WO2015037060A1 - Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article - Google Patents

Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article Download PDF

Info

Publication number
WO2015037060A1
WO2015037060A1 PCT/JP2013/074426 JP2013074426W WO2015037060A1 WO 2015037060 A1 WO2015037060 A1 WO 2015037060A1 JP 2013074426 W JP2013074426 W JP 2013074426W WO 2015037060 A1 WO2015037060 A1 WO 2015037060A1
Authority
WO
WIPO (PCT)
Prior art keywords
press
less
area
amount
steel
Prior art date
Application number
PCT/JP2013/074426
Other languages
French (fr)
Japanese (ja)
Inventor
村上 俊夫
純也 内藤
圭介 沖田
池田 周之
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to US14/917,823 priority Critical patent/US20160222482A1/en
Priority to KR1020167006201A priority patent/KR101827187B1/en
Priority to PCT/JP2013/074426 priority patent/WO2015037060A1/en
Priority to EP13893228.0A priority patent/EP3045553A4/en
Priority to CN201380079439.1A priority patent/CN105518170A/en
Priority to MX2016003260A priority patent/MX2016003260A/en
Priority to CA3014626A priority patent/CA3014626A1/en
Priority to RU2016111914A priority patent/RU2625357C1/en
Priority to CA2923583A priority patent/CA2923583A1/en
Publication of WO2015037060A1 publication Critical patent/WO2015037060A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • B21D22/286Deep-drawing of cylindrical articles using consecutive dies with lubricating or cooling means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the present invention is used when manufacturing a structural part of an automobile, and is a hot-press steel sheet suitable for hot press forming, a press-formed product obtained from such a hot-press steel plate, and a press-formed product. It relates to a manufacturing method.
  • a preheated steel plate blade
  • the hot press steel plate is useful for application to a hot press forming method in which a heat treatment is performed simultaneously with shape formation to obtain a predetermined strength.
  • a press-formed product, and a useful method for producing such a press-formed product is used when manufacturing a structural part of an automobile, and is a hot-press steel sheet suitable for hot press forming, a press-formed product obtained from such a hot-press steel plate, and a press-formed product.
  • the steel sheet is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to lower the strength, and then formed with a mold having a temperature lower than that of the steel sheet (for example, room temperature).
  • a hot press molding method is used for manufacturing a part (press-molded product) that performs quenching heat treatment (quenching) using the temperature difference between the two to ensure strength after molding.
  • a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot press method.
  • FIG. 1 is a schematic explanatory diagram showing a mold configuration for carrying out hot press molding as described above.
  • 1 is a punch
  • 2 is a die
  • 3 is a blank holder
  • 4 is a steel plate (blank)
  • BHF is a crease pressing force
  • rp is a punch shoulder radius
  • rd is a die shoulder radius
  • CL is a punch / die clearance.
  • the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages.
  • a cooling medium for example, water
  • the steel plate (blank) 4 is subjected to the two-phase region temperature (Ac 1 transformation point to Ac 3 transformation point) or Ac 3 transformation. Molding is started in a state of being softened by heating to a single-phase temperature above the point. That is, in a state where the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1, and the outer diameter of the steel plate 4 is reduced. A shape corresponding to the outer shape of the punch 1 is formed while shrinking.
  • a steel sheet for hot pressing that is widely used at present, a steel sheet made of 22MnB5 steel is known.
  • This steel sheet has a tensile strength of 1500 MPa and an elongation of about 6 to 8%, and is applied to an impact resistant member (a member that is not deformed as much as possible and does not break).
  • an impact resistant member a member that is not deformed as much as possible and does not break.
  • Patent Documents 1 to 4 As hot-press steel sheets exhibiting good elongation, for example, the techniques of Patent Documents 1 to 4 have been proposed. In these technologies, the basic strength class of each steel sheet is adjusted by setting the carbon content in the steel sheet to various ranges, and ferrite with high deformability is introduced, and the average of ferrite and martensite Elongation is improved by reducing the particle size. These techniques are effective for improving the elongation, but are still insufficient from the viewpoint of improving the elongation according to the strength of the steel sheet. For example, the tensile strength TS is 1470 MPa or more and the elongation EL is about 10.2% at the maximum, and further improvement is required.
  • the part where deformation should be prevented is high strength (high strength side: impact resistant part side), and the part requiring energy absorption is low strength and high ductility (low strength side: energy absorbing part side).
  • High strength side impact resistant part side
  • low strength side energy absorbing part side
  • Technology has been proposed.
  • impact resistance is included in the parts of the B pillar and rear side member in consideration of compatibility (a function to protect the other party when a small car collides) in a side collision or a rear collision. In some cases, it has both functional parts of energy absorption.
  • a tensile strength of 1500 MPa is achieved on the high strength side (impact resistant site side), but the maximum tensile strength is 700 MPa and the elongation EL is about 17% on the low strength side (energy absorption site side).
  • the energy absorption site side In order to further improve the energy absorption characteristics, it is required to realize higher strength and higher ductility.
  • Non-Patent Document 1 Although it is necessary to join automobile parts mainly by spot welding, it is known that the strength reduction in the welding heat affected zone (HAZ) is remarkable and the strength of the welded joint is reduced (softened) (for example, Non-Patent Document 1).
  • the present invention has been made in view of the above circumstances, and its purpose is to facilitate molding and processing before hot pressing, and when a uniform characteristic is required in a molded product, it has high strength. If a region corresponding to an impact resistant region and an energy absorbing region is required in a single molded product, it is possible to obtain a press molded product that can achieve a high balance between elongation and elongation. Steel sheet for hot pressing that can achieve a high balance between high strength and elongation at a high level, and that is useful in obtaining a press-formed product with good softening prevention characteristics in HAZ, and a press-formed product that exhibits the above characteristics And providing a useful method for producing such a press-formed product.
  • the steel sheet for hot pressing of the present invention that was able to achieve the above object, C: 0.15 to 0.5% (meaning mass%, hereinafter the same for chemical composition) Si: 0.2-3%, Mn: 0.5 to 3%, P: 0.05% or less (excluding 0%), S: 0.05% or less (excluding 0%), Al: 0.01 to 1%, B: 0.0002 to 0.01%, Ti: 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less (where [N] indicates the content (% by mass) of N), and N: 0.0010 ⁇ 0.01%, Each of which contains iron and inevitable impurities, Among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the relationship between the precipitated Ti amount in the steel and the total Ti amount in the following formula (1) And the metal structure is characterized in that the ferrite fraction is 30 area% or more.
  • the “equivalent circle diameter” means the diameter when converted to a circle of the same area when focusing on the size (area) of the Ti-containing precipitate (eg, TiC) (the “average equivalent circle diameter” is its average Value).
  • the hot press-forming steel sheet of the present invention it is also useful to contain at least one of the following (a) to (c) as other elements as required. Depending on the type of element contained as required, the properties of the press-formed product are further improved.
  • C 0.01% or less (excluding 0%) of at least one selected from the group consisting of Mg, Ca and REM
  • the method for producing a press-formed product of the present invention that has achieved the above-mentioned object includes the steel sheet for hot pressing of the present invention as described above having an Ac 1 transformation point of + 20 ° C. or higher and an Ac 3 transformation point of ⁇ 20 ° C. or lower. After heating to the above temperature, press forming of the steel sheet is started, and during the forming and after the forming is completed, a temperature lower by 100 ° C. than the bainite transformation start temperature Bs while ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by cooling to the following.
  • the metal structure of the press-formed product is as follows: retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%) Martensite: 31 area% or less (excluding 0 area%), and among the Ti-containing precipitates contained in the press-formed product, the average equivalent circle diameter of the equivalent circle diameter of 30 nm or less is 10 nm or less.
  • the amount of precipitated Ti in the steel and the total amount of Ti satisfy the relationship of the following formula (1), and the balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
  • Precipitated Ti amount (mass%)-3.4 [N] ⁇ 0.5 ⁇ [Total Ti amount (mass%)-3.4 [N]] (1) (In the formula (1), [N] indicates the content (% by mass) of N in the steel)
  • another method for producing a press-formed product of the present invention that has achieved the above object is to use a steel sheet for hot pressing as described above, and divide the heating area of the steel sheet into at least two areas. region of Ac 3 transformation point or more, while heating to a temperature of 950 ° C. or less, the other one region Ac 1 transformation point + 20 ° C. or higher, then heated to Ac 3 transformation point -20 ° C. or less of the temperature, both Press molding is started for the region, and during molding and after completion of molding, the mold is cooled to a temperature below the martensite transformation start temperature Ms while ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by that.
  • Another press-formed product of the present invention is a steel plate press-formed product having the chemical composition as described above, and the press-formed product has a metal structure of retained austenite: 3 to 20 area%, martensite: The first region is 80 area% or more, and the metal structure is retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%) , Martensite: having a second region that is 31 area% or less (not including 0 area%), and among the Ti-containing precipitates contained in the steel of this second region, the equivalent circle diameter is The average equivalent circle diameter of those having a thickness of 30 nm or less is 10 nm or less, and the amount of precipitated Ti in the steel and the total amount of Ti satisfy the relationship of the following formula (1).
  • the chemical component composition is strictly defined, the size of Ti-containing precipitates is controlled, the precipitation rate is controlled for Ti that does not form TiN, and the ferrite ratio for the metal structure. Since a steel sheet with adjusted thickness is used, the strength-elongation balance of the press-formed product can be raised to a high level by hot pressing this under predetermined conditions. In addition, when hot pressing is performed under different conditions in a plurality of regions, an impact resistant part and an energy absorbing part can be formed in a single molded product, and a high strength and elongation balance can be achieved at each part at a high level. The anti-softening property of is improved.
  • the inventors of the present invention when heating a steel plate to a predetermined temperature and then producing a press-formed product by hot press forming, show good ductility (elongation) while ensuring high strength after press forming. In order to realize a hot-press steel sheet that can provide a simple press-formed product, studies were made from various angles.
  • the chemical component composition of the steel sheet for hot pressing is strictly defined, the size of Ti-containing precipitates and the amount of precipitated Ti are controlled, the metal structure is made appropriate, and the steel sheet is subjected to predetermined conditions. It has been found that by performing hot press molding, a predetermined amount of retained austenite can be secured after press molding, and a press-molded product having increased inherent ductility (residual ductility) can be obtained, and the present invention has been completed.
  • C corresponds to an impact resistant site and an energy absorbing site in a single molded product in order to achieve a high balance between high strength and elongation when uniform properties are required in a press molded product. It is an important element for securing retained austenite when a region is required, particularly in a low strength / high ductility region. Moreover, at the time of heating by hot press molding, C concentrates to austenite, so that residual austenite can be formed after quenching. Furthermore, it contributes to an increase in the amount of martensite and raises the strength. In order to exert these effects, the C content needs to be 0.15% or more.
  • the target metal structure ferrite, bainitic ferrite, especially in low strength and high ductility parts
  • the preferable lower limit of the C content is 0.17% or more (more preferably 0.20% or more), and the more preferable upper limit is 0.45% or less (more preferably 0.40% or less).
  • Si (Si: 0.2-3%) Si exhibits the effect of forming retained austenite by suppressing martensite from tempering to form cementite and decomposition of untransformed austenite during cooling of mold quenching.
  • the Si content needs to be 0.2% or more. Further, if the Si content is excessive and exceeds 3%, ferrite transformation is promoted during cooling after hot rolling, so that TiC in the ferrite formed at that time is easily formed coarsely. Therefore, the HAZ softening preventing property cannot be obtained.
  • the preferable lower limit of the Si content is 0.5% or more (more preferably 1.0% or more), and the preferable upper limit is 2.5% or less (more preferably 2.0% or less).
  • Mn is an element effective in enhancing hardenability and suppressing the formation of structures (ferrite, pearlite, bainite, etc.) other than martensite and retained austenite during cooling of mold hardening. Further, it is an element that stabilizes austenite and contributes to an increase in the amount of retained austenite. In order to exhibit such an effect, it is necessary to contain 0.5% or more of Mn. When only the characteristics are taken into consideration, it is preferable that the Mn content is high, but the upper limit is made 3% or less because the cost of alloy addition increases. The minimum with preferable Mn content is 0.7% or more (more preferably 1.0% or more), and a preferable upper limit is 2.5% or less (more preferably 2.0% or less).
  • P 0.05% or less (excluding 0%)
  • P is an element inevitably contained in the steel, but it deteriorates ductility, so P is preferably reduced as much as possible.
  • the upper limit was made 0.05% or less (excluding 0%).
  • the upper limit with preferable P content is 0.045% or less (more preferably 0.040% or less).
  • S 0.05% or less (excluding 0%)
  • S is an element inevitably contained in steel, and deteriorates ductility. Therefore, S is preferably reduced as much as possible.
  • the upper limit was made 0.05% or less (excluding 0%).
  • the upper limit with preferable S content is 0.045% or less (more preferably 0.040% or less).
  • Al 0.01-1%)
  • Al is useful as a deoxidizing element, and also fixes solid solution N present in steel as AlN, which is useful for improving ductility.
  • the Al content needs to be 0.01% or more.
  • the preferable lower limit of the Al content is 0.02% or more (more preferably 0.03% or more), and the preferable upper limit is 0.8% or less (more preferably 0.6% or less).
  • B has an action of suppressing ferrite transformation, pearlite transformation, and bainite transformation on the high-strength portion side, so that during the cooling after heating to the two-phase region temperature (Ac 1 transformation point to Ac 3 transformation point), It is an element that prevents the formation of pearlite and bainite and contributes to securing retained austenite.
  • B In order to exert such an effect, B needs to be contained in an amount of 0.0002% or more, but the effect is saturated even if it is contained in excess of 0.01%.
  • a preferable lower limit of the B content is 0.0003% or more (more preferably 0.0005% or more), and a preferable upper limit is 0.008% or less (more preferably 0.005% or less).
  • Ti 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less: [N] is N content (mass%)
  • Ti fixes N and allows B to be maintained in a solid solution state, thereby exhibiting an effect of improving hardenability. In order to exert such an effect, it is important to contain 0.01% or more than the stoichiometric ratio of Ti and N (3.4 times the N content). Further, Ti added excessively to N is present in a solid solution state in the hot stamping molded product, and the precipitated compound is dispersed finely, so that the solid solution is dissolved when the hot stamping molded product is welded.
  • Strength reduction in HAZ can be suppressed by effects such as precipitation strengthening due to the formation of Ti as TiC and an increase delay of dislocation density due to the effect of preventing dislocation movement due to TiC.
  • the Ti content becomes excessive and exceeds 3.4 [N] + 0.1%, the Ti-containing precipitates formed (for example, TiN) are coarsened and the ductility of the steel sheet is lowered.
  • the more preferable lower limit of the Ti content is 3.4 [N] + 0.02% or more (more preferably 3.4 [N] + 0.05% or more), and the more preferable upper limit is 3.4 [N]. + 0.09% or less (more preferably 3.4 [N] + 0.08% or less).
  • N (N: 0.001 to 0.01%) N is an element inevitably mixed in and is preferably reduced as much as possible. However, since there is a limit to reducing it in the actual process, 0.001% was set as the lower limit. Further, when the N content is excessive, the Ti-containing precipitates formed (for example, TiN) are coarsened, and the precipitates act as a starting point for fracture and reduce the ductility of the steel sheet. It was.
  • the upper limit with more preferable N content is 0.008% or less (more preferably 0.006% or less).
  • the basic chemical components in the steel sheet for hot pressing of the present invention are as described above, and the balance is iron and inevitable impurities (for example, O, H, etc.) other than P, S, and N.
  • the steel sheet for hot pressing according to the present invention further contains at least one of the following (a) to (c) if necessary.
  • the properties of the steel sheet for hot pressing ie, press-formed product
  • the preferable range when these elements are contained and the reason for limiting the range are as follows.
  • A 0.1% or less in total of one or more selected from the group consisting of V, Nb and Zr (excluding 0%)
  • B 1% or less in total of at least one selected from the group consisting of Cu, Ni, Cr and Mo (not including 0%)
  • C 0.01% or less (excluding 0%) of at least one selected from the group consisting of Mg, Ca and REM
  • V, Nb, and Zr have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to exhibit such an effect, it is preferable to contain 0.001% or more in total. However, when the content of these elements is excessive, coarse carbides are formed, and the ductility is deteriorated by becoming the starting point of fracture. For these reasons, the total content of these elements is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.005% or more (more preferably 0.008% or more) in total, and the more preferable upper limit is 0.08% or less (more preferably 0.06%) in total. The following).
  • Cu, Ni, Cr and Mo 1% or less in total (excluding 0%)
  • Cu, Ni, Cr, and Mo suppress ferrite transformation, pearlite transformation, and bainite transformation, and thus prevent formation of ferrite, pearlite, and bainite during cooling after heating, and effectively act to secure retained austenite.
  • the more preferable lower limit of the content of these elements is 0.05% or more (more preferably 0.06% or more) in total, and the more preferable upper limit is 0.5% or less (more preferably 0.3% or less) in total. ).
  • a total of one or more selected from the group consisting of Mg, Ca and REM (rare earth elements) is 0.01% or less (excluding 0%)) Since these elements refine the inclusions, they effectively work to improve ductility. In order to exhibit these effects, it is preferable to contain 0.0001% or more in total. Considering only the characteristics, it is preferable that the content is large, but since the effect is saturated, the total content is preferably 0.01% or less.
  • the more preferable lower limit of the content of these elements is 0.0002% or more (more preferably 0.0005% or more) in total, and the more preferable upper limit is 0.005% or less (more preferably 0.003% or less) in total. ).
  • the Ti-containing precipitates and the control of the formula (1) are for preventing the softening of the HAZ, and are essentially necessary control in the molded product, but the change of these values before and after hot press molding is small. Therefore, it is necessary to already control at the stage before forming (steel plate for hot pressing).
  • a Ti-containing precipitate can be maintained in a solid solution state or a fine state during heating by hot pressing. It becomes like this.
  • the amount of precipitated Ti in the press-formed product can be controlled to a predetermined amount or less, and joint characteristics can be improved by preventing softening in the HAZ.
  • the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less.
  • the equivalent circle diameter of the target Ti-containing precipitate is defined as 30 nm or less, except for TiN, which is coarsely formed in the melting stage and does not affect the structure change or properties thereafter. This is because it is necessary to control the Ti-containing precipitates.
  • the size (average equivalent circle diameter) of the Ti-containing precipitate is preferably 5 nm or less, and more preferably 3 nm or less.
  • the Ti-containing precipitates that are the subject of the present invention include TiC and TiN as well as precipitates containing Ti such as TiVC, TiNbC, TiVCN, and TiNbCN.
  • the average equivalent circle diameter of Ti-containing precipitates in a press-formed product is specified to be 10 nm or less, whereas it is specified to be 6 nm or less before forming (hot-press steel plate). .
  • the reason is that Ti is present in a fine precipitate or a solid solution state in the steel plate, but when heating for about 15 minutes or more near 800 ° C., the Ti-containing precipitate is slightly coarsened. Rather than the molded product, the size of the precipitate is defined larger.
  • the average equivalent circle diameter of the Ti-containing precipitate is required to be 10 nm or less, and in order to realize the precipitation state with a hot stamped product, It is necessary that the average equivalent circle diameter of fine precipitates of 30 ⁇ m or less is 6 nm or less at the stage, and most of Ti is present in a solid solution state.
  • the amount of Ti present as precipitates other than TiN is the remaining amount of 0.1% after subtracting the Ti forming TiN out of the total Ti.
  • the amount needs to be less than 5 times (that is, 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]]) (requirement (B) above).
  • the amount of precipitated Ti (mass%)-3.4 [N] is preferably 0.4 ⁇ [total Ti amount (mass%)-3.4 [N]] or less, more preferably 0.3 ⁇ [ The total Ti amount (% by mass) is -3.4 [N] or less.
  • the ferrite fraction in the hot-press steel sheet needs to be 30 area% or more (requirement (C) above).
  • the ferrite fraction is preferably 50 area% or more, more preferably 70 area% or more.
  • the balance of the metal structure is not particularly limited, and examples thereof include at least one of pearlite, bainite, martensite, and retained austenite.
  • a slab obtained by melting a steel material having the above chemical composition is heated at a temperature of 1100 ° C. or higher (preferably 1150 ° C. or higher), Hot rolling is performed at 1300 ° C. or lower (preferably 1250 ° C. or lower), and the finish rolling temperature is 850 ° C. or higher (preferably 900 ° C. or higher), or 1050 ° C. or lower (preferably 1000 ° C. or lower). (Preferably 625 ° C. or less) is cooled (rapidly cooled) at an average cooling rate of 20 ° C./second or more (preferably 30 ° C./second or more), and 620 ° C.
  • 580 ° C. is 10 ° C./second or less (preferably 5 ° C. After cooling at an average cooling rate of 10 ° C./second or higher, then 350 ° C. or higher (preferably 380 ° C. or higher), 450 ° C. or lower (preferably 4 0 °C should be as winding below).
  • the steel sheet for hot pressing having the chemical composition, the metal structure and the Ti precipitation state as described above may be used for the production of the hot press as it is, and the reduction ratio after pickling: 60% or less (preferably 40% The following may be applied to the production of a hot press after cold rolling.
  • the steel sheet for hot pressing of the present invention may have a microstructure when the hot-rolled material is heat-treated in a continuous annealing furnace or a continuous hot dip galvanizing line. In short, as long as the required characteristics such as the metal structure and the Ti precipitation state are satisfied, it is included in the steel sheet for hot pressing of the present invention.
  • a steel sheet containing a predetermined amount of ferrite it is necessary to control the heating temperature within a predetermined range in order to partially transform the ferrite into austenite while partially retaining the ferrite.
  • the heating temperature of the steel sheet is less than the Ac 1 transformation point + 20 ° C., a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product). If the heating temperature of the steel sheet exceeds the Ac 3 transformation point of ⁇ 20 ° C., the amount of transformation to austenite increases too much during heating, and a predetermined amount of ferrite cannot be secured in the final structure (structure of the molded product).
  • the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From such a viewpoint, the average cooling rate during molding must be 20 ° C./second or more, and the cooling end temperature must be 100 ° C. or lower than the bainite transformation start temperature Bs.
  • the average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more). By making the cooling end temperature 100 ° C.
  • the austenite existing during heating is transformed into bainite or martensite while preventing the formation of a structure such as ferrite or pearlite.
  • a predetermined amount of retained austenite is secured by allowing fine austenite to remain between bainite and martensite lath while securing martensite.
  • the cooling end temperature is higher than the temperature lower by 100 ° C. than the bainite transformation start temperature Bs or the average cooling rate is less than 20 ° C./second, a structure such as ferrite or pearlite is formed, and a predetermined amount of retained austenite is secured. This is not possible, and the elongation (ductility) of the molded product is deteriorated.
  • the cooling end temperature is not particularly limited as long as it is 100 ° C. or lower than Bs, and may be, for example, martensitic transformation start temperature Ms or lower.
  • control of the average cooling rate is basically unnecessary when the temperature is lower than the bainite transformation start temperature Bs by 100 ° C. or less, for example, at an average cooling rate of 1 ° C./second or more and 100 ° C./second or less to room temperature. It may be cooled.
  • Control of the average cooling rate during molding and after molding is completed by controlling (a) the temperature of the molding die (cooling medium shown in FIG. 1) and (b) controlling the thermal conductivity of the die. It can be achieved by such means.
  • a press-molded product single region molded product manufactured by hot pressing as described above
  • the metal structure is retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: 30 Less than area% (excluding 0 area%), martensite: 31 area% or less (excluding 0 area%), and a high level and uniform balance between high strength and elongation in the molded product It can be achieved.
  • the reason for setting the range of each requirement (basic structure) in such a hot press-formed product is as follows.
  • Residual austenite has the effect of increasing the work hardening rate (transformation-induced plasticity) and improving the ductility of the molded product by transforming into martensite during plastic deformation.
  • the retained austenite fraction needs to be 3 area% or more.
  • the higher the retained austenite fraction the better.
  • the retained austenite that can be secured is limited, and the upper limit is about 20 area%.
  • the preferable lower limit of retained austenite is 5 area% or more (more preferably 7 area% or more).
  • the ductility (elongation) of a press-formed product can be increased by making the main structure fine and highly ductile ferrite. From this point of view, the ferrite fraction is 30% by area or more. However, if this fraction exceeds 80 area%, the strength of the molded product cannot be ensured.
  • a preferred lower limit of the ferrite fraction is 35 area% or more (more preferably 40 area% or more), and a preferred upper limit is 75 area% or less (more preferably 70 area% or less).
  • Bainitic ferrite is an effective structure for improving the strength of a molded product, but it is a structure that is slightly poor in ductility. From such a viewpoint, the fraction of bainitic ferrite is less than 30 area%. A preferable upper limit of the fraction of bainitic ferrite is 25 area% or less (more preferably 20 area% or less).
  • Martensite (an as-quenched martensite) is an effective structure for improving the strength of a molded product, but is a structure having poor ductility, and therefore, when present in a large amount, it deteriorates elongation. From such a viewpoint, the martensite fraction is 31 area% or less. A preferred upper limit of the martensite fraction is 25 area% or less (more preferably 20 area% or less).
  • pearlite may be included as the remaining structure.
  • these structures have a lower contribution to strength and ductility than other structures, and it is preferable not to basically contain them. (It may be 0 area%).
  • the equivalent of the average circle having an equivalent circle diameter of 30 nm or less is 10 nm or less.
  • the average equivalent circle diameter of the Ti-containing precipitate is preferably 8 nm or less, and more preferably 6 nm or less.
  • the amount of Ti present as precipitates other than TiN is the remainder after subtracting Ti that forms TiN out of all Ti.
  • the Ti content is less than 0.5 times that of Ti (that is, less than 0.5 ⁇ [total Ti amount (%) ⁇ 3.4 [N]]).
  • the deposited Ti amount-3.4 [N] is preferably 0.4 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]] or less, more preferably 0.3 ⁇ [total Ti amount ( % By mass) -3.4 [N]] or less.
  • the properties such as strength and elongation of the press-formed product can be controlled by appropriately adjusting the press forming conditions (heating temperature and cooling rate) and high ductility. (Residual ductility) press-molded products can be obtained, so it can be applied to parts that have been difficult to apply with conventional press-molded products (for example, energy absorbing members). Useful.
  • the heating temperature and the conditions of each region at the time of molding are appropriately controlled.
  • a press-formed product that exhibits a strength-ductility balance corresponding to each region hereinafter sometimes referred to as a multi-region molded product
  • the heating region of the steel plate is divided into at least two regions, one of which is hereinafter referred to as the first region. Is heated to a temperature not lower than Ac 3 transformation point and not higher than 950 ° C., and the other region (hereinafter referred to as second region) is not lower than Ac 1 transformation point + 20 ° C. and temperature not higher than Ac 3 transformation point ⁇ 20 ° C. Then, press molding is started for both the first and second regions, and during molding and after completion of molding, both the first and second regions have a temperature of 20 ° C./second or more in the mold. What is necessary is just to cool to the temperature below the martensitic transformation start temperature Ms, ensuring an average cooling rate.
  • the heating region of the steel sheet is divided into at least two regions (high-strength side region and low-strength side region), and the manufacturing conditions are controlled according to each region, whereby the strength-ductility balance corresponding to each region is obtained.
  • a press-formed product exhibiting the above can be obtained.
  • the second region corresponds to the low-strength side region
  • the manufacturing conditions, structure, and characteristics in this region are basically the same as those of the single-region molded product described above.
  • manufacturing conditions for forming the other first region corresponding to the high-strength side region
  • the heating temperature of the steel sheet is preferably Ac 3 transformation point + 50 ° C. or higher and 930 ° C. or lower.
  • the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From this point of view, the average cooling rate during molding needs to be 20 ° C./second or more, and the cooling end temperature needs to be lower than the martensite transformation start temperature (Ms point).
  • the average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more).
  • the cooling end temperature is specifically 400 ° C. or lower, preferably 300 ° C. or lower.
  • the metal structure and precipitates are different between the first region and the second region.
  • the metal structures are retained austenite: 3 to 20 area% (the effect of retained austenite is the same as described above), and martensite: 80 area% or more.
  • the same metal structure and Ti state average equivalent circle diameter of Ti-containing precipitates, amount of precipitated Ti (mass%) -3.4 [N], etc.) as the single region molded product are satisfied. .
  • the area fraction of martensite needs to be 80 area% or more.
  • the fraction of martensite is preferably 85 area% or more (more preferably 90 area% or more).
  • the remaining structure in the first region may partially include ferrite, pearlite, bainite, and the like.
  • Example 1 Steel materials (steel Nos. 1-16, 18-32) having the chemical composition shown in Tables 1 and 2 below are vacuum-melted to form experimental slabs, followed by hot rolling to obtain steel plates, and then The process which cooled and simulated winding was performed (plate
  • the winding simulation processing method after cooling to the winding temperature, the sample was placed in a furnace heated to the winding temperature, held for 30 minutes, and then cooled in the furnace. The steel sheet manufacturing conditions at this time are shown in Tables 3 and 4 below.
  • Treatment (1) After cold-rolling a hot-rolled steel sheet (sheet thickness: 1.6 mm), simulating continuous annealing with a heat treatment simulator, heating to 800 ° C., holding for 90 seconds, and average cooling at 20 ° C./second Cooled to 500 ° C. at a rate and held for 300 seconds.
  • the obtained steel plate (press forming steel plate) was analyzed for the precipitation state of Ti and the observation of the metal structure (fraction of each structure) in the following manner. Moreover, the tensile strength (TS) of each steel plate was measured by the method mentioned later. The results are shown in Table 5 below together with a calculated value of 0.5 ⁇ [total Ti amount (mass%) ⁇ 3.4 [N]] [displayed as 0.5 ⁇ [total Ti amount-3.4 [N]]]. , 6.
  • the amount of precipitated Ti (mass%)-3.4 [N] (the amount of Ti present as a precipitate) was subjected to extraction residue analysis using a mesh having a mesh diameter of 0.1 ⁇ m (in the extraction process, Precipitates aggregate and fine precipitates can be measured), and the amount of precipitated Ti (mass%)-3.4 [N] (in Tables 5 and 6, indicated as precipitated Ti amount-3.4 [N]) is obtained. It was. When the Ti-containing precipitate partially contains V or Nb, the content of these precipitates was also measured.
  • the Ti precipitation state was analyzed by the method described above.
  • the martensite (as-quenched martensite) fraction was determined by X-ray diffraction from the area ratio of the martensite and retained austenite as it was quenched by repeller corrosion of the steel sheet.
  • the martensite fraction was calculated by subtracting the residual austenite fraction.
  • Tables 8 and 9 The observation results of the metal structure (Ti precipitation state, fraction of each structure, amount of precipitated Ti-3.4 [N]) are shown in Tables 8 and 9 below.
  • Table 10 shows the mechanical properties (tensile strength TS, elongation EL, TS ⁇ EL, and hardness reduction amount ⁇ Hv) of the molded product.
  • the value of the precipitated Ti amount-3.4 [N] in the formed product is slightly different from the value of the precipitated Ti amount-3.4 [N] in the press-formed steel sheet, but this is a measurement error.
  • Steel No. Those of 3, 7 to 9, 12 to 14, 18, and 22 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, Steel No. No. 3 uses a steel sheet for press forming with a low Si content, and the retained austenite fraction in the press-formed product is not ensured and elongation is not achieved, so that the strength-elongation balance deteriorates. ing. Steel No. No. 7 has a low finish rolling temperature at the time of manufacturing the steel sheet, the Ti-containing precipitates in the press forming steel sheet become coarse, and does not satisfy the relationship of formula (1) at any stage of the press forming steel sheet or the press formed product. The anti-softening property is deteriorated.
  • Steel No. No. 8 has a high cooling rate of 620 ° C. to 580 ° C. at the time of manufacturing the steel sheet, the ferrite transformation does not proceed sufficiently, the ferrite fraction in the press forming steel sheet cannot be secured, and the strength becomes high. It is expected that molding and processing before press molding will be difficult.
  • Steel No. In No. 9 the coiling temperature at the time of manufacturing the steel sheet is high, and the Ti-containing precipitates in the steel sheet for press forming are coarsened. When press forming using such a steel sheet, the forming conditions are appropriate and the strength- Even if the ductility balance is good, the anti-softening property is deteriorated.
  • Steel No. No. 14 has a high cooling end temperature during press molding, pearlite is generated, retained austenite cannot be secured, strength and elongation are lowered, and strength-elongation balance (TS ⁇ EL) is deteriorated.
  • Steel No. No. 18 uses a steel sheet for press forming with an excessive C content, the ferrite fraction of the steel sheet cannot be secured, the ferrite fraction in the press-formed product cannot be secured, and only a low elongation EL is obtained. The strength-elongation balance (TS ⁇ EL) is also deteriorated.
  • Example 2 Steel materials (steel Nos. 33 to 37) having the chemical composition shown in Table 11 below were melted in vacuum to form experimental slabs, followed by hot rolling, followed by cooling and winding (sheet thickness) : 3.0 mm). The steel plate production conditions at this time are shown in Table 12 below.
  • each steel sheet (3.0mm t ⁇ 150mm ⁇ 200mm) was heated to a predetermined temperature in a heating furnace, performing a press-forming and cooling process in a mold of hat-shaped (FIG. 1), and a molded article .
  • the steel sheet is placed in an infrared furnace, and the portion (the steel plate portion corresponding to the first region) to be strengthened is directly irradiated with infrared rays so that the portion can be heated at a high temperature.
  • the steel plate portion corresponding to the region of (1) was covered with a cover so as to block a part of infrared rays so that it could be heated at a low temperature, thereby giving a heating temperature difference. Therefore, the molded product has regions having different strengths within a single part.
  • Table 14 shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature in each region during press molding).
  • Table 15 shows the observation results of metal structures (fraction of each structure) and the analysis results of the precipitation state of Ti.
  • the mechanical properties (tensile strength TS, elongation EL, TS ⁇ EL, and hardness reduction amount ⁇ Hv) of the press-formed product are shown in Table 16 below.
  • the tensile strength (TS) on the high strength side is 1470 MPa or higher
  • the elongation (EL) satisfies 8% or higher
  • the strength-elongation balance (TS ⁇ EL) is 14000 (MPa ⁇ %) or higher.
  • Steel No. Nos. 33 to 36 are examples that satisfy the requirements defined in the present invention, and it can be seen that press-formed products having a good strength-ductility balance in each region are obtained.
  • Steel No. In No. 37 the heating temperature at the time of press molding is low, the martensite fraction on the high strength side is insufficient, and the strength on the high strength side is reduced (the strength difference from the low strength side is Less than 300 MPa).
  • the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the amount of precipitated Ti in the steel And the total Ti content satisfy a predetermined relationship, and the metal structure has a ferrite fraction of 30% by area or more, so that molding and processing can be easily performed before hot pressing, and in the molded product.
  • a press-molded product that can achieve a high level of balance between strength and elongation can be obtained, and the area corresponding to the impact-resistant and energy-absorbing sites in a single molded product. Is required, it is possible to achieve a high level of balance between high strength and elongation according to each region, and hot press useful for obtaining a press-molded product with good softening prevention properties in HAZ. Steel sheet can be realized.

Abstract

 Provided is a hot-pressing steel plate useful for obtaining a press-molded article having excellent anti-softening characteristics in heat-affected zones (HAZ) while attaining a press-molded article that can achieve a high level of balance between high strength and stretchability if uniform characteristics within the molded article are required, and a high level of balance between high strength and stretchability in respective regions if regions corresponding to shock-resistant portions and energy-absorbing portions are required within one molded article; molding and processing prior to hot-pressing being facilitated by the hot-pressing steel plate having a prescribed chemical composition, having the equivalent circular diameter of Ti-containing deposits included in the steel plate be 30 nm or less with the average equivalent circular diameter of the Ti-containing deposits being 6 nm or less, having the deposited Ti amount and the total Ti amount within the steel satisfy a prescribed relation, and having a metal structure with a proportion of ferrite of 30% by area or greater.

Description

熱間プレス用鋼板およびプレス成形品、並びにプレス成形品の製造方法Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
 本発明は、自動車の構造部品を製造する際に用いられ、熱間プレス成形に適した熱間プレス用鋼板、およびこのような熱間プレス用鋼板から得られるプレス成形品、並びにプレス成形品の製造方法に関する。特に予め加熱された鋼板(ブランク)を所定の形状に成形加工する際に、形状付与と同時に熱処理を施して所定の強度を得る熱間プレス成形法に適用する上で有用な熱間プレス用鋼板、およびプレス成形品、並びにそのようなプレス成形品を製造するための有用な方法に関する。 The present invention is used when manufacturing a structural part of an automobile, and is a hot-press steel sheet suitable for hot press forming, a press-formed product obtained from such a hot-press steel plate, and a press-formed product. It relates to a manufacturing method. In particular, when a preheated steel plate (blank) is formed into a predetermined shape, the hot press steel plate is useful for application to a hot press forming method in which a heat treatment is performed simultaneously with shape formation to obtain a predetermined strength. And a press-formed product, and a useful method for producing such a press-formed product.
 地球環境問題に端を発する自動車の燃費向上対策の一つとして、車体の軽量化が進められており、自動車に使用される鋼板をできるだけ高強度化することが必要となる。その一方で、鋼板を高強度化すると、プレス成形時の形状精度が低下することになる。 As one of the measures to improve the fuel efficiency of automobiles that originated from global environmental problems, the weight of the car body has been reduced, and it is necessary to increase the strength of steel sheets used in automobiles as much as possible. On the other hand, when the strength of the steel plate is increased, the shape accuracy at the time of press forming is lowered.
 こうしたことから、鋼板を所定の温度(例えば、オーステナイト相となる温度)に加熱して強度を下げた後、鋼板に比べて低温(例えば室温)の金型で成形することによって、形状の付与と同時に、両者の温度差を利用した急冷熱処理(焼入れ)を行って、成形後の強度を確保する熱間プレス成形法が部品(プレス成形品)の製造に採用されている。尚、このような熱間プレス成形法は、ホットプレス法の他、ホットフォーミング法、ホットスタンピング法、ホットスタンプ法、ダイクエンチ法等、様々な名称で呼ばれている。 From this, the steel sheet is heated to a predetermined temperature (for example, the temperature at which it becomes an austenite phase) to lower the strength, and then formed with a mold having a temperature lower than that of the steel sheet (for example, room temperature). At the same time, a hot press molding method is used for manufacturing a part (press-molded product) that performs quenching heat treatment (quenching) using the temperature difference between the two to ensure strength after molding. Such a hot press forming method is called by various names such as a hot forming method, a hot stamping method, a hot stamp method, and a die quench method in addition to the hot press method.
 図1は、上記のような熱間プレス成形を実施するための金型構成を示す概略説明図である。図1中、1はパンチ、2はダイ、3はブランクホルダー、4は鋼板(ブランク)、BHFはしわ押え力、rpはパンチ肩半径、rdはダイ肩半径、CLはパンチ/ダイ間クリアランスを夫々示している。また、これらの部品のうち、パンチ1とダイ2には冷却媒体(例えば水)を通過させることができる通路1a,2aが夫々の内部に形成されており、この通路に冷却媒体を通過させることによってこれらの部品が冷却されるように構成されている。 FIG. 1 is a schematic explanatory diagram showing a mold configuration for carrying out hot press molding as described above. In FIG. 1, 1 is a punch, 2 is a die, 3 is a blank holder, 4 is a steel plate (blank), BHF is a crease pressing force, rp is a punch shoulder radius, rd is a die shoulder radius, and CL is a punch / die clearance. Each shows. Of these components, the punch 1 and the die 2 have passages 1a and 2a through which a cooling medium (for example, water) can pass, and the cooling medium is allowed to pass through the passages. These parts are configured to be cooled.
 こうした金型を用いて熱間プレス成形(例えば、熱間深絞り加工)するに際しては、鋼板(ブランク)4を、(Ac1変態点~Ac3変態点)の二相域温度またはAc3変態点以上の単相域温度に加熱して軟化させた状態で成形を開始する。即ち、高温状態にある鋼板4をダイ2とブランクホルダー3間に挟んだ状態で、パンチ1によってダイ2の穴内(図1の2,2間)に鋼板4を押し込み、鋼板4の外径を縮めつつパンチ1の外形に対応した形状に成形する。また、成形と並行してパンチおよびダイを冷却することによって、鋼板4から金型(パンチ1およびダイ2)への抜熱を行なうと共に、成形下死点(パンチ先端が最深部に位置した時点:図1に示した状態)で更に保持冷却することによって素材(鋼板)の焼入れを実施する。こうした成形法を実施することによって、寸法精度の良い1500MPa級の成形品を得ることができ、しかも冷間で同じ強度クラスの部品を成形する場合に比較して、成形荷重が低減できることからプレス機の容量が小さくて済むことになる。 In hot press forming (for example, hot deep drawing) using such a mold, the steel plate (blank) 4 is subjected to the two-phase region temperature (Ac 1 transformation point to Ac 3 transformation point) or Ac 3 transformation. Molding is started in a state of being softened by heating to a single-phase temperature above the point. That is, in a state where the steel plate 4 in a high temperature state is sandwiched between the die 2 and the blank holder 3, the steel plate 4 is pushed into the hole of the die 2 (between 2 and 2 in FIG. 1) by the punch 1, and the outer diameter of the steel plate 4 is reduced. A shape corresponding to the outer shape of the punch 1 is formed while shrinking. Further, by cooling the punch and die in parallel with the forming, heat is removed from the steel plate 4 to the mold (punch 1 and die 2) and the bottom dead center of the forming (when the punch tip is located at the deepest part) : The material (steel plate) is quenched by holding and cooling in the state shown in FIG. By carrying out such a molding method, it is possible to obtain a 1500 MPa class molded product with good dimensional accuracy and to reduce the molding load compared to the case of molding parts of the same strength class in the cold. The capacity of the can be small.
 現在広く使用されている熱間プレス用鋼板としては、22MnB5鋼を素材とするものが知られている。この鋼板は、引張強度が1500MPaで伸びが6~8%程度であり、耐衝撃部材(衝突時に極力変形させず、破断しない部材)に適用されている。しかしながら、エネルギー吸収部材のように変形を要する部品には、伸び(延性)が低いために適用が困難である。 As a steel sheet for hot pressing that is widely used at present, a steel sheet made of 22MnB5 steel is known. This steel sheet has a tensile strength of 1500 MPa and an elongation of about 6 to 8%, and is applied to an impact resistant member (a member that is not deformed as much as possible and does not break). However, it is difficult to apply to parts that require deformation, such as an energy absorbing member, because the elongation (ductility) is low.
 良好な伸びを発揮する熱間プレス用鋼板として、例えば特許文献1~4の技術も提案されている。これらの技術では、鋼板中の炭素含有量を様々な範囲に設定することによって、夫々の鋼板の基本的な強度クラスを調整すると共に、変形能の高いフェライトを導入し、フェライトおよびマルテンサイトの平均粒径を小さくすることによって、伸びの向上を図っている。これらの技術は、伸びの向上には有効であるものの、鋼板の強度に応じた伸び向上の観点からすれば、依然として不十分である。例えば、引張強さTSが1470MPa以上のもので伸びELが最大で10.2%程度であり、更なる改善が求められている。 As hot-press steel sheets exhibiting good elongation, for example, the techniques of Patent Documents 1 to 4 have been proposed. In these technologies, the basic strength class of each steel sheet is adjusted by setting the carbon content in the steel sheet to various ranges, and ferrite with high deformability is introduced, and the average of ferrite and martensite Elongation is improved by reducing the particle size. These techniques are effective for improving the elongation, but are still insufficient from the viewpoint of improving the elongation according to the strength of the steel sheet. For example, the tensile strength TS is 1470 MPa or more and the elongation EL is about 10.2% at the maximum, and further improvement is required.
 一方、これまで検討されているホットスタンプ成形品に比べて、強度クラスが低い成形品、例えば引張強さTSが980MPa級や1180MPa級についても、冷間プレスでは成形精度に問題があり、その改善策として、低強度熱間プレスに対するニーズがある。その際に、成形品におけるエネルギー吸収特性を大幅に改善する必要がある。 On the other hand, compared to hot stamped molded products that have been studied so far, even for molded products with a lower strength class, such as tensile strength TS of 980 MPa class and 1180 MPa class, cold pressing has a problem in molding accuracy and its improvement As a countermeasure, there is a need for a low-strength hot press. At that time, it is necessary to greatly improve the energy absorption characteristics of the molded product.
 特に近年では、1つの部品内に強度差を付ける技術の開発が進められている。こうした技術として、変形を防止すべき部位は高強度(高強度側:耐衝撃部位側)で、エネルギー吸収が必要な箇所は低強度で且つ高延性(低強度側:エネルギー吸収部位側)とする技術が提案されている。例えば、中型以上の乗用車では、側面衝突時や後方衝突時にコンパチビィリティ(小型車が衝突してきたときに相手側も守る機能)を考慮して、Bピラーやリアサイドメンバの部品内に、耐衝撃性とエネルギー吸収性の両機能部位を持たせる場合がある。こうした部品を作製するには、(a)通常の熱間プレス用鋼板に、同じ温度に加熱・金型焼入れしても低強度となる鋼板を接合する(テーラードウェルドブランク:TWB)方法、(b)金型での冷却速度に差異を付けて鋼板の領域毎に強度差を付ける方法、(c)鋼板の領域毎の加熱温度に差異を付けて強度差を付ける方法、等が提案されている。 Especially in recent years, the development of technology that gives a difference in strength within one part has been underway. As such a technique, the part where deformation should be prevented is high strength (high strength side: impact resistant part side), and the part requiring energy absorption is low strength and high ductility (low strength side: energy absorbing part side). Technology has been proposed. For example, in medium-sized and larger passenger cars, impact resistance is included in the parts of the B pillar and rear side member in consideration of compatibility (a function to protect the other party when a small car collides) in a side collision or a rear collision. In some cases, it has both functional parts of energy absorption. In order to produce such a part, (a) a method of joining a steel plate that is low in strength even when heated and mold-quenched to a normal hot-press steel plate (tailored weld blank: TWB), (b) There have been proposed a method of giving a difference in the strength of each steel plate region with a difference in the cooling rate in the mold, and a method of giving a strength difference by giving a difference in the heating temperature for each region of the steel plate. .
 これらの技術では、高強度側(耐衝撃部位側)で引張強さ:1500MPa級が達成されるが、低強度側(エネルギー吸収部位側)で最大引張強度:700MPa、伸びEL:17%程度であり、エネルギー吸収特性を更に高めるためには、より高強度で高延性を実現することが求められている。 In these techniques, a tensile strength of 1500 MPa is achieved on the high strength side (impact resistant site side), but the maximum tensile strength is 700 MPa and the elongation EL is about 17% on the low strength side (energy absorption site side). In order to further improve the energy absorption characteristics, it is required to realize higher strength and higher ductility.
 また、ホットスタンプで複雑形状を実現するために、室温でプレス成形をしてある程度形を作った後にホットスタンプを行う方向への適用が求められたり、ホットスタンプのプレス成形に供する鋼板を切り出したりするために、ホットスタンプ用鋼板の強度が高くなりすぎないことも同時に求められる。 In addition, in order to realize complex shapes with hot stamping, it is required to apply in the direction of hot stamping after forming to some extent by press forming at room temperature, cutting out steel plates for hot stamping press forming, etc. Therefore, it is also required that the strength of the hot stamping steel plate does not become too high.
 ところで自動車部品は、主にスポット溶接によって接合する必要があるが、溶接熱影響部(HAZ)での強度低下が顕著であり、溶接継ぎ手の強度が低下(軟化)することが知られている(例えば、非特許文献1)。 By the way, although it is necessary to join automobile parts mainly by spot welding, it is known that the strength reduction in the welding heat affected zone (HAZ) is remarkable and the strength of the welded joint is reduced (softened) ( For example, Non-Patent Document 1).
特開2010-65292号公報JP 2010-65292 A 特開2010-65293号公報JP 2010-65293 A 特開2010-65294号公報JP 2010-65294 A 特開2010-65295号公報JP 2010-65295 A
 本発明は上記事情に鑑みてなされたものであって、その目的は、熱間プレス前に成形や加工が容易にでき、且つ成形品内で均一な特性が要求される場合には、高強度と伸びのバランスを高レベルで達成できるプレス成形品を得ることができ、単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合には、夫々の領域に応じて、高強度と伸びのバランスを高レベルで達成でき、しかもHAZでの軟化防止特性が良好なプレス成形品を得る上で有用な熱間プレス用鋼板、および上記特性を発揮するようなプレス成形品、並びにこのようなプレス成形品を製造するための有用な方法を提供することにある。 The present invention has been made in view of the above circumstances, and its purpose is to facilitate molding and processing before hot pressing, and when a uniform characteristic is required in a molded product, it has high strength. If a region corresponding to an impact resistant region and an energy absorbing region is required in a single molded product, it is possible to obtain a press molded product that can achieve a high balance between elongation and elongation. Steel sheet for hot pressing that can achieve a high balance between high strength and elongation at a high level, and that is useful in obtaining a press-formed product with good softening prevention characteristics in HAZ, and a press-formed product that exhibits the above characteristics And providing a useful method for producing such a press-formed product.
 上記目的を達成することのできた本発明の熱間プレス用鋼板とは、
 C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、
 Si:0.2~3%、
 Mn:0.5~3%、
 P :0.05%以下(0%を含まない)、
 S :0.05%以下(0%を含まない)、
 Al:0.01~1%、
 B :0.0002~0.01%、
 Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下(但し、[N]はNの含有量(質量%)を示す)、および
 N:0.0010~0.01%、
を夫々含有し、残部が鉄および不可避不純物からなり、
 鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、フェライトの分率が30面積%以上であることを特徴とする。尚、「円相当直径」とは、Ti含有析出物(例えばTiC)の大きさ(面積)に着目したときに、同一面積の円に換算したときの直径(「平均円相当直径」はその平均値)である。
 析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
 ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
The steel sheet for hot pressing of the present invention that was able to achieve the above object,
C: 0.15 to 0.5% (meaning mass%, hereinafter the same for chemical composition)
Si: 0.2-3%,
Mn: 0.5 to 3%,
P: 0.05% or less (excluding 0%),
S: 0.05% or less (excluding 0%),
Al: 0.01 to 1%,
B: 0.0002 to 0.01%,
Ti: 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less (where [N] indicates the content (% by mass) of N), and N: 0.0010 ~ 0.01%,
Each of which contains iron and inevitable impurities,
Among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the relationship between the precipitated Ti amount in the steel and the total Ti amount in the following formula (1) And the metal structure is characterized in that the ferrite fraction is 30 area% or more. The “equivalent circle diameter” means the diameter when converted to a circle of the same area when focusing on the size (area) of the Ti-containing precipitate (eg, TiC) (the “average equivalent circle diameter” is its average Value).
Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
(In the formula (1), [N] indicates the content (% by mass) of N in the steel)
 本発明の熱間プレス成形用鋼板においては、必要に応じて、更に他の元素として、下記(a)~(c)の少なくとも1つを含有させることも有用である。必要によって含有される元素の種類に応じて、プレス成形品の特性が更に改善される。
(a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)
(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)
(c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)
In the hot press-forming steel sheet of the present invention, it is also useful to contain at least one of the following (a) to (c) as other elements as required. Depending on the type of element contained as required, the properties of the press-formed product are further improved.
(A) 0.1% or less in total of one or more selected from the group consisting of V, Nb and Zr (excluding 0%)
(B) 1% or less in total of at least one selected from the group consisting of Cu, Ni, Cr and Mo (not including 0%)
(C) 0.01% or less (excluding 0%) of at least one selected from the group consisting of Mg, Ca and REM
 上記目的を達成することのできた本発明のプレス成形品の製造方法とは、上記のような本発明の熱間プレス用鋼板を、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、前記鋼板のプレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することを特徴とする。 The method for producing a press-formed product of the present invention that has achieved the above-mentioned object includes the steel sheet for hot pressing of the present invention as described above having an Ac 1 transformation point of + 20 ° C. or higher and an Ac 3 transformation point of −20 ° C. or lower. After heating to the above temperature, press forming of the steel sheet is started, and during the forming and after the forming is completed, a temperature lower by 100 ° C. than the bainite transformation start temperature Bs while ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by cooling to the following.
 本発明のプレス成形品では、プレス成形品の金属組織が、残留オーステナイト:3~20面積%、フェライト:30~80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:31面積%以下(0面積%を含まない)であり、プレス成形品に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足するものとなり、成形品内で高強度と伸びのバランスを高レベルで均一な特性として達成できるものとなる。
 析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
 ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
In the press-formed product of the present invention, the metal structure of the press-formed product is as follows: retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%) Martensite: 31 area% or less (excluding 0 area%), and among the Ti-containing precipitates contained in the press-formed product, the average equivalent circle diameter of the equivalent circle diameter of 30 nm or less is 10 nm or less. The amount of precipitated Ti in the steel and the total amount of Ti satisfy the relationship of the following formula (1), and the balance between high strength and elongation can be achieved as a uniform characteristic at a high level in the molded product.
Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
(In the formula (1), [N] indicates the content (% by mass) of N in the steel)
 一方、上記目的を達成することのできた本発明のプレス成形品の他の製造方法とは、上記のような熱間プレス用鋼板を用い、鋼板の加熱領域を少なくとも2つの領域に分け、その一の領域をAc3変態点以上、950℃以下の温度に加熱すると共に、他の一の領域をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、両方の領域に対してプレス成形を開始し、成形中および成形終了後はいずれの領域でも金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却することを特徴とする。 On the other hand, another method for producing a press-formed product of the present invention that has achieved the above object is to use a steel sheet for hot pressing as described above, and divide the heating area of the steel sheet into at least two areas. region of Ac 3 transformation point or more, while heating to a temperature of 950 ° C. or less, the other one region Ac 1 transformation point + 20 ° C. or higher, then heated to Ac 3 transformation point -20 ° C. or less of the temperature, both Press molding is started for the region, and during molding and after completion of molding, the mold is cooled to a temperature below the martensite transformation start temperature Ms while ensuring an average cooling rate of 20 ° C./second or more in the mold. It is characterized by that.
 本発明の他のプレス成形品は、上記のような化学成分組成を有する鋼板のプレス成形品であって、前記プレス成形品は、金属組織が、残留オーステナイト:3~20面積%、マルテンサイト:80面積%以上である第1の領域と、金属組織が、残留オーステナイト:3~20面積%、フェライト:30~80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:31面積%以下(0面積%を含まない)である第2の領域を有しており、この第2の領域の鋼中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足することを特徴とする。こうしたプレス成形品では、夫々の領域に応じて、高強度と伸びのバランスを高レベルで達成でき、単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が存在するものとなり、しかも第2の領域においてスポット溶接したときのHAZの軟化防止特性が良好なものとなる。
 析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
 ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
Another press-formed product of the present invention is a steel plate press-formed product having the chemical composition as described above, and the press-formed product has a metal structure of retained austenite: 3 to 20 area%, martensite: The first region is 80 area% or more, and the metal structure is retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%) , Martensite: having a second region that is 31 area% or less (not including 0 area%), and among the Ti-containing precipitates contained in the steel of this second region, the equivalent circle diameter is The average equivalent circle diameter of those having a thickness of 30 nm or less is 10 nm or less, and the amount of precipitated Ti in the steel and the total amount of Ti satisfy the relationship of the following formula (1). In such a press-molded product, a balance between high strength and elongation can be achieved at a high level according to each region, and there are regions corresponding to impact-resistant sites and energy-absorbing sites in a single molded product. The softening prevention property of the HAZ when spot welding is performed in the second region is good.
Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
(In the formula (1), [N] indicates the content (% by mass) of N in the steel)
 本発明によれば、化学成分組成を厳密に規定すると共に、Ti含有析出物の大きさを制御し、またTiNを形成しないTiについてはその析出率を制御し、更に金属組織についてはフェライトの比率を調整した鋼板を用いているため、これを所定の条件で熱間プレスすることで、プレス成形品の強度-伸びバランスを高レベルにできる。また複数の領域で異なる条件で熱間プレスすると、単一成形品内に耐衝撃部位とエネルギー吸収部位を形成でき、夫々の部位で高強度と伸びのバランスを高レベルで達成でき、しかもHAZでの軟化防止特性が良好になる。 According to the present invention, the chemical component composition is strictly defined, the size of Ti-containing precipitates is controlled, the precipitation rate is controlled for Ti that does not form TiN, and the ferrite ratio for the metal structure. Since a steel sheet with adjusted thickness is used, the strength-elongation balance of the press-formed product can be raised to a high level by hot pressing this under predetermined conditions. In addition, when hot pressing is performed under different conditions in a plurality of regions, an impact resistant part and an energy absorbing part can be formed in a single molded product, and a high strength and elongation balance can be achieved at each part at a high level. The anti-softening property of is improved.
熱間プレス成形を実施するための金型構成を示す概略説明図である。It is a schematic explanatory drawing which shows the metal mold | die structure for implementing hot press molding.
 本発明者らは、鋼板を所定の温度に加熱した後、熱間プレス成形してプレス成形品を製造するに際して、プレス成形後において高強度を確保しつつ良好な延性(伸び)をも示すようなプレス成形品が得られる熱間プレス用鋼板を実現すべく、様々な角度から検討した。 The inventors of the present invention, when heating a steel plate to a predetermined temperature and then producing a press-formed product by hot press forming, show good ductility (elongation) while ensuring high strength after press forming. In order to realize a hot-press steel sheet that can provide a simple press-formed product, studies were made from various angles.
 その結果、熱間プレス用鋼板の化学成分組成を厳密に規定すると共に、Ti含有析出物の大きさおよび析出Ti量の制御を図り、且つ金属組織を適正なものとし、該鋼板を所定条件で熱間プレス成形することで、プレス成形後に所定量の残留オーステナイトを確保して、内在する延性(残存延性)を高くしたプレス成形品が得られることを見出し、本発明を完成した。 As a result, the chemical component composition of the steel sheet for hot pressing is strictly defined, the size of Ti-containing precipitates and the amount of precipitated Ti are controlled, the metal structure is made appropriate, and the steel sheet is subjected to predetermined conditions. It has been found that by performing hot press molding, a predetermined amount of retained austenite can be secured after press molding, and a press-molded product having increased inherent ductility (residual ductility) can be obtained, and the present invention has been completed.
 本発明の熱間プレス用鋼板では、化学成分組成を厳密に規定する必要があるが、各化学成分の範囲限定理由は下記の通りである。 In the steel sheet for hot pressing of the present invention, it is necessary to strictly define the chemical composition, but the reasons for limiting the range of each chemical composition are as follows.
 (C:0.15~0.5%)
 Cは、プレス成形品内で均一な特性が要求される場合の高強度と伸びのバランスを高レベルで達成するために、或は単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合の、特に低強度・高延性部位において残留オーステナイトを確保する上で重要な元素である。また熱間プレス成形での加熱時に、Cがオーステナイトに濃化することで、焼入れ後に残留オーステナイトを形成させることができる。更に、マルテンサイト量の増加にも寄与し、強度を上昇させる。これらの効果を発揮させるためには、C含有量は0.15%以上とする必要がある。
(C: 0.15-0.5%)
C corresponds to an impact resistant site and an energy absorbing site in a single molded product in order to achieve a high balance between high strength and elongation when uniform properties are required in a press molded product. It is an important element for securing retained austenite when a region is required, particularly in a low strength / high ductility region. Moreover, at the time of heating by hot press molding, C concentrates to austenite, so that residual austenite can be formed after quenching. Furthermore, it contributes to an increase in the amount of martensite and raises the strength. In order to exert these effects, the C content needs to be 0.15% or more.
 しかしながら、C含有量が過剰になって0.5%を超えると、二相域加熱領域が狭くなり、成形品内で均一な特性が要求される場合の高強度と伸びのバランスを高レベルで達成されないか、或は単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合の、特に低強度・高延性部位において狙いとする金属組織(フェライト、ベイニティックフェライト、マルテンサイトを所定量確保した組織)に調整することが困難となる。C含有量の好ましい下限は0.17%以上(より好ましくは0.20%以上)であり、より好ましい上限は0.45%以下(更に好ましくは0.40%以下)である。 However, if the C content becomes excessive and exceeds 0.5%, the two-phase region heating region becomes narrow, and the balance between high strength and elongation is high when uniform properties are required in the molded product. When not achieved, or when a region corresponding to an impact resistant part and an energy absorbing part is required in a single molded article, the target metal structure (ferrite, bainitic ferrite, especially in low strength and high ductility parts) , It is difficult to adjust to a structure in which a predetermined amount of martensite is secured. The preferable lower limit of the C content is 0.17% or more (more preferably 0.20% or more), and the more preferable upper limit is 0.45% or less (more preferably 0.40% or less).
 (Si:0.2~3%)
 Siは、金型焼入れの冷却中にマルテンサイトが焼戻されてセメンタイトが形成されたり、未変態のオーステナイトが分解されることを抑制することで、残留オーステナイトを形成させる効果を発揮する。こうした効果を発揮させるためには、Si含有量は0.2%以上とする必要がある。またSi含有量が過剰になって3%を超えると、熱間圧延後の冷却中にフェライト変態が促進されるようになるため、その際に形成されるフェライト中のTiCが粗大に形成されやすくなり、HAZ軟化防止特性が得られなくなる。Si含有量の好ましい下限は0.5%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
(Si: 0.2-3%)
Si exhibits the effect of forming retained austenite by suppressing martensite from tempering to form cementite and decomposition of untransformed austenite during cooling of mold quenching. In order to exert such effects, the Si content needs to be 0.2% or more. Further, if the Si content is excessive and exceeds 3%, ferrite transformation is promoted during cooling after hot rolling, so that TiC in the ferrite formed at that time is easily formed coarsely. Therefore, the HAZ softening preventing property cannot be obtained. The preferable lower limit of the Si content is 0.5% or more (more preferably 1.0% or more), and the preferable upper limit is 2.5% or less (more preferably 2.0% or less).
 (Mn:0.5~3%)
 Mnは、焼入れ性を高め、金型焼入れの冷却中のマルテンサイト、残留オーステナイト以外の組織(フェライト、パーライト、ベイナイト等)の形成を抑制するのに有効な元素である。また、オーステナイトを安定化させる元素であり、残留オーステナイト量の増加に寄与する元素である。こうした効果を発揮させるためには、Mnは0.5%以上含有させる必要がある。特性だけを考慮した場合は、Mn含有量は多い方が好ましいが、合金添加のコストが上昇することから、上限を3%以下とした。Mn含有量の好ましい下限は0.7%以上(より好ましくは1.0%以上)であり、好ましい上限は2.5%以下(より好ましくは2.0%以下)である。
(Mn: 0.5-3%)
Mn is an element effective in enhancing hardenability and suppressing the formation of structures (ferrite, pearlite, bainite, etc.) other than martensite and retained austenite during cooling of mold hardening. Further, it is an element that stabilizes austenite and contributes to an increase in the amount of retained austenite. In order to exhibit such an effect, it is necessary to contain 0.5% or more of Mn. When only the characteristics are taken into consideration, it is preferable that the Mn content is high, but the upper limit is made 3% or less because the cost of alloy addition increases. The minimum with preferable Mn content is 0.7% or more (more preferably 1.0% or more), and a preferable upper limit is 2.5% or less (more preferably 2.0% or less).
 (P:0.05%以下(0%を含まない))
 Pは、鋼中に不可避的に含まれる元素であるが、延性を劣化させるので、Pは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、上限を0.05%以下(0%を含まない)とした。P含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
(P: 0.05% or less (excluding 0%))
P is an element inevitably contained in the steel, but it deteriorates ductility, so P is preferably reduced as much as possible. However, extreme reduction leads to an increase in steelmaking cost, and it is difficult to make it 0%, so the upper limit was made 0.05% or less (excluding 0%). The upper limit with preferable P content is 0.045% or less (more preferably 0.040% or less).
 (S:0.05%以下(0%を含まない))
 SもPと同様に鋼中に不可避的に含まれる元素であり、延性を劣化させるので、Sは極力低減することが好ましい。しかしながら、極端な低減は製鋼コストの増大を招き、0%とすることは製造上困難であるので、上限を0.05%以下(0%を含まない)とした。S含有量の好ましい上限は0.045%以下(より好ましくは0.040%以下)である。
(S: 0.05% or less (excluding 0%))
Similarly to P, S is an element inevitably contained in steel, and deteriorates ductility. Therefore, S is preferably reduced as much as possible. However, extreme reduction leads to an increase in steelmaking cost, and it is difficult to make it 0%, so the upper limit was made 0.05% or less (excluding 0%). The upper limit with preferable S content is 0.045% or less (more preferably 0.040% or less).
 (Al:0.01~1%)
 Alは、脱酸元素として有用であると共に、鋼中に存在する固溶NをAlNとして固定し、延性の向上に有用である。こうした効果を有効に発揮させるためには、Al含有量は0.01%以上とする必要がある。しかしながら、Al含有量が過剰になって1%を超えると、Al23が過剰に生成し、延性を劣化させる。Al含有量の好ましい下限は0.02%以上(より好ましくは0.03%以上)であり、好ましい上限は0.8%以下(より好ましくは0.6%以下)である。
(Al: 0.01-1%)
Al is useful as a deoxidizing element, and also fixes solid solution N present in steel as AlN, which is useful for improving ductility. In order to exhibit such an effect effectively, the Al content needs to be 0.01% or more. However, when the Al content becomes excessive and exceeds 1%, Al 2 O 3 is excessively generated and ductility is deteriorated. The preferable lower limit of the Al content is 0.02% or more (more preferably 0.03% or more), and the preferable upper limit is 0.8% or less (more preferably 0.6% or less).
 (B:0.0002~0.01%)
 Bは、高強度部位側でフェライト変態、パーライト変態およびベイナイト変態を抑制する作用を有するため、(Ac1変態点~Ac3変態点)の二相域温度に加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に寄与する元素である。こうした効果を発揮させるためには、Bは0.0002%以上含有させる必要があるが、0.01%を超えて過剰に含有させても効果が飽和する。B含有量の好ましい下限は0.0003%以上(より好ましくは0.0005%以上)であり、好ましい上限は0.008%以下(より好ましくは0.005%以下)である。
(B: 0.0002 to 0.01%)
B has an action of suppressing ferrite transformation, pearlite transformation, and bainite transformation on the high-strength portion side, so that during the cooling after heating to the two-phase region temperature (Ac 1 transformation point to Ac 3 transformation point), It is an element that prevents the formation of pearlite and bainite and contributes to securing retained austenite. In order to exert such an effect, B needs to be contained in an amount of 0.0002% or more, but the effect is saturated even if it is contained in excess of 0.01%. A preferable lower limit of the B content is 0.0003% or more (more preferably 0.0005% or more), and a preferable upper limit is 0.008% or less (more preferably 0.005% or less).
 (Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下:[N]はNの含有量(質量%))
 Tiは、Nを固定し、Bを固溶状態で維持させることで焼入れ性の改善効果を発現させる。こうした効果を発揮させるためには、TiとNの化学量論比(Nの含有量の3.4倍)よりも0.01%以上多く含有させることが重要である。またNに対して過剰に添加されたTiをホットスタンプ成形品内に固溶状態で存在させ、且つ析出した化合物を微細に分散させておくことによって、ホットスタンプ成形品を溶接した際に固溶したTiがTiCとして形成されることによる析出強化や、TiCによる転位の移動防止効果による転位密度の増加遅延等の効果により、HAZにおける強度低下が抑制できる。但し、Ti含有量が過剰になって3.4[N]+0.1%よりも多くなると、形成されるTi含有析出物(例えばTiN)が粗大化され、鋼板の延性が低下する。Ti含有量のより好ましい下限は、3.4[N]+0.02%以上(更に好ましくは3.4[N]+0.05%以上)であり、より好ましい上限は、3.4[N]+0.09%以下(更に好ましくは3.4[N]+0.08%以下)である。
(Ti: 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less: [N] is N content (mass%))
Ti fixes N and allows B to be maintained in a solid solution state, thereby exhibiting an effect of improving hardenability. In order to exert such an effect, it is important to contain 0.01% or more than the stoichiometric ratio of Ti and N (3.4 times the N content). Further, Ti added excessively to N is present in a solid solution state in the hot stamping molded product, and the precipitated compound is dispersed finely, so that the solid solution is dissolved when the hot stamping molded product is welded. Strength reduction in HAZ can be suppressed by effects such as precipitation strengthening due to the formation of Ti as TiC and an increase delay of dislocation density due to the effect of preventing dislocation movement due to TiC. However, when the Ti content becomes excessive and exceeds 3.4 [N] + 0.1%, the Ti-containing precipitates formed (for example, TiN) are coarsened and the ductility of the steel sheet is lowered. The more preferable lower limit of the Ti content is 3.4 [N] + 0.02% or more (more preferably 3.4 [N] + 0.05% or more), and the more preferable upper limit is 3.4 [N]. + 0.09% or less (more preferably 3.4 [N] + 0.08% or less).
 (N:0.001~0.01%)
 Nは、不可避的に混入する元素であり、できるだけ低減することが好ましいが、実プロセスの中で低減するには限界があるため、0.001%を下限とした。また、N含有量が過剰になると、形成されるTi含有析出物(例えばTiN)が粗大化され、この析出物が破壊の起点として働き、鋼板の延性を低下させるため、上限を0.01%とした。N含有量のより好ましい上限は0.008%以下(更に好ましくは0.006%以下)である。
(N: 0.001 to 0.01%)
N is an element inevitably mixed in and is preferably reduced as much as possible. However, since there is a limit to reducing it in the actual process, 0.001% was set as the lower limit. Further, when the N content is excessive, the Ti-containing precipitates formed (for example, TiN) are coarsened, and the precipitates act as a starting point for fracture and reduce the ductility of the steel sheet. It was. The upper limit with more preferable N content is 0.008% or less (more preferably 0.006% or less).
 本発明の熱間プレス用鋼板における基本的な化学成分は、上記の通りであり、残部は鉄、およびP,S,N以外の不可避不純物(例えば、O,H等)である。また本発明の熱間プレス用鋼板には、必要によって更に、下記(a)~(c)の少なくとも1つを含有させることも有用である。必要によって含有される元素の種類に応じて、熱間プレス用鋼板(即ち、プレス成形品)の特性が更に改善される。これらの元素を含有するときの好ましい範囲およびその範囲限定理由は下記の通りである。
(a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)
(b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)
(c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)
The basic chemical components in the steel sheet for hot pressing of the present invention are as described above, and the balance is iron and inevitable impurities (for example, O, H, etc.) other than P, S, and N. In addition, it is useful that the steel sheet for hot pressing according to the present invention further contains at least one of the following (a) to (c) if necessary. Depending on the type of element contained as necessary, the properties of the steel sheet for hot pressing (ie, press-formed product) are further improved. The preferable range when these elements are contained and the reason for limiting the range are as follows.
(A) 0.1% or less in total of one or more selected from the group consisting of V, Nb and Zr (excluding 0%)
(B) 1% or less in total of at least one selected from the group consisting of Cu, Ni, Cr and Mo (not including 0%)
(C) 0.01% or less (excluding 0%) of at least one selected from the group consisting of Mg, Ca and REM
 (V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない))
 V,NbおよびZrは、微細な炭化物を形成し、ピン止め効果により組織を微細にする効果がある。こうした効果を発揮させるためには、合計で0.001%以上含有させることが好ましい。しかしながら、これらの元素の含有量が過剰になると、粗大な炭化物が形成され、破壊の起点になることで逆に延性を劣化させる。こうしたことから、これらの元素は合計で0.1%以下とすることが好ましい。これらの元素の含有量のより好ましい下限は合計で0.005%以上(更に好ましくは0.008%以上)であり、より好ましい上限は合計で0.08%以下(更に好ましくは0.06%以下)である。
(A total of one or more selected from the group consisting of V, Nb and Zr is 0.1% or less (excluding 0%))
V, Nb, and Zr have the effect of forming fine carbides and making the structure fine by the pinning effect. In order to exhibit such an effect, it is preferable to contain 0.001% or more in total. However, when the content of these elements is excessive, coarse carbides are formed, and the ductility is deteriorated by becoming the starting point of fracture. For these reasons, the total content of these elements is preferably 0.1% or less. The more preferable lower limit of the content of these elements is 0.005% or more (more preferably 0.008% or more) in total, and the more preferable upper limit is 0.08% or less (more preferably 0.06%) in total. The following).
 (Cu,Ni,CrおよびMoよりなる群から選択される1種以上:合計で1%以下(0%を含まない))
 Cu,Ni,CrおよびMoは、フェライト変態、パーライト変態およびベイナイト変態を抑制するため、加熱後の冷却中に、フェライト、パーライト、ベイナイトの形成を防止し、残留オーステナイトの確保に有効に作用する。こうした効果を発揮させるためには、合計で0.01%以上含有させることが好ましい。特性だけを考慮すると含有量は多い方が好ましいが、合金添加のコストが上昇することから、合計で1%以下とすることが好ましい。また、オーステナイトの強度を大幅に高める作用を有するため、熱間圧延の負荷が大きくなり、鋼板の製造が困難になるため、製造性の観点からも1%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.05%以上(更に好ましくは0.06%以上)であり、より好ましい上限は合計で0.5%以下(更に好ましくは0.3%以下)である。
(One or more selected from the group consisting of Cu, Ni, Cr and Mo: 1% or less in total (excluding 0%))
Cu, Ni, Cr, and Mo suppress ferrite transformation, pearlite transformation, and bainite transformation, and thus prevent formation of ferrite, pearlite, and bainite during cooling after heating, and effectively act to secure retained austenite. In order to exhibit such an effect, it is preferable to contain 0.01% or more in total. Considering only the characteristics, it is preferable that the content is large. However, since the cost of alloy addition increases, the total content is preferably 1% or less. Moreover, since it has the effect | action which raises the intensity | strength of austenite significantly, since the load of hot rolling becomes large and manufacture of a steel plate becomes difficult, it is preferable to set it as 1% or less also from a viewpoint of productivity. The more preferable lower limit of the content of these elements is 0.05% or more (more preferably 0.06% or more) in total, and the more preferable upper limit is 0.5% or less (more preferably 0.3% or less) in total. ).
 (Mg,CaおよびREM(希土類元素)よりなる群から選択される1種以上を合計で0.01%以下(0%を含まない))
 これらの元素は、介在物を微細化するため、延性向上に有効に作用する。こうした効果を発揮させるためには、合計で0.0001%以上含有させることが好ましい。特性だけを考慮すると含有量は多い方が好ましいが、効果が飽和することから、合計で0.01%以下とすることが好ましい。これらの元素含有量のより好ましい下限は合計で0.0002%以上(更に好ましくは0.0005%以上)であり、より好ましい上限は合計で0.005%以下(更に好ましくは0.003%以下)である。
(A total of one or more selected from the group consisting of Mg, Ca and REM (rare earth elements) is 0.01% or less (excluding 0%))
Since these elements refine the inclusions, they effectively work to improve ductility. In order to exhibit these effects, it is preferable to contain 0.0001% or more in total. Considering only the characteristics, it is preferable that the content is large, but since the effect is saturated, the total content is preferably 0.01% or less. The more preferable lower limit of the content of these elements is 0.0002% or more (more preferably 0.0005% or more) in total, and the more preferable upper limit is 0.005% or less (more preferably 0.003% or less) in total. ).
 本発明の熱間プレス用鋼板では、(A)鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であること、(B)析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]]の関係(前記(1)式の関係)を満足すること、(C)金属組織が、フェライトの分率が30面積%以上であることも重要な要件である。 In the steel sheet for hot pressing of the present invention, (A) of Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of the equivalent circle diameter of 30 nm or less is 6 nm or less, and (B) the amount of precipitated Ti (Mass%) − 3.4 [N] <0.5 × [total Ti amount (mass%) − 3.4 [N]] (satisfaction of the formula (1)) is satisfied, (C ) It is also an important requirement that the metal structure has a ferrite fraction of 30 area% or more.
 Ti含有析出物や(1)式の制御は、HAZの軟化を防止するためのものであって、本来、成形品において必要な制御であるが、熱間プレス成形前後でこれらの値の変化は小さい。よって成形前(熱間プレス用鋼板)の段階で既に制御しておく必要がある。成形前の鋼板中でNに対して過剰なTiを、固溶状態若しくは微細状態で存在させておくことにより、熱間プレスの加熱時においてTi含有析出物を固溶状態若しくは微細状態で維持できるようになる。これによって、プレス成形品中の析出Ti量を所定量以下に制御することができ、HAZにおける軟化を防止することで継ぎ手特性を改善できる。 The Ti-containing precipitates and the control of the formula (1) are for preventing the softening of the HAZ, and are essentially necessary control in the molded product, but the change of these values before and after hot press molding is small. Therefore, it is necessary to already control at the stage before forming (steel plate for hot pressing). By allowing excessive Ti to exist in a solid solution state or a fine state in the steel sheet before forming, a Ti-containing precipitate can be maintained in a solid solution state or a fine state during heating by hot pressing. It becomes like this. As a result, the amount of precipitated Ti in the press-formed product can be controlled to a predetermined amount or less, and joint characteristics can be improved by preventing softening in the HAZ.
 こうした観点から、Ti含有析出物を微細に分散させておく必要があり、そのためには鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下とする必要がある(上記(A)の要件)。尚、ここで対象とするTi含有析出物の円相当直径を30nm以下と規定しているのは、溶製段階で粗大に形成されて、その後、組織変化や特性に影響を及ぼさないTiNを除いたTi含有析出物を制御する必要があるためである。Ti含有析出物の大きさ(平均円相当直径)は、好ましくは5nm以下であり、より好ましくは3nm以下である。また、本発明で対象とするTi含有析出物とは、TiCおよびTiNの他、TiVC、TiNbC、TiVCN、TiNbCN等のTiを含有する析出物をも含む趣旨である。 From such a viewpoint, it is necessary to finely disperse the Ti-containing precipitates. For that purpose, among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less. (Requirement (A) above). Note that the equivalent circle diameter of the target Ti-containing precipitate is defined as 30 nm or less, except for TiN, which is coarsely formed in the melting stage and does not affect the structure change or properties thereafter. This is because it is necessary to control the Ti-containing precipitates. The size (average equivalent circle diameter) of the Ti-containing precipitate is preferably 5 nm or less, and more preferably 3 nm or less. In addition, the Ti-containing precipitates that are the subject of the present invention include TiC and TiN as well as precipitates containing Ti such as TiVC, TiNbC, TiVCN, and TiNbCN.
 尚、後述するように、プレス成形品でのTi含有析出物の平均円相当直径を10nm以下に規定しているのに対し、成形前(熱間プレス用鋼板)では6nm以下に規定している。その理由は、鋼板中に微細な析出物若しくは固溶状態でTiが存在しているが、800℃付近に15分以上の加熱を加えると、Ti含有析出物が若干粗大化するために、鋼板よりも成形品の方が析出物サイズを大きく規定している。成形品としての特性を確保するには、Ti含有析出物の平均円相当直径が10nm以下であることが必要であり、その析出状態をホットスタンプ成形品で実現するには、ホットスタンプ用鋼板の段階で30μm以下の微細な析出物の平均円相当直径を6nm以下とし、またTiの多くを固溶状態で存在させる必要がある。 As will be described later, the average equivalent circle diameter of Ti-containing precipitates in a press-formed product is specified to be 10 nm or less, whereas it is specified to be 6 nm or less before forming (hot-press steel plate). . The reason is that Ti is present in a fine precipitate or a solid solution state in the steel plate, but when heating for about 15 minutes or more near 800 ° C., the Ti-containing precipitate is slightly coarsened. Rather than the molded product, the size of the precipitate is defined larger. In order to secure the properties as a molded product, the average equivalent circle diameter of the Ti-containing precipitate is required to be 10 nm or less, and in order to realize the precipitation state with a hot stamped product, It is necessary that the average equivalent circle diameter of fine precipitates of 30 μm or less is 6 nm or less at the stage, and most of Ti is present in a solid solution state.
 また、熱間プレス用鋼板においては、TiのうちNを析出固定するのに使用される以外のTiの大半を固溶状態若しくは微細状態で存在させる必要がある。そのためには、TiN以外の析出物として存在するTi量(即ち、析出Ti量(質量%)-3.4[N])は、全TiのうちTiNを形成するTiを差し引いた残りの0.5倍(即ち、0.5×[全Ti量(質量%)-3.4[N]])よりも少ない量とする必要がある(上記(B)の要件)。析出Ti量(質量%)-3.4[N]は、好ましくは0.4×[全Ti量(質量%)-3.4[N]]以下であり、より好ましくは0.3×[全Ti量(質量%)-3.4[N]]以下である。 Further, in a steel sheet for hot pressing, it is necessary to make most of Ti other than Ti used for precipitation fixing of Ti in a solid solution state or a fine state. For this purpose, the amount of Ti present as precipitates other than TiN (ie, the amount of precipitated Ti (mass%)-3.4 [N]) is the remaining amount of 0.1% after subtracting the Ti forming TiN out of the total Ti. The amount needs to be less than 5 times (that is, 0.5 × [total Ti amount (mass%) − 3.4 [N]]) (requirement (B) above). The amount of precipitated Ti (mass%)-3.4 [N] is preferably 0.4 × [total Ti amount (mass%)-3.4 [N]] or less, more preferably 0.3 × [ The total Ti amount (% by mass) is -3.4 [N] or less.
 また、ホットスタンプ前に必ず鋼材を加工する必要があると共に、プレス成形を施したりする場合があり、こうした場合には、軟質な組織である所定量のフェライトを確保しておく必要がある。こうした観点から、熱間プレス用鋼板中のフェライトの分率を30面積%以上とする必要がある(上記(C)の要件)。フェライトの分率は、好ましくは50面積%以上であり、より好ましくは70面積%以上である。 In addition, it is necessary to always process the steel before hot stamping, and press forming may be performed. In such a case, it is necessary to secure a predetermined amount of ferrite which is a soft structure. From this point of view, the ferrite fraction in the hot-press steel sheet needs to be 30 area% or more (requirement (C) above). The ferrite fraction is preferably 50 area% or more, more preferably 70 area% or more.
 尚、熱間プレス用鋼板で、金属組織の残部は特に限定されないが、例えばパーライト、ベイナイト、マルテンサイトまたは残留オーステナイトの少なくともいずれかが挙げられる。 In addition, in the steel sheet for hot pressing, the balance of the metal structure is not particularly limited, and examples thereof include at least one of pearlite, bainite, martensite, and retained austenite.
 上述したような本発明の鋼板(熱間プレス用鋼板)を製造するには、上記化学成分組成を有する鋼材を溶製した鋳片を、加熱温度:1100℃以上(好ましくは1150℃以上)、1300℃以下(好ましくは1250℃以下)とし、仕上げ圧延温度を850℃以上(好ましくは900℃以上)、1050℃以下(好ましくは1000℃以下)として熱間圧延を行い、その後直ちに、650℃以下(好ましくは625℃以下)まで20℃/秒以上(好ましくは30℃/秒以上)の平均冷却速度で冷却(急冷)し、620℃から580℃までを10℃/秒以下(好ましくは5℃/秒以下)の平均冷却速度で冷却し、その後10℃/秒以上の平均冷却速度で冷却した後、350℃以上(好ましくは380℃以上)、450℃以下(好ましくは430℃以下)で巻取るようにすれば良い。 In order to produce the steel plate (hot press steel plate) of the present invention as described above, a slab obtained by melting a steel material having the above chemical composition is heated at a temperature of 1100 ° C. or higher (preferably 1150 ° C. or higher), Hot rolling is performed at 1300 ° C. or lower (preferably 1250 ° C. or lower), and the finish rolling temperature is 850 ° C. or higher (preferably 900 ° C. or higher), or 1050 ° C. or lower (preferably 1000 ° C. or lower). (Preferably 625 ° C. or less) is cooled (rapidly cooled) at an average cooling rate of 20 ° C./second or more (preferably 30 ° C./second or more), and 620 ° C. to 580 ° C. is 10 ° C./second or less (preferably 5 ° C. After cooling at an average cooling rate of 10 ° C./second or higher, then 350 ° C. or higher (preferably 380 ° C. or higher), 450 ° C. or lower (preferably 4 0 ℃ should be as winding below).
 上記方法は、(1)熱間圧延によってオーステナイト中に導入された転位が残存する温度域にて圧延を終了し、(2)その直後に急冷することで転位上にTiC等のTi含有析出物を微細に形成させ、(3)更に二段階冷却して巻取ることによって、Ti含有析出物量を確保しつつフェライト変態するように制御するものである。 In the above method, (1) rolling is terminated in a temperature range where dislocations introduced into austenite by hot rolling remain, and (2) Ti-containing precipitates such as TiC on the dislocations by quenching immediately after that. (3) Further, two-stage cooling and winding are performed to control the ferrite transformation while securing the amount of Ti-containing precipitates.
 上述したような化学成分組成、金属組織およびTi析出状態を有する熱間プレス用鋼板を、そのまま熱間プレスの製造に供しても良いし、酸洗後に圧下率:60%以下(好ましくは40%以下)で冷間圧延を施してから熱間プレスの製造に供しても良い。また、本発明の熱間プレス用鋼板は、熱間圧延材を連続焼鈍炉や連続溶融亜鉛めっきラインで熱処理した際に、その組織を作り込んでも良い。要するに、金属組織およびTi析出状態等の要求特性を満足している限り、本発明の熱間プレス用鋼板に含まれる。 The steel sheet for hot pressing having the chemical composition, the metal structure and the Ti precipitation state as described above may be used for the production of the hot press as it is, and the reduction ratio after pickling: 60% or less (preferably 40% The following may be applied to the production of a hot press after cold rolling. In addition, the steel sheet for hot pressing of the present invention may have a microstructure when the hot-rolled material is heat-treated in a continuous annealing furnace or a continuous hot dip galvanizing line. In short, as long as the required characteristics such as the metal structure and the Ti precipitation state are satisfied, it is included in the steel sheet for hot pressing of the present invention.
 上記のような熱間プレス用鋼板を用い、Ac1変態点+20℃(Ac1+20℃)以上、Ac3変態点-20℃(Ac3-20℃)以下の温度に加熱した後、プレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度(Bs-100℃)以下まで冷却することによって、単一特性を有するプレス成形品(以下、単一領域成形品という場合がある)で、低強度且つ高延性のものとして最適な組織に作り込むことができる。この成形法における各要件を規定した理由は、下記の通りである。 Using the steel sheet for hot pressing as described above, after heating to a temperature not lower than Ac 1 transformation point + 20 ° C. (Ac 1 + 20 ° C.) and not higher than Ac 3 transformation point −20 ° C. (Ac 3 -20 ° C.), press forming is performed. By cooling to a temperature (Bs-100 ° C.) below 100 ° C. lower than the bainite transformation start temperature Bs while securing an average cooling rate of 20 ° C./second or more in the mold during and after molding. A press-molded product having a single characteristic (hereinafter sometimes referred to as a single-region molded product) can be formed into an optimum structure as a low-strength and high-ductility product. The reasons for defining the requirements in this molding method are as follows.
 フェライトを所定量含む鋼板では、そのフェライトを一部残存させつつ、部分的にオーステナイトに変態させるために、加熱温度は所定の範囲に制御する必要がある。鋼板の加熱温度がAc1変態点+20℃未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、鋼板の加熱温度がAc3変態点-20℃を超えると、加熱時にオーステナイトへの変態量が増加し過ぎて、最終組織(成形品の組織)で所定量のフェライトを確保できない。 In a steel sheet containing a predetermined amount of ferrite, it is necessary to control the heating temperature within a predetermined range in order to partially transform the ferrite into austenite while partially retaining the ferrite. When the heating temperature of the steel sheet is less than the Ac 1 transformation point + 20 ° C., a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product). If the heating temperature of the steel sheet exceeds the Ac 3 transformation point of −20 ° C., the amount of transformation to austenite increases too much during heating, and a predetermined amount of ferrite cannot be secured in the final structure (structure of the molded product).
 上記加熱工程で形成されたオーステナイトを、フェライト若しくはパーライト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中および成形後の平均冷却速度および冷却終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、冷却終了温度はベイナイト変態開始温度Bsより100℃低い温度以下とする必要がある。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。冷却終了温度をベイナイト変態開始温度Bsより100℃低い温度以下とすることによって、フェライト若しくはパーライト等の組織の生成を阻止しつつ、加熱時に存在したオーステナイトをベイナイトやマルテンサイトに変態させることによって、ベイナイトやマルテンサイトを確保しつつ、ベイナイトやマルテンサイトのラスの間に微細なオーステナイトを残留させて所定量の残留オーステナイトを確保する。 In order to make the austenite formed in the heating process into a desired structure while preventing the formation of a structure such as ferrite or pearlite, the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From such a viewpoint, the average cooling rate during molding must be 20 ° C./second or more, and the cooling end temperature must be 100 ° C. or lower than the bainite transformation start temperature Bs. The average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more). By making the cooling end temperature 100 ° C. or less lower than the bainite transformation start temperature Bs, the austenite existing during heating is transformed into bainite or martensite while preventing the formation of a structure such as ferrite or pearlite. In addition, a predetermined amount of retained austenite is secured by allowing fine austenite to remain between bainite and martensite lath while securing martensite.
 上記冷却終了温度がベイナイト変態開始温度Bsより100℃低い温度よりも高くなったり、平均冷却速度が20℃/秒未満では、フェライトやパーライト等の組織が形成されて、所定量の残留オーステナイトが確保できず、成形品における伸び(延性)が劣化する。尚、冷却終了温度はBsより100℃低い温度以下である限り特に制限されず、例えば、マルテンサイト変態開始温度Ms以下であってもよい。 When the cooling end temperature is higher than the temperature lower by 100 ° C. than the bainite transformation start temperature Bs or the average cooling rate is less than 20 ° C./second, a structure such as ferrite or pearlite is formed, and a predetermined amount of retained austenite is secured. This is not possible, and the elongation (ductility) of the molded product is deteriorated. The cooling end temperature is not particularly limited as long as it is 100 ° C. or lower than Bs, and may be, for example, martensitic transformation start temperature Ms or lower.
 ベイナイト変態開始温度Bsより100℃低い温度以下になった段階で、平均冷却速度の制御は基本的に不要になるが、例えば1℃/秒以上、100℃/秒以下の平均冷却速度で室温まで冷却してもよい。尚、成形中および成形終了後の平均冷却速度の制御は、(a)成形金型の温度を制御する(前記図1に示した冷却媒体)、(b)金型の熱伝導率を制御する等の手段によって達成できる。 Although control of the average cooling rate is basically unnecessary when the temperature is lower than the bainite transformation start temperature Bs by 100 ° C. or less, for example, at an average cooling rate of 1 ° C./second or more and 100 ° C./second or less to room temperature. It may be cooled. Control of the average cooling rate during molding and after molding is completed by controlling (a) the temperature of the molding die (cooling medium shown in FIG. 1) and (b) controlling the thermal conductivity of the die. It can be achieved by such means.
 上記のような熱間プレスによって製造されるプレス成形品(単一領域成形品)では、金属組織が、残留オーステナイト:3~20面積%、フェライト:30~80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:31面積%以下(0面積%を含まない)であるものとなり、成形品内で高強度と伸びのバランスを高レベルで均一な特性として達成できるものとなる。こうした熱間プレス成形品における各要件(基本組織)の範囲設定理由は次の通りである。 In a press-molded product (single region molded product) manufactured by hot pressing as described above, the metal structure is retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: 30 Less than area% (excluding 0 area%), martensite: 31 area% or less (excluding 0 area%), and a high level and uniform balance between high strength and elongation in the molded product It can be achieved. The reason for setting the range of each requirement (basic structure) in such a hot press-formed product is as follows.
 残留オーステナイトは、塑性変形中にマルテンサイトに変態することで、加工硬化率を上昇させ(変態誘起塑性)、成形品の延性を向上させる効果がある。こうした効果を発揮させるためには、残留オーステナイト分率を3面積%以上とする必要がある。延性に対しては、残留オーステナイト分率が多ければ多いほど良好になる。自動車用鋼板に用いられる組成では、確保できる残留オーステナイトは限られており、20面積%程度が上限となる。残留オーステナイトの好ましい下限は5面積%以上(より好ましくは7面積%以上)である。 Residual austenite has the effect of increasing the work hardening rate (transformation-induced plasticity) and improving the ductility of the molded product by transforming into martensite during plastic deformation. In order to exert such an effect, the retained austenite fraction needs to be 3 area% or more. For ductility, the higher the retained austenite fraction, the better. In the composition used for the steel sheet for automobiles, the retained austenite that can be secured is limited, and the upper limit is about 20 area%. The preferable lower limit of retained austenite is 5 area% or more (more preferably 7 area% or more).
 主要組織を、微細で且つ延性の高いフェライトにすることで、プレス成形品の延性(伸び)を高めることができる。こうした観点から、フェライトの分率は、30面積%以上とする。しかしながら、この分率が80面積%を超えると、成形品の強度が確保できなくなる。フェライト分率の好ましい下限は35面積%以上(より好ましくは40面積%以上)であり、好ましい上限は75面積%以下(より好ましくは70面積%以下)である。 The ductility (elongation) of a press-formed product can be increased by making the main structure fine and highly ductile ferrite. From this point of view, the ferrite fraction is 30% by area or more. However, if this fraction exceeds 80 area%, the strength of the molded product cannot be ensured. A preferred lower limit of the ferrite fraction is 35 area% or more (more preferably 40 area% or more), and a preferred upper limit is 75 area% or less (more preferably 70 area% or less).
 ベイニティックフェライトは、成形品の強度を向上させるのには有効な組織であるが、延性にやや乏しい組織であるため、多量に存在すると伸びを劣化させる。こうした観点から、ベイニティックフェライトの分率は30面積%未満とする。ベイニティックフェライトの分率の好ましい上限は25面積%以下(より好ましくは20面積%以下)である。 Bainitic ferrite is an effective structure for improving the strength of a molded product, but it is a structure that is slightly poor in ductility. From such a viewpoint, the fraction of bainitic ferrite is less than 30 area%. A preferable upper limit of the fraction of bainitic ferrite is 25 area% or less (more preferably 20 area% or less).
 マルテンサイト(焼入れままマルテンサイト)は、成形品の強度を向上させるのには有効な組織であるが、延性に乏しい組織であるため、多量に存在すると伸びを劣化させる。こうした観点から、マルテンサイトの分率は31面積%以下とする。マルテンサイトの分率の好ましい上限は25面積%以下(より好ましくは20面積%以下)である。 Martensite (an as-quenched martensite) is an effective structure for improving the strength of a molded product, but is a structure having poor ductility, and therefore, when present in a large amount, it deteriorates elongation. From such a viewpoint, the martensite fraction is 31 area% or less. A preferred upper limit of the martensite fraction is 25 area% or less (more preferably 20 area% or less).
 上記組織の他は特に限定されず、パーライト等を残部組織として含んでもよいが、これらの組織は強度に対する寄与や、延性に対する寄与が他の組織に比べて低く、基本的に含有しないことが好ましい(0面積%でも良い)。 Other than the above structure, it is not particularly limited, and pearlite may be included as the remaining structure. However, these structures have a lower contribution to strength and ductility than other structures, and it is preferable not to basically contain them. (It may be 0 area%).
 上記プレス成形品(単一領域成形品)では、プレス成形品中(即ち、プレス成形品を構成する鋼板中)に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下である。こうした要件を満足させることによって、高強度と伸びのバランスを高レベルで達成できるプレス成形品を得ることができる。Ti含有析出物の平均円相当直径は、好ましくは8nm以下であり、より好ましくは6nm以下である。 In the above-mentioned press-formed product (single-region product), among the Ti-containing precipitates contained in the press-formed product (that is, in the steel plate constituting the press-formed product), the equivalent of the average circle having an equivalent circle diameter of 30 nm or less The diameter is 10 nm or less. By satisfying these requirements, a press-formed product that can achieve a high balance between high strength and elongation can be obtained. The average equivalent circle diameter of the Ti-containing precipitate is preferably 8 nm or less, and more preferably 6 nm or less.
 またプレス成形品(単一領域成形品)では、TiN以外の析出物として存在するTi量(析出Ti量-3.4[N])が、全TiのうちTiNを形成するTiを差し引いた残りのTiの0.5倍より少なく(即ち0.5×[全Ti量(%)-3.4[N]]より少なく)になっている。こうした要件を満足させることによって、溶接時に固溶しているTiがHAZに微細析出したり、既存の微細Ti含有析出物が転位の回復等を抑制することで、HAZでの軟化を防止し、溶接性が良好となる。析出Ti量-3.4[N]は、好ましくは0.4×[全Ti量(質量%)-3.4[N]]以下であり、より好ましくは0.3×[全Ti量(質量%)-3.4[N]]以下である。 In the press-molded product (single-region molded product), the amount of Ti present as precipitates other than TiN (precipitated Ti amount-3.4 [N]) is the remainder after subtracting Ti that forms TiN out of all Ti. The Ti content is less than 0.5 times that of Ti (that is, less than 0.5 × [total Ti amount (%) − 3.4 [N]]). By satisfying these requirements, Ti that is solid-dissolved during welding is finely precipitated in HAZ, or the existing fine Ti-containing precipitates suppress the recovery of dislocation, etc., thereby preventing softening in HAZ, Good weldability. The deposited Ti amount-3.4 [N] is preferably 0.4 × [total Ti amount (mass%) − 3.4 [N]] or less, more preferably 0.3 × [total Ti amount ( % By mass) -3.4 [N]] or less.
 本発明の熱間プレス用鋼板を用いれば、プレス成形条件(加熱温度や冷却速度)を適切に調整することによって、プレス成形品の強度や伸び等の特性を制御することができ、しかも高延性(残存延性)のプレス成形品が得られるので、これまでのプレス成形品では適用しにくかった部位(例えば、エネルギー吸収部材)にも適用が可能となり、プレス成形品の適用範囲を拡げる上で極めて有用である。また、上述した単一領域成形品のみならず、プレス成形金型を用いて鋼板をプレス成形してプレス成形品を製造するに際して、加熱温度、および成形時の各領域の条件を適切に制御し、各領域の組織を調整すれば、各領域に応じた強度-延性バランスを発揮するプレス成形品(以下、複数領域成形品という場合がある)が得られる。 By using the steel sheet for hot pressing according to the present invention, the properties such as strength and elongation of the press-formed product can be controlled by appropriately adjusting the press forming conditions (heating temperature and cooling rate) and high ductility. (Residual ductility) press-molded products can be obtained, so it can be applied to parts that have been difficult to apply with conventional press-molded products (for example, energy absorbing members). Useful. In addition to the above-mentioned single-region molded product, when manufacturing a press-molded product by press-molding a steel sheet using a press-molding die, the heating temperature and the conditions of each region at the time of molding are appropriately controlled. By adjusting the structure of each region, a press-formed product that exhibits a strength-ductility balance corresponding to each region (hereinafter sometimes referred to as a multi-region molded product) can be obtained.
 本発明の熱間プレス用鋼板を用い、上記のように複数領域成形品を製造するに当たっては、鋼板の加熱領域を少なくとも2つの領域に分け、そのうち一の領域(以下、第1の領域という)をAc3変態点以上、950℃以下の温度に加熱すると共に、他の一の領域(以下、第2の領域という)をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、第1および第2の両方の領域に対してプレス成形を開始し、成形中および成形終了後は第1および第2のいずれの領域でも金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却すればよい。 In producing a multi-region molded product as described above using the hot-press steel plate of the present invention, the heating region of the steel plate is divided into at least two regions, one of which is hereinafter referred to as the first region. Is heated to a temperature not lower than Ac 3 transformation point and not higher than 950 ° C., and the other region (hereinafter referred to as second region) is not lower than Ac 1 transformation point + 20 ° C. and temperature not higher than Ac 3 transformation point −20 ° C. Then, press molding is started for both the first and second regions, and during molding and after completion of molding, both the first and second regions have a temperature of 20 ° C./second or more in the mold. What is necessary is just to cool to the temperature below the martensitic transformation start temperature Ms, ensuring an average cooling rate.
 上記方法では、鋼板の加熱領域を少なくとも2つの領域(高強度側領域および低強度側領域)に分け、夫々の領域に応じて製造条件を制御することによって、各領域に応じた強度-延性バランスを発揮するプレス成形品が得られる。2つの領域のうち第2の領域が低強度側領域に相当し、この領域における製造条件、組織および特性は基本的に上記した単一領域成形品と同じである。以下では、もう一方の第1領域(高強度側領域に相当)を形成させるための製造条件について説明する。尚、この製造方法を実施するに際しては、単一の鋼板で加熱温度の異なる領域を形成する必要が生じるが、既存の加熱炉(例えば、遠赤外線炉、電気炉+シールド)を用いることによって、温度の境界部分を50mm以下としつつ制御することは可能である。 In the above method, the heating region of the steel sheet is divided into at least two regions (high-strength side region and low-strength side region), and the manufacturing conditions are controlled according to each region, whereby the strength-ductility balance corresponding to each region is obtained. A press-formed product exhibiting the above can be obtained. Of the two regions, the second region corresponds to the low-strength side region, and the manufacturing conditions, structure, and characteristics in this region are basically the same as those of the single-region molded product described above. Hereinafter, manufacturing conditions for forming the other first region (corresponding to the high-strength side region) will be described. In carrying out this manufacturing method, it is necessary to form regions with different heating temperatures with a single steel plate, but by using an existing heating furnace (for example, a far-infrared furnace, electric furnace + shield), It is possible to control the temperature boundary portion while keeping it at 50 mm or less.
 (第1の領域・高強度側領域の製造条件)
 プレス成形品の組織を適切に調整するためには、加熱温度は所定の範囲に制御する必要がある。この加熱温度を適切に制御することによって、その後の冷却過程で、所定量の残留オーステナイトを確保しつつ、マルテンサイトを主体とする組織に変態させ、最終的な熱間プレス成形品の領域内で所望の組織に作り込むことができる。この領域での鋼板加熱温度がAc3変態点未満であると、加熱時に十分な量のオーステナイトが得られず、最終組織(成形品の組織)で所定量の残留オーステナイトを確保できない。また、鋼板の加熱温度が950℃を超えると、加熱時にオーステナイトの粒径が大きくなり、マルテンサイト変態開始温度(Ms点)およびマルテンサイト変態終了温度(Mf点)が上昇し、焼入れ時に残留オーステナイトを確保できず、良好な成形性が達成されない。鋼板の加熱温度は、好ましくはAc3変態点+50℃以上であり、930℃以下である。
(Production conditions for the first region and the high-strength side region)
In order to appropriately adjust the structure of the press-formed product, it is necessary to control the heating temperature within a predetermined range. By appropriately controlling this heating temperature, in the subsequent cooling process, while maintaining a predetermined amount of retained austenite, it is transformed into a structure mainly composed of martensite, and within the region of the final hot press-formed product. It can be built into the desired tissue. If the steel sheet heating temperature in this region is less than the Ac 3 transformation point, a sufficient amount of austenite cannot be obtained during heating, and a predetermined amount of retained austenite cannot be secured in the final structure (structure of the molded product). If the heating temperature of the steel sheet exceeds 950 ° C., the grain size of austenite increases during heating, the martensite transformation start temperature (Ms point) and the martensite transformation end temperature (Mf point) rise, and residual austenite during quenching. Cannot be secured, and good moldability is not achieved. The heating temperature of the steel sheet is preferably Ac 3 transformation point + 50 ° C. or higher and 930 ° C. or lower.
 上記加熱工程で形成されたオーステナイトを、フェライト若しくはパーライト等の組織の生成を阻止しつつ、所望の組織とするためには、成形中および成形後の平均冷却速度および冷却終了温度を適切に制御する必要がある。こうした観点から、成形中の平均冷却速度は20℃/秒以上とし、冷却終了温度はマルテンサイト変態開始温度(Ms点)以下とする必要がある。成形中の平均冷却速度は、好ましくは30℃/秒以上(より好ましくは40℃/秒以上)である。冷却終了温度をマルテンサイト変態開始温度(Ms点)以下とすることによって、フェライト若しくはパーライト等の組織の生成を阻止しつつ、加熱時に存在したオーステナイトをマルテンサイトに変態させることによって、マルテンサイトを確保する。冷却終了温度は、具体的には400℃以下であり、好ましくは300℃以下である。 In order to make the austenite formed in the heating process into a desired structure while preventing the formation of a structure such as ferrite or pearlite, the average cooling rate and the cooling end temperature during and after molding are appropriately controlled. There is a need. From this point of view, the average cooling rate during molding needs to be 20 ° C./second or more, and the cooling end temperature needs to be lower than the martensite transformation start temperature (Ms point). The average cooling rate during molding is preferably 30 ° C./second or more (more preferably 40 ° C./second or more). By ensuring that the cooling end temperature is lower than the martensite transformation start temperature (Ms point), the formation of ferrite or pearlite is prevented, and austenite existing during heating is transformed into martensite, thereby securing martensite. To do. The cooling end temperature is specifically 400 ° C. or lower, preferably 300 ° C. or lower.
 こうした方法によって得られたプレス成形品では、第1領域と第2領域とで、金属組織や析出物等が異なっている。第1の領域では、金属組織が、残留オーステナイト:3~20面積%(残留オーステナイトの作用効果は上記と同じ)、マルテンサイト:80面積%以上となっている。第2領域では、上記単一領域成形品と同じ金属組織、Ti状態(Ti含有析出物の平均円相当直径、析出Ti量(質量%)-3.4[N]の値等)を満足する。 In the press-molded product obtained by such a method, the metal structure and precipitates are different between the first region and the second region. In the first region, the metal structures are retained austenite: 3 to 20 area% (the effect of retained austenite is the same as described above), and martensite: 80 area% or more. In the second region, the same metal structure and Ti state (average equivalent circle diameter of Ti-containing precipitates, amount of precipitated Ti (mass%) -3.4 [N], etc.) as the single region molded product are satisfied. .
 第1の領域の主要組織を、所定量の残留オーステナイトを含む高強度のマルテンサイトにすることで、プレス成形品における特定領域の延性および高強度を確保することができる。こうした観点から、マルテンサイトの面積分率は、80面積%以上とする必要がある。マルテンサイトの分率は、好ましくは85面積%以上(より好ましくは90面積%以上)である。尚、第1領域における残部組織として、一部にフェライト、パーライト、ベイナイト等含んでいてもよい。 By making the main structure of the first region high martensite containing a predetermined amount of retained austenite, it is possible to ensure the ductility and high strength of the specific region in the press-formed product. From such a viewpoint, the area fraction of martensite needs to be 80 area% or more. The fraction of martensite is preferably 85 area% or more (more preferably 90 area% or more). The remaining structure in the first region may partially include ferrite, pearlite, bainite, and the like.
 以下、本発明の効果を実施例によって更に具体的に示すが、下記実施例は本発明を限定するものではなく、前・後記の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。 Hereinafter, the effects of the present invention will be described more specifically by way of examples. However, the following examples are not intended to limit the present invention, and any design changes in accordance with the gist of the preceding and following descriptions are technical aspects of the present invention. It is included in the range.
 [実施例1]
 下記表1、2に示した化学成分組成を有する鋼材(鋼No.1~16、18~32)を真空溶製し、実験用スラブとした後、熱間圧延を行って鋼板とし、その後に冷却して巻取りを模擬した処理を施した(板厚:1.6mmm若しくは3.0mm)。巻取り模擬処理方法は、巻取り温度まで冷却後、巻取り温度に加熱した炉に試料を入れ、30分保持した後炉冷した。このときの鋼板製造条件を下記表3、4に示す。尚、表1、2中のAc1変態点、Ac3変態点、Ms点およびBs点は、下記の(2)式~(5)式を用いて求めたものである(例えば、「レスリー鉄鋼材料学」丸善,(1985)参照)。また、表3の備考欄に示した処理(1)、(2)は、下記に示す各処理(圧延、冷却、合金化)を行ったものである。
[Example 1]
Steel materials (steel Nos. 1-16, 18-32) having the chemical composition shown in Tables 1 and 2 below are vacuum-melted to form experimental slabs, followed by hot rolling to obtain steel plates, and then The process which cooled and simulated winding was performed (plate | board thickness: 1.6 mm or 3.0 mm). In the winding simulation processing method, after cooling to the winding temperature, the sample was placed in a furnace heated to the winding temperature, held for 30 minutes, and then cooled in the furnace. The steel sheet manufacturing conditions at this time are shown in Tables 3 and 4 below. In Tables 1 and 2, the Ac 1 transformation point, Ac 3 transformation point, Ms point, and Bs point were determined using the following formulas (2) to (5) (for example, “Leslie Steel) Materials Science, Maruzen, (1985)). Further, the treatments (1) and (2) shown in the remarks column of Table 3 are obtained by performing the following treatments (rolling, cooling, and alloying).
 Ac1変態点(℃)=723+29.1×[Si]-10.7×[Mn]+16.9×[Cr]-16.9[Ni] …(2)
 Ac3変態点(℃)=910-203×[C]1/2+44.7×[Si]-30×[Mn]+700×[P]+400×[Al]+400×[Ti]+104×[V]-11×[Cr]+31.5×[Mo]-20×[Cu]-15.2×[Ni] …(3)
 Ms点(℃)=550-361×[C]-39×[Mn]-10×[Cu]-17×[Ni]-20×[Cr]-5×[Mo]+30×[Al] …(4)
 Bs点(℃)=830-270×[C]-90×[Mn]-37×[Ni]-70×[Cr]-83×[Mo] …(5)
 但し、[C],[Si],[Mn],[P],[Al],[Ti],[V],[Cr],[Mo],[Cu]および[Ni]は、夫々C,Si,Mn,P,Al,Ti,V,Cr,Mo,CuおよびNiの含有量(質量%)を示す。また、上記(2)式~(5)式の各項に示された元素が含まれない場合は、その項がないものとして計算する。
Ac 1 transformation point (° C.) = 723 + 29.1 × [Si] −10.7 × [Mn] + 16.9 × [Cr] −16.9 [Ni] (2)
Ac 3 transformation point (° C.) = 910−203 × [C] 1/2 + 44.7 × [Si] −30 × [Mn] + 700 × [P] + 400 × [Al] + 400 × [Ti] + 104 × [V ] -11 × [Cr] + 31.5 × [Mo] −20 × [Cu] −15.2 × [Ni] (3)
Ms point (° C.) = 550−361 × [C] −39 × [Mn] −10 × [Cu] −17 × [Ni] −20 × [Cr] −5 × [Mo] + 30 × [Al] ( 4)
Bs point (° C.) = 830−270 × [C] −90 × [Mn] −37 × [Ni] −70 × [Cr] −83 × [Mo] (5)
However, [C], [Si], [Mn], [P], [Al], [Ti], [V], [Cr], [Mo], [Cu] and [Ni] are C, The contents (mass%) of Si, Mn, P, Al, Ti, V, Cr, Mo, Cu and Ni are shown. Further, when the element shown in each term of the above formulas (2) to (5) is not included, the calculation is made assuming that the term is not present.
 処理(1):熱間圧延鋼板を冷間圧延後(板厚:1.6mm)、熱処理シミュレータで連続焼鈍を模擬し、800℃に加熱した後90秒保持し、20℃/秒の平均冷却速度で500℃まで冷却し、300秒保持した。
 処理(2):熱間圧延鋼板を冷間圧延後(板厚:1.6mm)、熱処理シミュレータで連続溶融亜鉛めっきラインを模擬するため860℃に加熱した後、30℃/秒の平均冷却速度で400℃まで冷却し、保持後、めっき浴への浸漬-合金化処理を模擬するために更に500℃×10秒保持後、20℃/秒の平均冷却速度で室温まで冷却した。
Treatment (1): After cold-rolling a hot-rolled steel sheet (sheet thickness: 1.6 mm), simulating continuous annealing with a heat treatment simulator, heating to 800 ° C., holding for 90 seconds, and average cooling at 20 ° C./second Cooled to 500 ° C. at a rate and held for 300 seconds.
Treatment (2): After cold rolling a hot-rolled steel sheet (sheet thickness: 1.6 mm), after heating to 860 ° C. to simulate a continuous hot-dip galvanizing line with a heat treatment simulator, an average cooling rate of 30 ° C./second The sample was cooled to 400 ° C., held, and then held at 500 ° C. for 10 seconds to simulate immersion-alloying treatment in a plating bath, and then cooled to room temperature at an average cooling rate of 20 ° C./second.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 得られた鋼板(プレス成形用鋼板)につき、Tiの析出状態の分析、および金属組織の観察(各組織の分率)を下記要領で行った。また、各鋼板の引張強度(TS)を後述する方法で測定した。その結果を、0.5×[全Ti量(質量%)-3.4[N]]の計算値[0.5×[全Ti量-3.4[N]と表示]と共に下記表5、6に示す。 The obtained steel plate (press forming steel plate) was analyzed for the precipitation state of Ti and the observation of the metal structure (fraction of each structure) in the following manner. Moreover, the tensile strength (TS) of each steel plate was measured by the method mentioned later. The results are shown in Table 5 below together with a calculated value of 0.5 × [total Ti amount (mass%) − 3.4 [N]] [displayed as 0.5 × [total Ti amount-3.4 [N]]]. , 6.
 (鋼板のTiの析出状態の分析)
 抽出レプリカサンプルを作製し、透過型電子顕微鏡(TEM)にてTi含有析出物の透過型電子顕微鏡像(倍率:10万倍)を撮影した。このとき、エネルギー分散型X線分光器(EDX)により析出物の組成分析をすることによって、Ti含有析出物(円相当直径で30nm以下のもの)を特定した。少なくとも100個以上のTi含有析出物の面積を画像解析により測定し、そこから円相当直径を求め、その平均値を析出物サイズ(Ti含有析出物の平均円相当直径)とした。また、析出Ti量(質量%)-3.4[N](析出物として存在するTi量)は、メッシュ径:0.1μmのメッシュを用いて抽出残渣分析を行い(抽出処理の際に、析出物が凝集して微細な析出物も測定できる)、析出Ti量(質量%)-3.4[N](表5、6では析出Ti量-3.4[N]と表示)を求めた。尚、Ti含有析出物がVやNbを一部含有している場合は、これらの析出物の含有量についても測定した。
(Analysis of Ti precipitation state of steel sheet)
An extraction replica sample was prepared, and a transmission electron microscope image (magnification: 100,000 times) of the Ti-containing precipitate was taken with a transmission electron microscope (TEM). At this time, Ti-containing precipitates (those with an equivalent circle diameter of 30 nm or less) were identified by analyzing the composition of the precipitates using an energy dispersive X-ray spectrometer (EDX). The area of at least 100 Ti-containing precipitates was measured by image analysis, the equivalent circle diameter was determined therefrom, and the average value was defined as the precipitate size (average equivalent circle diameter of the Ti-containing precipitate). Further, the amount of precipitated Ti (mass%)-3.4 [N] (the amount of Ti present as a precipitate) was subjected to extraction residue analysis using a mesh having a mesh diameter of 0.1 μm (in the extraction process, Precipitates aggregate and fine precipitates can be measured), and the amount of precipitated Ti (mass%)-3.4 [N] (in Tables 5 and 6, indicated as precipitated Ti amount-3.4 [N]) is obtained. It was. When the Ti-containing precipitate partially contains V or Nb, the content of these precipitates was also measured.
 (金属組織の観察(各組織の分率))
 (1)鋼板中のフェライト、ベイニティッフェライト、パーライト、マルテンサイトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、フェライト、ベイニティッフェライト、パーライト、マルテンサイトを区別し、夫々の分率(面積率)を求めた。
 (2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
(Observation of metal structure (fraction of each structure))
(1) Regarding the structure of ferrite, bainitic ferrite, pearlite, and martensite in the steel plate, the steel plate is corroded with nital, and the ferrite, bainitic ferrite, pearlite are observed by SEM (magnification: 1000 times or 2000 times) observation. The martensite was distinguished and the respective fractions (area ratios) were determined.
(2) The retained austenite fraction in the steel sheet was measured by X-ray diffraction after being ground to ¼ thickness of the steel sheet and then chemically polished (for example, ISJJ Int. Vol. 33. (1933), No. 7, P.776).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記各鋼板(1.6mm×150mm×200mm)について(上記処理(1)、(2)以外のものについては、熱間圧延によって厚さtを1.6mmに調整)、加熱炉で所定の温度に加熱した後、ハット形状の金型(前記図1)でプレス成形および冷却処理を実施し、成形品とした。プレス成形条件(プレス成形時の加熱温度、平均冷却速度、急速冷却終了温度)を下記表7に示す。 Above for each steel sheet (1.6mm t × 150 mm × 200 mm) (the processing (1), the other than (2), adjusting the thickness t to 1.6mm by hot rolling), a predetermined in a heating furnace After heating to temperature, press molding and cooling treatment were performed with a hat-shaped mold (FIG. 1) to obtain a molded product. Table 7 below shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature during press molding).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 得られたプレス成形品につき、引張強度(TS)、伸び(全伸びEL)、金属組織の観察(各組織の分率)、および熱処理後の硬さ低下量を下記の方法で測定すると共に、Tiの析出状態の分析を上記した方法で測定した。 About the obtained press-formed product, while measuring the tensile strength (TS), elongation (total elongation EL), observation of metal structure (fraction of each structure), and hardness reduction after heat treatment by the following methods, The Ti precipitation state was analyzed by the method described above.
 (引張強度(TS)、および伸び(全伸びEL)の測定)
 JIS5号試験片を用いて引張試験を行い、引張強度(TS)、伸び(EL)を測定した。このとき、引張試験の歪速度:10mm/秒とした。本発明では、引張強度(TS)が980MPa以上で伸び(EL)が16%以上を満足し、強度-伸びバランス(TS×EL)が16000(MPa・%)以上のときに合格と評価した。
(Measurement of tensile strength (TS) and elongation (total elongation EL))
A tensile test was performed using a JIS No. 5 test piece, and tensile strength (TS) and elongation (EL) were measured. At this time, the strain rate of the tensile test was set to 10 mm / second. In the present invention, when the tensile strength (TS) was 980 MPa or more and the elongation (EL) was 16% or more, and the strength-elongation balance (TS × EL) was 16000 (MPa ·%) or more, it was evaluated as passing.
 (金属組織の観察(各組織の分率))
 (1)鋼板中のフェライト、ベイニティックフェライト、パーライトの組織については、鋼板をナイタールで腐食し、SEM(倍率:1000倍または2000倍)観察により、フェライト、ベイニティックフェライト、パーライトを区別し(フェライトと針状フェライトの区別も含む)、夫々の分率(面積率)を求めた。
 (2)鋼板中の残留オーステナイト分率は、鋼板の1/4の厚さまで研削した後、化学研磨してからX線回折法によって測定した(例えば、ISJJ Int.Vol.33.(1933),No.7,P.776)。
 (3)マルテンサイト(焼入れままマルテンサイト)分率については、鋼板をレペラ腐食し、白いコントラストを焼入れままマルテンサイトと残留オーステナイトの混合組織として面積率を測定し、そこからX線回折により求めた残留オーステナイト分率を差し引いて、マルテンサイト分率を計算した。
(Observation of metal structure (fraction of each structure))
(1) Regarding the structure of ferrite, bainitic ferrite and pearlite in the steel sheet, the steel sheet is corroded with nital, and ferrite, bainitic ferrite and pearlite are distinguished by SEM (magnification: 1000 times or 2000 times) observation. (Including the distinction between ferrite and acicular ferrite), each fraction (area ratio) was determined.
(2) The retained austenite fraction in the steel sheet was measured by X-ray diffraction after being ground to ¼ thickness of the steel sheet and then chemically polished (for example, ISJJ Int. Vol. 33. (1933), No. 7, P.776).
(3) The martensite (as-quenched martensite) fraction was determined by X-ray diffraction from the area ratio of the martensite and retained austenite as it was quenched by repeller corrosion of the steel sheet. The martensite fraction was calculated by subtracting the residual austenite fraction.
 (熱処理後の硬さ低下量)
 スポット溶接に準ずる熱履歴として、熱処理シミュレータで平均加熱速度50℃/秒で700℃に加熱後、平均冷却速度50℃/秒で冷却し、元の硬さ(ビッカース硬さ)に対する硬さ低下量(ΔHv)を測定した。硬さ低下量(ΔHv)が50Hv以下のときに、HAZでの軟化防止特性が良好であると判断した。
(Hardness reduction after heat treatment)
As a heat history equivalent to spot welding, after heating to 700 ° C at an average heating rate of 50 ° C / sec with a heat treatment simulator, cooling is performed at an average cooling rate of 50 ° C / sec to reduce the hardness against the original hardness (Vickers hardness) (ΔHv) was measured. When the hardness reduction amount (ΔHv) was 50 Hv or less, it was judged that the anti-softening property in HAZ was good.
 金属組織の観察結果(Tiの析出状態、各組織の分率、析出Ti量-3.4[N])を、下記表8、9に示す。また、成形品の機械的特性(引張強度TS、伸びEL、TS×EL、および硬さ低下量ΔHv)を下記表10に示す。尚、成形品における析出Ti量-3.4[N]の値は、プレス成形用鋼板における析出Ti量-3.4[N]の値と若干異なるが、これは測定誤差である。 The observation results of the metal structure (Ti precipitation state, fraction of each structure, amount of precipitated Ti-3.4 [N]) are shown in Tables 8 and 9 below. Table 10 below shows the mechanical properties (tensile strength TS, elongation EL, TS × EL, and hardness reduction amount ΔHv) of the molded product. The value of the precipitated Ti amount-3.4 [N] in the formed product is slightly different from the value of the precipitated Ti amount-3.4 [N] in the press-formed steel sheet, but this is a measurement error.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 これらの結果から、次のように考察できる。鋼No.1、2、4~6、10、11、15、16、19~21、23~32のものは、本発明で規定する要件を満足する実施例であり、強度-延性バランスが良好で、軟化防止特性が良好な部品が得られていることが分かる。 From these results, it can be considered as follows. Steel No. Examples 1, 2, 4 to 6, 10, 11, 15, 16, 19 to 21, and 23 to 32 are examples that satisfy the requirements defined in the present invention, have a good strength-ductility balance, and are softened. It can be seen that parts having good prevention characteristics are obtained.
 これに対し、鋼No.3、7~9、12~14、18、22のものは、本発明で規定するいずれかの要件を満足しない比較例であり、いずれかの特性が劣化している。即ち、鋼No.3のものは、Si含有量が少ないプレス成形用鋼板を用いたものであり、プレス成形品中の残留オーステナイト分率が確保されず、伸びがでないものとなって、強度-伸びバランスが劣化している。鋼No.7のものは、鋼板製造時の仕上げ圧延温度が低く、プレス成形用鋼板におけるTi含有析出物が粗大化し、プレス成形用鋼板およびプレス成形品のいずれの段階でも(1)式の関係を満足しないものとなっており、軟化防止特性が劣化している。 In contrast, Steel No. Those of 3, 7 to 9, 12 to 14, 18, and 22 are comparative examples that do not satisfy any of the requirements defined in the present invention, and any of the characteristics is deteriorated. That is, Steel No. No. 3 uses a steel sheet for press forming with a low Si content, and the retained austenite fraction in the press-formed product is not ensured and elongation is not achieved, so that the strength-elongation balance deteriorates. ing. Steel No. No. 7 has a low finish rolling temperature at the time of manufacturing the steel sheet, the Ti-containing precipitates in the press forming steel sheet become coarse, and does not satisfy the relationship of formula (1) at any stage of the press forming steel sheet or the press formed product. The anti-softening property is deteriorated.
 鋼No.8のものは、鋼板製造時の620℃~580℃の冷却速度が速くなっており、フェライト変態が十分に進まず、プレス成形用鋼板でのフェライト分率が確保できず、強度が高くなってプレス成形前での成形や加工が困難になることが予想される。鋼No.9のものは、鋼板製造時の巻取り温度が高くなっており、プレス成型用鋼板におけるTi含有析出物が粗大化しており、こうした鋼板を用いてプレス成形したときには、成形条件が適切で強度-延性バランスが良好でも軟化防止特性が劣化している。 Steel No. No. 8 has a high cooling rate of 620 ° C. to 580 ° C. at the time of manufacturing the steel sheet, the ferrite transformation does not proceed sufficiently, the ferrite fraction in the press forming steel sheet cannot be secured, and the strength becomes high. It is expected that molding and processing before press molding will be difficult. Steel No. In No. 9, the coiling temperature at the time of manufacturing the steel sheet is high, and the Ti-containing precipitates in the steel sheet for press forming are coarsened. When press forming using such a steel sheet, the forming conditions are appropriate and the strength- Even if the ductility balance is good, the anti-softening property is deteriorated.
 鋼No.12のものは、プレス成形時の加熱温度が高くなっており、マルテンサイトが生成してフェライトが生成せず、伸びが低下し、強度-伸びバランス(TS×EL)が劣化している。鋼No.13のものは、プレス成形時の冷却速度が遅くなっており、プレス成形品の段階でフェライト分率が増大し、強度が低下している。 Steel No. In No. 12, the heating temperature during press molding is high, martensite is generated, ferrite is not generated, elongation is lowered, and strength-elongation balance (TS × EL) is deteriorated. Steel No. In No. 13, the cooling rate at the time of press molding was slow, the ferrite fraction increased at the stage of the press molded product, and the strength decreased.
 鋼No.14のものは、プレス成形時の冷却終了温度が高くなっており、パーライトが生成して、残留オーステナイトが確保できず、強度および伸びが低下し、強度-伸びバランス(TS×EL)が劣化している。鋼No.18のものは、C含有量が過剰なプレス成形用鋼板を用いたものであり、鋼板のフェライト分率が確保できず、プレス成形品でのフェライト分率が確保できず、低い伸びELしか得られず、強度-伸びバランス(TS×EL)も劣化している。鋼No.22のものは、Ti含有量が過剰のプレス成形用鋼板を用いたものであり、プレス成形用鋼板およびプレス成形品のいずれの段階でも(1)式の関係を満足しないものとなっており、Ti含有析出物が粗大化しており、軟化防止特性が劣化している。 Steel No. No. 14 has a high cooling end temperature during press molding, pearlite is generated, retained austenite cannot be secured, strength and elongation are lowered, and strength-elongation balance (TS × EL) is deteriorated. ing. Steel No. No. 18 uses a steel sheet for press forming with an excessive C content, the ferrite fraction of the steel sheet cannot be secured, the ferrite fraction in the press-formed product cannot be secured, and only a low elongation EL is obtained. The strength-elongation balance (TS × EL) is also deteriorated. Steel No. No. 22 uses a steel sheet for press forming with an excessive Ti content, and does not satisfy the relationship of the formula (1) at any stage of the steel sheet for press forming and the press-formed product. Ti-containing precipitates are coarsened, and the softening prevention properties are deteriorated.
 [実施例2]
 下記表11に示した化学成分組成を有する鋼材(鋼No.33~37)を真空溶製し、実験用スラブとした後、熱間圧延を行い、その後に冷却して巻取った(板厚:3.0mm)。このときの鋼板製造条件を下記表12に示す。
[Example 2]
Steel materials (steel Nos. 33 to 37) having the chemical composition shown in Table 11 below were melted in vacuum to form experimental slabs, followed by hot rolling, followed by cooling and winding (sheet thickness) : 3.0 mm). The steel plate production conditions at this time are shown in Table 12 below.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 得られた鋼板(プレス成形用鋼板)につき、Ti含有析出物の析出状態の分析、金属組織の観察(各組織の分率)、および引張強度の測定を実施例1と同様にして行った。その結果を、下記表13に示す。 For the obtained steel plate (press forming steel plate), analysis of the precipitation state of Ti-containing precipitates, observation of the metal structure (fraction of each structure), and measurement of tensile strength were carried out in the same manner as in Example 1. The results are shown in Table 13 below.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 上記各鋼板(3.0mm×150mm×200mm)について、加熱炉で所定の温度に加熱した後、ハット形状の金型(前記図1)でプレス成形および冷却処理を実施し、成形品とした。このとき、鋼板を赤外線炉に入れ、高強度化したい部分(第1の領域に相当する鋼板部分)は高温加熱できるように、赤外線が直接当たるようにすると共に、低強度化したい部分(第1の領域に相当する鋼板部分)には低温加熱できるように、赤外線の一部を遮断するように覆いをかぶせることで、加熱温度差を付けた。従って、成形品は単一の部品内に強度の異なる領域を有するものとなっている。プレス成形条件(プレス成形時の各領域の加熱温度、平均冷却速度、急速冷却終了温度)を下記表14に示す。 Above for each steel sheet (3.0mm t × 150mm × 200mm) , was heated to a predetermined temperature in a heating furnace, performing a press-forming and cooling process in a mold of hat-shaped (FIG. 1), and a molded article . At this time, the steel sheet is placed in an infrared furnace, and the portion (the steel plate portion corresponding to the first region) to be strengthened is directly irradiated with infrared rays so that the portion can be heated at a high temperature. The steel plate portion corresponding to the region of (1) was covered with a cover so as to block a part of infrared rays so that it could be heated at a low temperature, thereby giving a heating temperature difference. Therefore, the molded product has regions having different strengths within a single part. Table 14 shows the press molding conditions (heating temperature, average cooling rate, rapid cooling end temperature in each region during press molding).
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 得られたプレス成形品につき、各領域における引張強度(TS)、伸び(全伸びEL)、金属組織の観察(各組織の分率)、および硬さ低下量(ΔHv)を実施例1と同様にして求めた。 About the obtained press-formed product, tensile strength (TS), elongation (total elongation EL), observation of metal structure (fraction of each structure), and hardness reduction amount (ΔHv) in each region are the same as in Example 1. I asked for it.
 金属組織の観察結果(各組織の分率)およびTiの析出状態の分析結果を、下記表15に示す。また、プレス成形品の機械的特性(引張強度TS、伸びEL、TS×ELおよび硬さ低下量ΔHv)を下記表16に示す。尚、高強度側での引張強度(TS)は1470MPa以上で伸び(EL)が8%以上を満足し、強度-伸びバランス(TS×EL)が14000(MPa・%)以上のときに合格と評価した(低強度側の評価基準は実施例1と同じ)。 Table 15 below shows the observation results of metal structures (fraction of each structure) and the analysis results of the precipitation state of Ti. In addition, the mechanical properties (tensile strength TS, elongation EL, TS × EL, and hardness reduction amount ΔHv) of the press-formed product are shown in Table 16 below. The tensile strength (TS) on the high strength side is 1470 MPa or higher, the elongation (EL) satisfies 8% or higher, and the strength-elongation balance (TS × EL) is 14000 (MPa ·%) or higher. (Evaluation criteria on the low strength side are the same as in Example 1).
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 この結果から、次のように考察できる。鋼No.33~36のものは、本発明で規定する要件を満足する実施例であり、各領域における強度-延性バランスの良好なプレス成形品が得られていることが分かる。これに対し、鋼No.37のものは、プレス成形時の加熱温度が低くなっており、高強度側でのマルテンサイト分率が不足し、高強度側での強度が低下している(低強度側との強度差が300MPa未満)。 From this result, it can be considered as follows. Steel No. Nos. 33 to 36 are examples that satisfy the requirements defined in the present invention, and it can be seen that press-formed products having a good strength-ductility balance in each region are obtained. On the other hand, Steel No. In No. 37, the heating temperature at the time of press molding is low, the martensite fraction on the high strength side is insufficient, and the strength on the high strength side is reduced (the strength difference from the low strength side is Less than 300 MPa).
 本発明では、所定の化学成分組成を有し、鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であると共に、鋼中の析出Ti量と全Ti量とが所定の関係を満足し、且つ、金属組織が、フェライトの分率が30面積%以上とすることで、熱間プレス前に成形や加工が容易にでき、且つ成形品内で均一な特性が要求される場合には、高強度と伸びのバランスを高レベルで達成できるプレス成形品を得ることができ、単一成形品内に耐衝撃部位とエネルギー吸収部位に相当する領域が要求される場合には、夫々の領域に応じて、高強度と伸びのバランスを高レベルで達成でき、しかもHAZでの軟化防止特性が良好なプレス成形品を得る上で有用な熱間プレス用鋼板が実現できる。 In the present invention, among the Ti-containing precipitates having a predetermined chemical composition and contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the amount of precipitated Ti in the steel And the total Ti content satisfy a predetermined relationship, and the metal structure has a ferrite fraction of 30% by area or more, so that molding and processing can be easily performed before hot pressing, and in the molded product. When uniform characteristics are required, a press-molded product that can achieve a high level of balance between strength and elongation can be obtained, and the area corresponding to the impact-resistant and energy-absorbing sites in a single molded product. Is required, it is possible to achieve a high level of balance between high strength and elongation according to each region, and hot press useful for obtaining a press-molded product with good softening prevention properties in HAZ. Steel sheet can be realized.
1 パンチ
2 ダイ
3 ブランクホルダー
4 鋼板(ブランク)
1 Punch 2 Die 3 Blank holder 4 Steel plate (blank)

Claims (6)

  1.  C :0.15~0.5%(質量%の意味。以下、化学成分組成について同じ。)、
     Si:0.2~3%、
     Mn:0.5~3%、
     P :0.05%以下(0%を含まない)、
     S :0.05%以下(0%を含まない)、
     Al:0.01~1%、
     B :0.0002~0.01%、
     Ti:3.4[N]+0.01%以上、3.4[N]+0.1%以下[但し、[N]はNの含有量(質量%)を示す]、および
     N:0.001~0.01%、
    を夫々含有し、残部が鉄および不可避不純物からなり、
     鋼板中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が6nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足し、且つ、金属組織が、フェライトの分率が30面積%以上であることを特徴とする熱間プレス用鋼板。
     析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
     ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
    C: 0.15 to 0.5% (meaning mass%, hereinafter the same for chemical composition)
    Si: 0.2-3%,
    Mn: 0.5 to 3%,
    P: 0.05% or less (excluding 0%),
    S: 0.05% or less (excluding 0%),
    Al: 0.01 to 1%,
    B: 0.0002 to 0.01%,
    Ti: 3.4 [N] + 0.01% or more, 3.4 [N] + 0.1% or less [where [N] indicates the content (% by mass) of N], and N: 0.001 ~ 0.01%,
    Each of which contains iron and inevitable impurities,
    Among the Ti-containing precipitates contained in the steel sheet, the average equivalent circle diameter of those having an equivalent circle diameter of 30 nm or less is 6 nm or less, and the relationship between the precipitated Ti amount in the steel and the total Ti amount in the following formula (1) And the metal structure has a ferrite fraction of 30% by area or more.
    Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
    (In the formula (1), [N] indicates the content (% by mass) of N in the steel)
  2.  更に他の元素として、下記(a)~(c)の少なくとも1つを含有するものである請求項1に記載の熱間プレス用鋼板。
    (a)V,NbおよびZrよりなる群から選択される1種以上を合計で0.1%以下(0%を含まない)
    (b)Cu,Ni,CrおよびMoよりなる群から選択される1種以上を合計で1%以下(0%を含まない)
    (c)Mg,CaおよびREMよりなる群から選択される1種以上を合計で0.01%以下(0%を含まない)
    The steel sheet for hot pressing according to claim 1, further comprising at least one of the following (a) to (c) as another element.
    (A) 0.1% or less in total of one or more selected from the group consisting of V, Nb and Zr (excluding 0%)
    (B) 1% or less in total of at least one selected from the group consisting of Cu, Ni, Cr and Mo (not including 0%)
    (C) 0.01% or less (excluding 0%) of at least one selected from the group consisting of Mg, Ca and REM
  3.  請求項1または2に記載の熱間プレス用鋼板を、Ac1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、前記鋼板のプレス成形を開始し、成形中および成形終了後は金型内で20℃/秒以上の平均冷却速度を確保しつつベイナイト変態開始温度Bsより100℃低い温度以下まで冷却することを特徴とするプレス成形品の製造方法。 The steel sheet for hot pressing according to claim 1 or 2 is heated to a temperature of Ac 1 transformation point + 20 ° C or higher and Ac 3 transformation point -20 ° C or lower, and then press forming of the steel sheet is started. A method for producing a press-molded product, characterized in that after molding is completed, cooling is performed to a temperature lower than 100 ° C. below the bainite transformation start temperature Bs while securing an average cooling rate of 20 ° C./second or more in the mold.
  4.  請求項1または2に記載の化学成分組成を有する鋼板のプレス成形品であって、前記プレス成形品中の金属組織が、残留オーステナイト:3~20面積%、フェライト:30~80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:31面積%以下(0面積%を含まない)であり、プレス成形品中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足することを特徴とするプレス成形品。
     析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
     ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
    3. A press-formed product of a steel sheet having the chemical composition according to claim 1 or 2, wherein the metal structure in the press-formed product is a retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bay Nitic ferrite: less than 30 area% (excluding 0 area%), martensite: 31 area% or less (not including 0 area%), and among the Ti-containing precipitates contained in the press-formed product, A press-formed product characterized in that the average equivalent-circle diameter of an equivalent diameter of 30 nm or less is 10 nm or less, and the amount of precipitated Ti in the steel and the total Ti amount satisfy the relationship of the following formula (1).
    Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
    (In the formula (1), [N] indicates the content (% by mass) of N in the steel)
  5.  請求項1または2に記載の熱間プレス用鋼板を用い、鋼板の加熱領域を少なくとも2つの領域に分け、その一の領域をAc3変態点以上、950℃以下の温度に加熱すると共に、他の一の領域をAc1変態点+20℃以上、Ac3変態点-20℃以下の温度に加熱した後、両方の領域に対してプレス成形を開始し、成形中および成形終了後はいずれの領域でも金型内で20℃/秒以上の平均冷却速度を確保しつつマルテンサイト変態開始温度Ms以下の温度まで冷却することを特徴とするプレス成形品の製造方法。 The steel sheet for hot pressing according to claim 1 or 2 is used, the heating region of the steel plate is divided into at least two regions, and one region is heated to a temperature not lower than Ac 3 transformation point and not higher than 950 ° C. After heating one region to a temperature of Ac 1 transformation point + 20 ° C. or higher and Ac 3 transformation point −20 ° C. or lower, press molding was started for both regions, and either region during or after molding However, the method for producing a press-molded product is characterized by cooling to a temperature below the martensite transformation start temperature Ms while securing an average cooling rate of 20 ° C./second or more in the mold.
  6.  請求項1または2に記載の化学成分組成を有する鋼板のプレス成形品であって、前記プレス成形品は、金属組織が、残留オーステナイト:3~20面積%、マルテンサイト:80面積%以上である第1の領域と、金属組織が、残留オーステナイト:3~20面積%、フェライト:30~80面積%、ベイニティックフェライト:30面積%未満(0面積%を含まない)、マルテンサイト:31面積%以下(0面積%を含まない)である第2の領域を有しており、この第2の領域の鋼中に含まれるTi含有析出物のうち、円相当直径が30nm以下のものの平均円相当直径が10nm以下であると共に、鋼中の析出Ti量と全Ti量とが下記(1)式の関係を満足することを特徴とするプレス成形品。
     析出Ti量(質量%)-3.4[N]<0.5×[全Ti量(質量%)-3.4[N]] …(1)
     ((1)式中、[N]は鋼中のNの含有量(質量%)を示す)
    3. A press-formed product of a steel sheet having the chemical composition according to claim 1 or 2, wherein the press-formed product has a metal structure of residual austenite: 3 to 20 area%, martensite: 80 area% or more. The first region and the metal structure are retained austenite: 3 to 20 area%, ferrite: 30 to 80 area%, bainitic ferrite: less than 30 area% (excluding 0 area%), martensite: 31 area % Of the Ti-containing precipitates contained in the steel of the second region having an equivalent circle diameter of 30 nm or less. A press-formed product characterized in that the equivalent diameter is 10 nm or less, and the amount of precipitated Ti in the steel and the total amount of Ti satisfy the relationship of the following formula (1).
    Precipitated Ti amount (mass%)-3.4 [N] <0.5 × [Total Ti amount (mass%)-3.4 [N]] (1)
    (In the formula (1), [N] indicates the content (% by mass) of N in the steel)
PCT/JP2013/074426 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article WO2015037060A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US14/917,823 US20160222482A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
KR1020167006201A KR101827187B1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
PCT/JP2013/074426 WO2015037060A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
EP13893228.0A EP3045553A4 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
CN201380079439.1A CN105518170A (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
MX2016003260A MX2016003260A (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article.
CA3014626A CA3014626A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
RU2016111914A RU2625357C1 (en) 2013-09-10 2013-09-10 Hot straight thick-gauge plate formed by pumping the product and method of manufacturing formed by stamping the product
CA2923583A CA2923583A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/074426 WO2015037060A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article

Publications (1)

Publication Number Publication Date
WO2015037060A1 true WO2015037060A1 (en) 2015-03-19

Family

ID=52665202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074426 WO2015037060A1 (en) 2013-09-10 2013-09-10 Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article

Country Status (8)

Country Link
US (1) US20160222482A1 (en)
EP (1) EP3045553A4 (en)
KR (1) KR101827187B1 (en)
CN (1) CN105518170A (en)
CA (2) CA2923583A1 (en)
MX (1) MX2016003260A (en)
RU (1) RU2625357C1 (en)
WO (1) WO2015037060A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105929668A (en) * 2016-04-25 2016-09-07 尊尚(深圳)穿金戴银技术股份有限公司 Pure gold watchcase, manufacturing method thereof and dial plate comprising pure gold watchcase
JP2019518609A (en) * 2016-04-22 2019-07-04 アペラム Method of manufacturing martensitic stainless steel parts from sheet
US11027781B2 (en) 2016-07-13 2021-06-08 Nippon Steel Corporation Hot-stamping formed article, structural member using the same, and manufacturing method of hot-stamping formed article

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN201617022707A (en) 2014-01-06 2016-08-31 Nippon Steel & Sumitomo Metal Corp
EP3093358B1 (en) 2014-01-06 2019-08-14 Nippon Steel Corporation Steel and method of manufacturing the same
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
PL3360981T3 (en) * 2017-02-10 2020-12-14 Outokumpu Oyj Steel component manufactured by hot forming, method of manufacturing and use of the component
KR101978072B1 (en) 2017-06-27 2019-05-13 현대제철 주식회사 Steel for taylor welded blank and method of manufacturing hot stampig component using the same
WO2019004541A1 (en) * 2017-06-27 2019-01-03 현대제철 주식회사 Steel material for taylor welded blank and method for manufacturing hot-stamped part using same steel
CN108220777A (en) * 2018-01-19 2018-06-29 山东钢铁集团日照有限公司 A kind of heat forming technology for realizing part high strength and ductility duplex structure
CA3096907A1 (en) * 2018-05-11 2019-11-14 Magna International Inc. Conduction pre-heating of sheet for hot forming
KR101930287B1 (en) 2018-05-25 2019-03-11 김정우 Apparatus and method for manufacturing of mounting cover
CN109047429A (en) * 2018-11-09 2018-12-21 浙江智造热成型科技有限公司 Unimach hot forming production line
CN114058794B (en) * 2021-10-27 2022-11-22 中国科学院金属研究所 Warm pressing process for manufacturing pressed rigging

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183139A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Automobile member and its production method
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP2010043323A (en) * 2008-08-12 2010-02-25 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hot press, method for producing the same, and method for producing hot pressed steel sheet member
JP2010065292A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member and method for producing the hot press member
JP2010065293A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
JP2010065295A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
JP2010065294A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
WO2012169639A1 (en) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 Hot press molded article, method for producing same, and thin steel sheet for hot press molding
WO2012169640A1 (en) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 Hot press molded article, method for producing same, and thin steel sheet for hot press molding
JP2013185247A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003253380A (en) * 2002-02-26 2003-09-10 Jfe Steel Kk High-strength steel superior in toughness of heat- affected zone by ultra-high heat input welding
WO2007048883A1 (en) * 2005-10-27 2007-05-03 Usinor Method of producing a part with very high mechanical properties from a rolled coated sheet
KR101133870B1 (en) * 2006-05-10 2012-04-06 수미도모 메탈 인더스트리즈, 리미티드 Hot-pressed steel sheet member and process for production thereof
EP3587104B1 (en) * 2006-10-30 2022-03-30 ArcelorMittal Coated steel strips
WO2012147963A1 (en) * 2011-04-28 2012-11-01 株式会社神戸製鋼所 Hot press molded article, fabrication method therefor, and thin steel plate for hot press molding
JP5679452B2 (en) * 2011-08-17 2015-03-04 株式会社神戸製鋼所 High-strength hot-rolled steel sheet that combines formability and fatigue properties of the base metal and weld heat-affected zone
JP5756774B2 (en) * 2012-03-09 2015-07-29 株式会社神戸製鋼所 Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5756773B2 (en) * 2012-03-09 2015-07-29 株式会社神戸製鋼所 Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP6001884B2 (en) * 2012-03-09 2016-10-05 株式会社神戸製鋼所 Manufacturing method of press-molded product and press-molded product

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006183139A (en) * 2004-11-30 2006-07-13 Jfe Steel Kk Automobile member and its production method
JP2009061473A (en) * 2007-09-06 2009-03-26 Sumitomo Metal Ind Ltd Method for manufacturing high-strength component
JP2010043323A (en) * 2008-08-12 2010-02-25 Sumitomo Metal Ind Ltd Hot rolled steel sheet for hot press, method for producing the same, and method for producing hot pressed steel sheet member
JP2010065292A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member and method for producing the hot press member
JP2010065293A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
JP2010065295A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
JP2010065294A (en) 2008-09-12 2010-03-25 Jfe Steel Corp Hot press member having excellent ductility, steel sheet for the hot press member, and method for producing the hot press member
WO2012169639A1 (en) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 Hot press molded article, method for producing same, and thin steel sheet for hot press molding
WO2012169640A1 (en) * 2011-06-10 2012-12-13 株式会社神戸製鋼所 Hot press molded article, method for producing same, and thin steel sheet for hot press molding
JP2013185247A (en) * 2012-03-09 2013-09-19 Kobe Steel Ltd Steel sheet for hot pressing, press-molded product and method for manufacturing the press-molded product

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HIROSUE ET AL., NIPPON STEEL TECHNICAL REPORT, 2003, pages 15 - 20
ISJJ INT., vol. 33, no. 7, 1933, pages 776
See also references of EP3045553A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518609A (en) * 2016-04-22 2019-07-04 アペラム Method of manufacturing martensitic stainless steel parts from sheet
CN105929668A (en) * 2016-04-25 2016-09-07 尊尚(深圳)穿金戴银技术股份有限公司 Pure gold watchcase, manufacturing method thereof and dial plate comprising pure gold watchcase
US11027781B2 (en) 2016-07-13 2021-06-08 Nippon Steel Corporation Hot-stamping formed article, structural member using the same, and manufacturing method of hot-stamping formed article
EP3485996B1 (en) * 2016-07-13 2022-06-01 Nippon Steel Corporation Hot-stamping formed article, structural member using the same, and manufacturing method of hot-stamping formed article

Also Published As

Publication number Publication date
US20160222482A1 (en) 2016-08-04
EP3045553A1 (en) 2016-07-20
CA2923583A1 (en) 2015-03-19
KR20160042968A (en) 2016-04-20
KR101827187B1 (en) 2018-02-07
RU2625357C1 (en) 2017-07-13
CN105518170A (en) 2016-04-20
EP3045553A4 (en) 2017-03-22
CA3014626A1 (en) 2015-03-19
MX2016003260A (en) 2016-06-07

Similar Documents

Publication Publication Date Title
JP5756774B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5756773B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
WO2015037060A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP6001883B2 (en) Manufacturing method of press-molded product and press-molded product
WO2015037061A1 (en) Hot-pressing steel plate, press-molded article, and method for manufacturing press-molded article
JP6001884B2 (en) Manufacturing method of press-molded product and press-molded product
WO2015037059A1 (en) Method for manufacturing press-molded article, and press-molded article
JP5894470B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5894469B2 (en) Steel sheet for hot pressing, press-formed product, and method for producing press-formed product
JP5802155B2 (en) Manufacturing method of press-molded product and press-molded product
JP5869924B2 (en) Manufacturing method of press-molded product and press-molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2923583

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20167006201

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2013893228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013893228

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14917823

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/003260

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016004928

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016111914

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: JP

ENP Entry into the national phase

Ref document number: 112016004928

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160304