the hardenability during press molding or cooling after press molding. In order to exert this effect, 0.0002% or more must be added. However, if this amount increases excessively, there is a concern of hot cracking, and the effect is saturated, so the upper limit is preferably 0.0050%.
Ti may be added for the purpose of fixing B and N that forms a compound in order to effectively exhibit the effect of B. In order to exhibit this effect, 0.001% or more of Ti that is not bonded to N is required, that is, (3.42 * N + 0.001) or more is required. However, if the amount of Ti is increased excessively, it is not bonded to Ti. Since the amount of C decreases and sufficient strength cannot be obtained after cooling, the upper limit is Ti equivalent that can secure 0.1% or more of C not bonded to Ti, that is, 3.99 × (C-0.1)% Is good.

Nについては特に規制しないが、0.01%を超えると窒化物の粗大化および固溶Nによる時効硬化により、靱性が劣化する傾向がみられる。このため、Nは0.01%以下の含有が望ましい。
Oについても特に規制しないが、過度の添加は靱性に悪影響を及ぼす酸化物の生成の原因となるとともに、疲労破壊の起点となる酸化物を生成するため、0.015%以下の含有が望ましい。
その他、不可避的に含まれる不純物が含有しても特に問題は生じない。スクラップから混入すると考えられるNi, Cu, Snなどの元素が含有してもよい。また介在物の形状制御のため、Ca, Mg, Y, ,As, Sb, REMを添加してもよい。またさらに強度を向上する目的で、Ti, Nb, Zr, Mo, Vを添加してもよいが、むやみに増加するとこれらの元素と結合していないC量が減少し、冷却後に十分な強度が得られなくなる。
N is not particularly restricted, but if it exceeds 0.01%, the toughness tends to deteriorate due to coarsening of nitride and age hardening due to solute N. For this reason, the N content is desirably 0.01% or less.
Although there is no particular restriction on O, excessive addition causes generation of an oxide that adversely affects toughness and generates an oxide that becomes a starting point of fatigue fracture. Therefore, its content is preferably 0.015% or less.
In addition, even if impurities inevitably contained, no particular problem occurs. Elements such as Ni, Cu and Sn which are considered to be mixed from scrap may be contained. Further, Ca, Mg, Y, As, Sb, and REM may be added to control the shape of inclusions. In addition, Ti, Nb, Zr, Mo, V may be added for the purpose of further improving the strength, but if it is increased unnecessarily, the amount of C not bonded to these elements decreases, and sufficient strength is obtained after cooling. It can no longer be obtained.

以上の成分からなる鋼片を熱間圧延し、またはさらに酸洗、冷間圧延、焼鈍を行って、鋼板とする。これらの工程条件はいずれも常法で良い。
鋼板はそのまま用いても良く、またはアルミめっき、アルミ−亜鉛めっき、亜鉛めっきを施しても良い。めっき工程についても常法で問題ない。
例えばアルミめっきを施す場合、めっき浴中Si濃度は5〜12%が適しており、アルミ−亜鉛めっきの場合は、浴中Zn濃度は40〜50%が適している。また、アルミめっき層中にMgやZnを混在させても、アルミ−亜鉛めっき層中にMgを混在させても、特に問題なく同様の特性の鋼板を製造することができる。また、めっき工程における雰囲気についても、無酸化炉を有する連続式めっき設備でも、無酸化炉を有しない連続式めっき設備でも、通常の条件でめっき可能であり、本鋼板だけ特別な制御を必要としないことから、生産性を阻害することもない。
また、亜鉛めっき方法であれば、溶融亜鉛めっき、電気亜鉛めっき、合金化溶融亜鉛めっきなど、いかなる方法と取っても良い。また、NiプレめっきやFeプレめっき、その他めっき性を向上させる金属プレめっきを施しても特に問題は無い。また、めっき層表面に異種の金属めっきや無機系、有機系化合物の皮膜などを付与しても特に問題は無い。
A steel slab comprising the above components is hot-rolled or further pickled, cold-rolled, and annealed to obtain a steel plate. Any of these process conditions may be a conventional method.
The steel plate may be used as it is, or may be subjected to aluminum plating, aluminum-zinc plating, or galvanization. There is no problem with the conventional method for the plating process.
For example, when aluminum plating is performed, the Si concentration in the plating bath is suitably 5 to 12%, and in the case of aluminum-zinc plating, the Zn concentration in the bath is suitably 40 to 50%. Moreover, even if Mg or Zn is mixed in the aluminum plating layer or Mg is mixed in the aluminum-zinc plating layer, a steel plate having the same characteristics can be produced without any particular problem. Also, the atmosphere in the plating process can be plated under normal conditions, whether it is a continuous plating facility with a non-oxidizing furnace or a continuous plating facility without a non-oxidizing furnace, and only this steel plate needs special control. It does not impede productivity.
Further, as long as it is a galvanizing method, any method such as galvanizing, electrogalvanizing, alloying galvanizing, etc. may be used. Further, there is no particular problem even if Ni pre-plating, Fe pre-plating, or other metal pre-plating for improving plating properties is performed. Moreover, there is no particular problem even if different metal plating or a film of inorganic or organic compound is applied to the surface of the plating layer.

表1に示す化学成分のスラブを鋳造した。これらのスラブを1050〜1350℃に加熱し、熱間圧延にて仕上温度800〜900℃、巻取温度450〜680℃で板厚4mmの熱延鋼板とした。続いて酸洗を行った後、冷間圧延により板厚1.6mmの冷延鋼板とした。その冷延鋼板の一部に、溶融アルミめっき、溶融アルミ−亜鉛めっき、合金化溶融亜鉛めっき、溶融亜鉛めっきを施した。表2に各実験のめっき種を示す。ここで符号は、めっき無しは「CR」、アルミめっきは「AL」、合金化溶融亜鉛めっきは、「GA」、溶融亜鉛めっきは「GI」とした。
その後、それらの冷延鋼板、表面処理鋼板を炉加熱によりAc3点以上である950℃のオーステナイト領域に加熱した後、熱間成型加工を行った。加熱炉の雰囲気は水素量と露点を変化させた。その条件を表2に示す。
金型形状の断面を図1に示す。パンチを上方から見た形状を図2に示す。ダイスを下方から見た形状を図3に示す。金型はパンチ形状に倣い、板厚1.6mmのクリアランスにてダイスの形状と決定した。ブランクサイズを1.6mm厚×300mm×500mmとした。成形条件は、パンチ速度10mm/s、加圧力200トン、下死点での保持時間を5秒とした。成形品の模式図を図4に示す。
Slabs having chemical components shown in Table 1 were cast. These slabs were heated to 1050 to 1350 ° C. and hot rolled to form hot rolled steel sheets having a finishing temperature of 800 to 900 ° C. and a winding temperature of 450 to 680 ° C. and a thickness of 4 mm. Subsequently, pickling was performed, and a cold-rolled steel sheet having a thickness of 1.6 mm was formed by cold rolling. A part of the cold-rolled steel sheet was subjected to hot-dip aluminum plating, hot-dip aluminum-zinc plating, alloyed hot-dip galvanizing, and hot-dip galvanizing. Table 2 shows the plating types for each experiment. Here, the symbols are “CR” for no plating, “AL” for aluminum plating, “GA” for galvannealed alloy plating, and “GI” for hot dip galvanizing.
Thereafter, the cold-rolled steel sheet and the surface-treated steel sheet were heated in an austenite region at 950 ° C., which is higher than the Ac3 point, by furnace heating, and then hot-formed. The atmosphere of the heating furnace changed the amount of hydrogen and the dew point. Table 2 shows the conditions.
A cross section of the mold shape is shown in FIG. The shape of the punch viewed from above is shown in FIG. The shape of the die viewed from below is shown in FIG. The mold was determined to be a die shape with a clearance of 1.6 mm, following the punch shape. The blank size was 1.6 mm thickness x 300 mm x 500 mm. The molding conditions were a punch speed of 10 mm / s, a pressing force of 200 tons, and a holding time at the bottom dead center of 5 seconds. A schematic diagram of the molded product is shown in FIG.

成形後に、成形品の一部の部位をレーザー光による加熱、高周波加熱、加熱した工具により加熱した。その方法を表2にあわせて示す。表中の符号は、レーザー光による加熱の場合は「R」、高周波加熱した場合は「I」、加熱した工具を用いた場合は「T」、加熱無しの場合は「N」とした。図5は成形品を上方から見た形状で、加熱した部位、および加熱した工具の形状を示す。
加熱温度については表2にあわせて示した。また、加熱後の冷却は水冷と空冷を行った。また冷却を行わず、高温のままピアス加工も実施した。その冷却方法についても表2にあわせて示す。
耐水素脆化特性はピアス加工を行い、その部位に水素脆化が生じるかどうかで評価した。ピアス加工は熱間加工後30分以内に行った。直径10mmφのパンチを用い、直径10.5mmのダイスを用いた。部品の加工位置は、図5に示した加熱部の中央とした。評価基準はピアス加工の1週間後にピアス穴を全周観察し、割れの有無を判定した。観察はルーペもしくは電子顕微鏡にて行った。判定結果は表2にあわせて示した。
実験番号1〜249は加熱をレーザー光で行った場合について、鋼種、めっき種、雰囲気中の水素濃度、露点の影響を検討した結果であるが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。実験番号250〜333は加熱方法の影響を検討したが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。実験番号334〜337は部品の一部を加熱する際の加熱温度の影響、実験番号338、339は部品の一部を加熱した後の冷却方法について検討したが、本発明の範囲内であれば、ピアス加工後に割れが発生しなかった。

Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
After molding, a part of the molded product was heated by laser light, high-frequency heating, or a heated tool. The method is also shown in Table 2. The symbol in the table is “R” for heating with laser light, “I” for high frequency heating, “T” for a heated tool, and “N” for no heating. FIG. 5 shows the shape of the molded product viewed from above, and shows the heated part and the shape of the heated tool.
The heating temperature is also shown in Table 2. Moreover, cooling after heating performed water cooling and air cooling. In addition, piercing was also carried out at a high temperature without cooling. The cooling method is also shown in Table 2.
The hydrogen embrittlement resistance was evaluated by piercing and whether hydrogen embrittlement occurred at the site. Piercing was performed within 30 minutes after hot working. A punch with a diameter of 10 mmφ was used, and a die with a diameter of 10.5 mm was used. The processing position of the component was set at the center of the heating unit shown in FIG. The evaluation standard was to observe the entire pierced hole one week after piercing and to determine the presence or absence of cracks. Observation was performed with a magnifying glass or an electron microscope. The determination results are shown in Table 2.
Experiment Nos. 1 to 249 are the results of studying the effects of steel type, plating type, hydrogen concentration in the atmosphere, and dew point when heating is performed with laser light, but within the scope of the present invention, after piercing No cracking occurred. Experiment Nos. 250 to 333 examined the influence of the heating method, but cracks did not occur after piercing if within the scope of the present invention. Experiment numbers 334 to 337 examined the influence of the heating temperature when heating a part of the part, and experiment numbers 338 and 339 examined the cooling method after heating a part of the part, but within the scope of the present invention No cracks occurred after piercing.
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506
Figure 0004317506

本発明に用いる金型形状の断面を示す図である。It is a figure which shows the cross section of the metal mold | die shape used for this invention. 本発明に用いるパンチを上方から見た形状を示す図である。It is a figure which shows the shape which looked at the punch used for this invention from upper direction. 本発明に用いるダイスを下方から見た形状を示す図である。It is a figure which shows the shape which looked at the dice | dies used for this invention from the downward direction. 本発明における成形品の模式図である。It is a schematic diagram of the molded product in the present invention. 本発明における成形品を上方から見た形状を示す図である。It is a figure which shows the shape which looked at the molded article in this invention from upper direction.

符号の説明Explanation of symbols

1:ダイス
2:パンチ
3:成形品
4:加熱部
1: Die 2: Punch 3: Molded product 4: Heating part

Claims (7)

質量%で、C:0.05〜0.55%、Mn:0.1%〜3%の化学成分を含有する鋼板を用い、体積分率で水素10%以下(0%を含む)、かつ露点が30℃以下である雰囲気にて、Ac3〜融点までに前記鋼板を加熱した後、フェライト、パーライト、ベイナイト、マルテンサイト変態が生じる温度より高い温度で成形を開始し、成形後に金型中にて冷却して焼入れを行い高強度の部品を製造した後、該部品の一部の部位の温度を400℃以上、Ac3未満まで上昇させた後に、その部位を剪断加工することを特徴とする高強度部品の製造方法。   Using steel sheet containing chemical components of C: 0.05-0.55% and Mn: 0.1% -3% by mass%, hydrogen volume fraction is 10% or less (including 0%), and dew point is 30 ° C or less In a certain atmosphere, after heating the steel sheet to Ac3 ~ melting point, start molding at a temperature higher than the temperature at which ferrite, pearlite, bainite, martensite transformation occurs, and after molding, quench in the mold A method for producing a high-strength part, comprising: producing a high-strength part, raising the temperature of a part of the part to 400 ° C. or more and less than Ac 3, and then shearing the part. 前記部品の一部の部位の温度を400℃以上、Ac3以下まで上昇させた後に冷却し、その部位を剪断加工することを特徴とする請求項1に記載の高強度部品の製造方法。   2. The method of manufacturing a high-strength part according to claim 1, wherein the temperature of a part of the part is raised to 400 ° C. or more and Ac3 or less and then cooled, and the part is sheared. 前記鋼板の化学成分が質量%で、C:0.05〜0.55%、Mn:0.1%〜3%、Si:1.0%以下、Al:0.005〜0.1%、S:0.02%以下、P:0.03%以下、Cr:0.01〜1%、B:0.0002%〜0.0050%、Ti:(3.42*N+0.001)%以上、3.99×(C-0.1)%以下、N:0.01%以下、O:0.015%以下を含有し、残部Feおよび不可避的不純物からなることを特徴とする請求項1または請求項2に記載の高強度部品の製造方法。   The chemical composition of the steel sheet is% by mass, C: 0.05 to 0.55%, Mn: 0.1% to 3%, Si: 1.0% or less, Al: 0.005 to 0.1%, S: 0.02% or less, P: 0.03% or less, Cr: 0.01-1%, B: 0.0002% -0.0050%, Ti: (3.42 * N + 0.001)% or more, 3.99 × (C-0.1)% or less, N: 0.01% or less, O: 0.015% or less The method for producing a high-strength component according to claim 1 or 2, wherein the balance Fe and unavoidable impurities are included. 前記鋼板がアルミめっき、アルミ−亜鉛めっき、亜鉛めっきのいずれかを施したものであることを特徴とする請求項1乃至請求項3のいずれかに記載の高強度部品の製造方法。   The method for producing a high-strength part according to any one of claims 1 to 3, wherein the steel sheet is subjected to any one of aluminum plating, aluminum-zinc plating, and galvanization. 前記部品の一部の部位の温度を上昇させる方法として、レーザー光を用いることを特徴とする請求項1乃至請求項4のいずれかに記載の高強度部品の製造方法。   The method for manufacturing a high-strength component according to any one of claims 1 to 4, wherein a laser beam is used as a method for increasing the temperature of a part of the component. 前記部品の一部の部位の温度を上昇させる方法として、高周波加熱を用いることを特徴とする請求項1乃至請求項4のいずれかに記載の高強度部品の製造方法。   The method for manufacturing a high-strength component according to any one of claims 1 to 4, wherein high-frequency heating is used as a method of increasing the temperature of a part of the component. 前記部品の一部の部位の温度を上昇させる方法として、高温の工具を接触させることを特徴とする請求項1乃至請求項4のいずれかに記載の高強度部品の製造方法。   The method for producing a high-strength component according to any one of claims 1 to 4, wherein a high-temperature tool is brought into contact as a method for increasing the temperature of a part of the component.
JP2004267790A 2004-09-15 2004-09-15 Manufacturing method of high strength parts Active JP4317506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004267790A JP4317506B2 (en) 2004-09-15 2004-09-15 Manufacturing method of high strength parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004267790A JP4317506B2 (en) 2004-09-15 2004-09-15 Manufacturing method of high strength parts

Publications (2)

Publication Number Publication Date
JP2006083419A JP2006083419A (en) 2006-03-30
JP4317506B2 true JP4317506B2 (en) 2009-08-19

Family

ID=36162171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004267790A Active JP4317506B2 (en) 2004-09-15 2004-09-15 Manufacturing method of high strength parts

Country Status (1)

Country Link
JP (1) JP4317506B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5508059B2 (en) * 2010-02-26 2014-05-28 アイシン高丘株式会社 Combined press machine
JP2012139724A (en) * 2010-12-17 2012-07-26 Univ Of Yamanashi Progressive press-working apparatus
CN102650021B (en) * 2012-05-28 2013-10-16 上海大学 Bainite pre-hardening plastic mold steel and preparation method and heat treatment method thereof
WO2014142238A1 (en) * 2013-03-14 2014-09-18 新日鐵住金株式会社 High strength steel plate with excellent delayed destruction resistance characteristics and low temperature toughness, and high strength member manufactured using same
US20160067760A1 (en) 2013-05-09 2016-03-10 Nippon Steel & Sumitomo Metal Corporation Surface layer grain refining hot-shearing method and workpiece obtained by surface layer grain refining hot-shearing
CN103498103B (en) * 2013-09-24 2016-06-15 北京科技大学 A kind of high-hardenability major diameter 65MnCr abrading-ball and preparation method thereof
JP2016089274A (en) * 2014-11-04 2016-05-23 株式会社神戸製鋼所 Plating steel sheet for hot stamp
KR20190078233A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Laser hardening low carbon steel sheet and manufacturing the same
JP2020171935A (en) * 2019-04-09 2020-10-22 東亜工業株式会社 Manufacturing method of press molded product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3389562B2 (en) * 2000-07-28 2003-03-24 アイシン高丘株式会社 Method of manufacturing collision reinforcing material for vehicles
JP4132950B2 (en) * 2001-06-29 2008-08-13 新日本製鐵株式会社 Aluminum or aluminum-galvanized steel sheet suitable for high temperature forming and having high strength after high temperature forming and method for producing the same
JP2003231915A (en) * 2002-02-08 2003-08-19 Jfe Steel Kk Press hardening method
JP4135397B2 (en) * 2002-05-13 2008-08-20 日産自動車株式会社 Method and apparatus for quenching pressed parts
JP4316842B2 (en) * 2002-07-26 2009-08-19 アイシン高丘株式会社 Method for manufacturing tailored blank press molded products

Also Published As

Publication number Publication date
JP2006083419A (en) 2006-03-30

Similar Documents

Publication Publication Date Title
JP4927236B1 (en) Steel sheet for hot stamping, manufacturing method thereof, and manufacturing method of high-strength parts
JP4288138B2 (en) Steel sheet for hot forming
JP5353642B2 (en) Steel plate for heat treatment and manufacturing method thereof
JP5857909B2 (en) Steel sheet and manufacturing method thereof
KR101449222B1 (en) Heat-treated steel material, method for producing same, and base steel material for same
JP5092523B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP6597374B2 (en) High strength steel plate
JP5194986B2 (en) Manufacturing method of high-strength parts and high-strength parts
CN114438418A (en) Hot-formed member and method for manufacturing same
JP2005126733A (en) Steel sheet for hot press having excellent hot workability, and automotive member
KR20080111549A (en) Hot-pressed steel sheet member and process for production thereof
JP2009185355A (en) High strength cold-rolled steel sheet having excellent workability and collision resistance and its production method
JP6601253B2 (en) High strength steel plate
JP4987272B2 (en) Manufacturing method of high-strength parts and high-strength parts
JP2017145469A (en) Manufacturing method of high strength steel sheet
WO2014196645A1 (en) Heat-treated steel material and method for producing same
JP2017145467A (en) Manufacturing method of high strength steel sheet
JP4975245B2 (en) Manufacturing method of high strength parts
JP4551300B2 (en) Manufacturing method of high strength parts
JP7111252B2 (en) Coated steel member, coated steel plate and manufacturing method thereof
JP6384623B2 (en) High strength steel plate and manufacturing method thereof
JP2014037596A (en) Hot molded steel sheet member, method for producing the same and steel sheet for hot molding
JP4317506B2 (en) Manufacturing method of high strength parts
JP2023553672A (en) Coated steel plate, high-strength press-hardened steel parts, and manufacturing method thereof
JP4551169B2 (en) Manufacturing method of high strength parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090522

R151 Written notification of patent or utility model registration

Ref document number: 4317506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350