JPH0336242A - Nonoriented silicon steel sheet excellent in magnetic property and its production - Google Patents

Nonoriented silicon steel sheet excellent in magnetic property and its production

Info

Publication number
JPH0336242A
JPH0336242A JP16652389A JP16652389A JPH0336242A JP H0336242 A JPH0336242 A JP H0336242A JP 16652389 A JP16652389 A JP 16652389A JP 16652389 A JP16652389 A JP 16652389A JP H0336242 A JPH0336242 A JP H0336242A
Authority
JP
Japan
Prior art keywords
elements
hot
total
steel sheet
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16652389A
Other languages
Japanese (ja)
Other versions
JP2540946B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Yoshihiro Hosoya
佳弘 細谷
Toshiaki Urabe
俊明 占部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1166523A priority Critical patent/JP2540946B2/en
Publication of JPH0336242A publication Critical patent/JPH0336242A/en
Application granted granted Critical
Publication of JP2540946B2 publication Critical patent/JP2540946B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

PURPOSE:To produce a nonoriented silicon steel sheet in which the composition in a surface layer part is different from that in an internal layer part and which has low iron loss and high magnetic flux density by subjecting a slab of silicon steel with a specific composition to hot rolling and to pickling treatment, applying, e.g. an aqueous solution containing specific elements to the resulting steel plate, subjecting the above steel sheet to drying and then to annealing in a nonoxidizing atmosphere, and successively carrying out cold rolling and final annealing. CONSTITUTION:A slab of a dead-soft carbon steel having a composition containing, by weight, <=0.0050% C, 1.0-4.0% Si, 0.1-2.0% Al, <=0.0030% N, and <=0.003%, in total, of one or >=2 elements among Se, Te, Sb, Bi, Pb, Sn, and As is hot-rolled, coiled at <=700 deg.C, and subjected to pickling treatment. Subsequently, an aqueous solution containing one or >=2 elements among the above-mentioned Se, etc., is applied to the resulting plate, and, after drying, the plate is annealed in a nonoxidizing atmosphere, cold-rolled, and subjected to final annealing so as to be formed into a sheet metal material, by which the nonoriented silicon steel sheet consisting of both surface layer parts which total surface thickness is <=20% of the total sheet thickness and in which the thickness per side is regulated to >=2mum and both surface layer and an internal layer part, having a composition containing <=0.0050% C, 1-4% Si, 0.1-2.0% Al, and <=0.0030% N and also containing Se, Te, and other components by >=0.02% in both surface layer parts and by <=0.003% in the internal layer part, and excellent in magnetic properties can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無方向性電磁鋼板、特に低鉄損,高磁束密度を
有する無方向性電磁鋼板およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a non-oriented electrical steel sheet, particularly a non-oriented electrical steel sheet having low core loss and high magnetic flux density, and a method for manufacturing the same.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、省エネルギーの観点からモーターの高効率化、小
型化が要請され、鉄心桐材として用いられる無方向性電
磁鋼板についても、低鉄損,高磁束密度化による磁気特
性の向上が益々重要となってきている。
In recent years, there has been a demand for higher efficiency and smaller motors from the perspective of energy conservation, and it has become increasingly important to improve the magnetic properties of non-oriented electrical steel sheets, which are used as paulownia wood cores, through lower iron loss and higher magnetic flux density. It's coming.

無方向性電磁鋼板において鉄損を低減するには、Siの
添加による電気抵抗の増大を通じて堝流損を低下させる
というのが一般的である。しかしながら、鋼[4JのS
五目が増大すると、熱延巻取り後のフェライトの再結晶
が起こりにくくなり、このように熱延板中のフエライト
再結晶帯が低いと、続いて冷延−焼鈍した鋼板の磁束密
度か低−トして1一まう。そこで、Si添加に伴うこの
ような欠点を袖うために、熱延板を焼鈍してフェライト
の再結晶を充分行った後に冷延−焼鈍する方法が開示さ
れている。
In order to reduce iron loss in non-oriented electrical steel sheets, it is common to reduce flow loss by increasing electrical resistance by adding Si. However, steel [4J S
As the number of particles increases, recrystallization of ferrite becomes difficult to occur after hot-rolling and winding, and if the ferrite recrystallization zone in the hot-rolled sheet is low, then the magnetic flux density of the cold-rolled and annealed steel sheet becomes low. 11 minutes. In order to overcome these drawbacks associated with Si addition, a method has been disclosed in which a hot-rolled sheet is annealed to sufficiently recrystallize the ferrite, and then cold-rolled and annealed.

また、鋼中にSn 、 Sb等の元素を添加すると、熱
延板焼鈍時にこれらの元素がフェライト粒界に偏析し、
冷圧後の焼鈍段階において、磁気特性に有害な(111
)成分の粒界近傍からの再結晶を抑制することにより、
さらに磁束密度を向上させるという技術が開示されてい
る(例えば、特開昭5735027号)。しかし、これ
らの元素が熱延板の板厚方向で均一に粒界上に偏析する
と、冷圧後焼鈍段階でのフェライト粒成長性が抑制され
、鉄損の低下が抑えられてしまうという問題点かある。
Additionally, when elements such as Sn and Sb are added to steel, these elements segregate at the ferrite grain boundaries during hot-rolled sheet annealing.
In the annealing step after cold pressing, the 111
) By suppressing the recrystallization of components near the grain boundaries,
Furthermore, a technique for improving the magnetic flux density has been disclosed (for example, Japanese Patent Laid-Open No. 5735027). However, if these elements segregate uniformly on the grain boundaries in the thickness direction of the hot-rolled sheet, the growth of ferrite grains during the annealing stage after cold rolling is suppressed, which leads to the problem of suppressing the decrease in iron loss. There is.

一方、熱延仮焼i1iあるいは最終焼鈍II;’の雰囲
気ガスに窒素が存在する場合、鋼板表面から窒素が拡散
浸透し、へρ等の鋼中の窒化物形成元素との反応により
鋼板表面近傍部にA,QN等の窒化物か析出する。この
ように熱延板焼鈍時に窒化物か析出すると、冷圧後最終
焼鈍段階において、鋼板表面近傍のフェライト粒成長性
を著しく低下させてしまい、磁気特性は向上しない。ま
た、最終焼鈍段階における窒化に伴う窒化物の析出も、
同様に鋼板表面近傍でのフェライト粒成長性を低下させ
、磁気特性の向上を阻害する。
On the other hand, when nitrogen is present in the atmosphere gas during hot rolling calcination i1i or final annealing II;', nitrogen diffuses from the surface of the steel sheet and reacts with nitride-forming elements in the steel such as . Nitrides such as A and QN are precipitated on the surface. If nitrides precipitate during annealing of a hot rolled sheet in this way, the growth of ferrite grains near the surface of the steel sheet will be significantly reduced in the final annealing step after cold rolling, and the magnetic properties will not improve. In addition, the precipitation of nitrides due to nitriding in the final annealing stage
Similarly, it reduces the growth of ferrite grains near the surface of the steel sheet, inhibiting improvement in magnetic properties.

このような焼鈍時の窒化による磁気特性の劣化を防止す
るために、従来スラブ段階で窒化防止剤を塗布し、拡散
浸透させる技術(特開昭51−48707号)、また冷
圧後、最終焼鈍前に80等の窒化防止剤を塗布する技術
(特公昭56 − 48567号)が提案されている。
In order to prevent such deterioration of magnetic properties due to nitridation during annealing, a conventional technique (Japanese Unexamined Patent Publication No. 51-48707) in which an anti-nitriding agent is applied at the slab stage and diffused into the slab, and the final annealing after cold pressing is applied. Previously, a technique of applying an anti-nitriding agent such as No. 80 (Japanese Patent Publication No. 48567/1983) has been proposed.

しかし、これらのうち前者の方法では、窒化防止元素の
拡散層がスラブ加熱中或いは熱延中に酸化されてしまう
ため、酸化防l1二剤と混合して使用しなければならな
い不利がある。一方、後者の方法では、冷圧後にSe等
の窒化防止剤を塗布するため、最終焼鈍段階での窒化を
防止することはできるが、熱延板焼鈍段階での窒化は防
止できず、加えて、最終焼鈍段階において窒化防止剤中
のSe。
However, in the former method, since the diffusion layer of the nitriding element is oxidized during slab heating or hot rolling, there is a disadvantage that it must be used in combination with the oxidation preventive l1 agent. On the other hand, in the latter method, an anti-nitriding agent such as Se is applied after cold pressing, so nitriding can be prevented at the final annealing stage, but nitriding at the hot-rolled sheet annealing stage cannot be prevented. , Se in the antinitriding agent in the final annealing step.

Sn 、 Sb等の元素が鋼板表面より急激に拡散浸透
するため、フェライ1・粒の粒成長性が著しく低下し、
逆に磁気特性の劣化を招いてしまう。
Because elements such as Sn and Sb rapidly diffuse and permeate from the surface of the steel sheet, the grain growth of Ferrite 1 grains is significantly reduced.
On the contrary, it causes deterioration of magnetic properties.

本発明はこのような従来の問題に鑑み、熱延板焼鈍およ
び最終焼鈍時の窒化を防止でき、{7かも、磁気特性に
良好な集合組織を有する高磁束密度の無方向性電磁鋼板
およびその製造に好適な方法を提供せんとするものであ
る。
In view of these conventional problems, the present invention is capable of preventing nitridation during hot-rolled sheet annealing and final annealing, and provides a high magnetic flux density non-oriented electrical steel sheet having a texture with good magnetic properties and the like. The purpose is to provide a method suitable for manufacturing.

〔問題を解決するための手段〕[Means to solve the problem]

このため本発明は、その厚さか規定された鋼板表層に、
出層部に比べSe,Te,Sb,Bi 、Pb,Sn.
へS等のリッチなシェル層を有する多層構造珪素含有鋼
板としたものであり、内層部と外層部の相互作用により
低鉄損、高磁束密度を図るように1−たちのである。
For this reason, the present invention provides a surface layer of a steel plate with a specified thickness.
Se, Te, Sb, Bi, Pb, Sn.
It is a multi-layer structure silicon-containing steel sheet having a shell layer rich in S, etc., and has a 1-layer structure so as to achieve low core loss and high magnetic flux density through interaction between the inner and outer layers.

即ち、本発明の無方向性電磁鋼板は、厚さが鋼板の全厚
さに対して鋼板両面の合計で20%以下、片面にて2一
以上である限定された表層部における合金組成が、C2
0.0050wt%、Si:]、O 〜4.0wt%、
A.9+0.1 〜2.0wt%、N≦0.0030w
t%、Se,i’eSb、Bi 、Pb、Sn、Asの
うち1種または2種以上の元素か合4Fで[1,02v
L%以上、残部Feおよび不可避的不純物で構成され、
板厚方向残部の内層部における合金組成か、C≦0.0
050wt%、Si:1.O〜4.Ov1.%、/l:
0.l 〜2.0wt%、  N ≦ 0.0030w
t%、 Se、Te、Sb、BPb 、 Sn 、 A
sのうち1種または2種以上の元素が台別で0.003
wt%以下、残部Feおよび不可避的不純物で構成され
る多層構造としたことをその基本的特徴とする。
That is, the non-oriented electrical steel sheet of the present invention has an alloy composition in a limited surface layer where the thickness is 20% or less in total on both sides of the steel sheet and 21 or more on one side with respect to the total thickness of the steel sheet. C2
0.0050wt%, Si: ], O ~4.0wt%,
A. 9+0.1 ~2.0wt%, N≦0.0030w
[1,02v
L% or more, the balance consists of Fe and unavoidable impurities,
Alloy composition in the remaining inner layer in the plate thickness direction, C≦0.0
050wt%, Si:1. O~4. Ov1. %, /l:
0. l ~2.0wt%, N≦0.0030w
t%, Se, Te, Sb, BPb, Sn, A
One or more elements in s is 0.003 per unit
Its basic feature is that it has a multilayer structure composed of wt% or less, the balance being Fe and unavoidable impurities.

また、本発明はこのような無方向性電磁鋼板を好適に製
造するため、C≦0.005Dwt%、Si:1.O〜
4、Ovt%、A、9:0.1〜2.0wt%、N≦0
.0030wt%、50Tc、Sb、Bi、Pb、Sn
、AsのうちIIまたは2種以上の元素が合計でO,D
O3vt%以下、残部Pcおよび不可避的不純物からな
る電磁鋼スラブを熱間圧延しl;後、700℃以下で巻
取り、該熱延板を酸洗後、Se、TeSb、Bi 、P
b、Sn、Asのうち1種または2種以上を含む化合物
の水溶液または懸7!13液を塗AJシて乾燥させた後
、非酸化雰囲気中にて熱延板焼鈍し、さらに冷間圧延に
より最終板厚とした後、最終焼鈍を行うようにしたこと
を他の基本的特徴とする。
Moreover, in order to suitably manufacture such a non-oriented electrical steel sheet, the present invention provides C≦0.005Dwt%, Si: 1. O~
4, Ovt%, A, 9:0.1-2.0wt%, N≦0
.. 0030wt%, 50Tc, Sb, Bi, Pb, Sn
, II or two or more elements of As are O, D in total
An electromagnetic steel slab consisting of O3vt% or less, the balance Pc and unavoidable impurities is hot-rolled, then coiled at 700°C or less, and the hot-rolled plate is pickled, followed by Se, TeSb, Bi, P.
After applying an aqueous solution or a 7!13 solution of a compound containing one or more of B, Sn, and As and drying it, the sheet is hot-rolled in a non-oxidizing atmosphere, and then cold-rolled. Another basic feature is that the final annealing is performed after the final plate thickness is achieved.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は、基本的には鋼板の極く限られた表層部の合金
組成を内層部に比べてリッチな状態とすることにより、
磁束密度の向上を図るとどもに、窒化防止により鉄損の
改善を実現しようとするものである。また特に、本発明
の製造法では、熱延板焼鈍前において、#A板表面にS
e、Te、Sb、Bi 、Pb,Sn,As等の元素を
塗布することにより、それ以降の各焼鈍」1程で生ずる
窒化に伴う鉄損の低下を防止するとともに、これらの元
素の濃化により磁気特性に良好な集合組織の形成を促す
ものである。
The present invention basically consists of making the alloy composition of the extremely limited surface layer of the steel plate richer than that of the inner layer.
In addition to improving the magnetic flux density, the aim is to improve iron loss by preventing nitridation. In particular, in the manufacturing method of the present invention, S is applied to the #A plate surface before hot-rolled plate annealing.
By coating elements such as e, Te, Sb, Bi, Pb, Sn, As, etc., it is possible to prevent the decrease in iron loss due to nitridation that occurs in each subsequent annealing step 1, and to prevent the concentration of these elements. This promotes the formation of a texture with good magnetic properties.

不発lν]鋼板は、その合金組成をC≦0.0050w
t%、Si:1.0〜4.0wt%、A、Q:0.1〜
2.0wt%、N≦0.0030wt、%とし、且ツS
c、Tc、Sb、Bi 、Pl)、Sn、へSのうちの
1種または2種以上の元素の合計を、厚さが鋼板全Jv
さに対して鋼板両面の合口で20%以下、片面で2−以
上の表層部で0.02wt%以上、板厚方向残部の内層
部で0.003w1%以下と規定する。
Unexploded lν] The steel plate has an alloy composition of C≦0.0050w
t%, Si: 1.0~4.0wt%, A, Q: 0.1~
2.0wt%, N≦0.0030wt,%, and S
The total of one or more elements of c, Tc, Sb, Bi, Pl), Sn, and S is added to the total thickness of the steel plate Jv.
In contrast, the content is specified as 20% or less at the abutment on both sides of the steel plate, 0.02wt% or more in the 2 or more surface layer portion on one side, and 0.003w1% or less in the inner layer portion of the remaining portion in the thickness direction.

まず、上記表層部の厚みおよびSl〕、Te等の合金元
素の限定理由について説明する。
First, the reasons for limiting the thickness of the surface layer and alloying elements such as Sl] and Te will be explained.

酸洗後の熱延板に、拡散させるべき元素を含んだ化合物
を塗布後焼鋪し、その後、冷圧し最終焼鋪した場合の鋼
板板厚方向における拡散元素の濃度プロファイルは第1
図のように模式的に示される。ここで、拡散領域の拡散
元素の濃度Cは、鋼板表面の元素濃度および板厚【−1
」6部の元素濃度をc、、coとすると、 とする。−力、元素の拡散領域は、元素の濃度プロファ
イルにおいてCとなる部分の鋼板表面からの距離gとす
る。
When a hot rolled sheet after pickling is coated with a compound containing the element to be diffused and then annealed, followed by cold pressing and final annealing, the concentration profile of the diffusing element in the thickness direction of the steel sheet is the first.
It is shown schematically as shown in the figure. Here, the concentration C of the diffusion element in the diffusion region is the element concentration on the steel plate surface and the plate thickness [-1
``If the elemental concentration of 6 parts is c, , co, then. - The diffusion region of the element is defined as the distance g from the steel plate surface of the portion C in the element concentration profile.

第1表の5teel Aの組成からなる板厚2mmの熱
延板を酸洗により脱スケールした後、鋼板表面にSbC
,hの懸濁液を塗布し、これを850℃で熱延板焼鈍し
た後、 0.5mに冷圧し、さらに950℃で最終焼鈍
を行って得られた鋼板について、そのsbの拡散領域お
よびa皮と、同一プロセスにおいてSbC,Q3を塗布
しないで得られた鋼板との磁気特性値の差を掬2図に示
す。同図によればsb拡散領域(鋼板表層部)の範囲(
厚さ)およびそのSb濃度と磁気特性とは次のような関
係を有している。
After descaling a hot-rolled sheet with a thickness of 2 mm consisting of the composition of 5teel A in Table 1 by pickling, SbC was added to the surface of the steel sheet.
, h was applied, the hot-rolled plate was annealed at 850°C, cold-pressed to 0.5 m, and final annealed at 950°C. Figure 2 shows the difference in magnetic properties between the a-skin and a steel sheet obtained in the same process without applying SbC, Q3. According to the figure, the range of the sb diffusion region (steel plate surface layer) (
Thickness), its Sb concentration, and magnetic properties have the following relationship.

(A)  Sbの拡散領域における濃度がSb<0.0
2wt、%の場合 製造段階の各焼鈍工程における窒化を防止できないため
、表)□□□部に窒化物か+17出し、この結果最終焼
鈍段階でフェライト粒の粒成長性か抑制され、鉄損値の
低下量が小さい。また、sb濃度が低いため、集合組織
に大きな変化がなく、磁束密度もほとんど変わらない。
(A) The concentration of Sb in the diffusion region is Sb<0.0
In the case of 2wt%, nitridation cannot be prevented in each annealing process in the manufacturing stage, so nitrides appear in the □□□ part of the table), and as a result, the grain growth of ferrite grains is suppressed in the final annealing stage, and the iron loss value The amount of decrease is small. Furthermore, since the sb concentration is low, there is no major change in the texture, and the magnetic flux density is also almost unchanged.

(B)  Sbの拡散領域における濃度かSl、)20
.02w1%で、且つsbの拡散領域<21unの場合
表層部のSba度が高いため各焼i=b王程における窒
化を抑制でき、このため表層部の微細フェライト粒がな
くなり、これに伴って鉄損値が低下する。しか17、磁
束密度はほとんど表化j〜ない。
(B) Concentration of Sb in the diffusion region or Sl, )20
.. 02w1% and sb diffusion area <21un, the Sba degree in the surface layer is high, so nitriding in each firing i=b can be suppressed, and as a result, fine ferrite grains in the surface layer disappear, and iron Loss value decreases. However, 17, the magnetic flux density is hardly tabulated.

(C)  31)拡散領域における濃度がSb≧0 、
 fl 2 w 1%で、且つsbの拡散領域≧2μm
の場合 0 磁束密度が向上する。磁束密度と集合組織の間には密接
な関係があり、磁化容易軸を含む(1,00)あるいは
(110)成分の集積度を上げることが高磁束密化につ
ながる。上述したようにSn、Sb等の元素が鋼中に存
在する場合、これらの元素は冷圧後、最終焼鈍段階にお
いて、磁束密度に対して有害な(II+)成分の核発生
を抑制し、(1,00)および(110)成分を優先的
に核発生させる効果がある。また、最終焼鈍段階での再
結晶反応においては、板厚方向でみると、鋼板表面近傍
部が最も早く核発生し、粒成長する場所である。したが
って、鋼板表面近傍部にSn。
(C) 31) The concentration in the diffusion region is Sb≧0,
fl 2 w 1% and sb diffusion area ≧2 μm
In the case of 0, the magnetic flux density improves. There is a close relationship between magnetic flux density and texture, and increasing the degree of integration of the (1,00) or (110) component containing the easy axis of magnetization leads to higher magnetic flux density. As mentioned above, when elements such as Sn and Sb are present in steel, these elements suppress the nucleation of (II+) components harmful to magnetic flux density in the final annealing stage after cold pressing, and ( This has the effect of preferentially nucleating the 1,00) and (110) components. In addition, in the recrystallization reaction at the final annealing stage, when viewed in the thickness direction, the area near the surface of the steel sheet is where nucleation occurs fastest and grains grow. Therefore, Sn is present near the surface of the steel sheet.

sbが0.02wt%以上存在することにより、表層部
の(↓00) 、 (↑10)成分の核発生に佇い磁束
密度が向上する。
When sb is present in an amount of 0.02 wt% or more, the magnetic flux density improves due to the nucleation of the (↓00) and (↑10) components in the surface layer.

(D)Sbノ拡散領域1.1: オケ7:、 Sba度
>0.1wt%、またはsbの拡散領域〉100μm(
板厚の20%超)の場合 sb等の元素は、フェライト粒成長時に粒先上に偏析す
ることにより、粒界移動を抑制する効1 果がある。これは、鉄損の低下に対しては不利であり、
表層近傍部の限定された領域に低濃度で存71゛シてい
る場合、その効果は無視てきるほど小さく、逆に集合組
織改善に伴うヒステリシス損の低下により鉄損は低下す
る。17かし、拡散領域の?a度が高かったり、拡散領
域が広くなったりすると、これらの元素による粒成長抑
制効果が現れ、鉄損が低下しなくなる。したがって、元
素の拡散領域は製品板厚の20%以下でなければならな
い。また、鉄損値を最低にするための最適粒径は5if
fiによって異なるか、おおよそ、1%Si鋼で約60
μm、3%Si鋼でl [)[)trm以上であること
が望ましい。
(D) Sb diffusion region 1.1: Case 7:, Sba degree > 0.1 wt%, or sb diffusion region > 100 μm (
(20% or more of the plate thickness), elements such as sb have the effect of suppressing grain boundary movement by segregating on the grain tips during ferrite grain growth. This is disadvantageous for reducing iron loss,
When it exists at a low concentration in a limited area near the surface layer, its effect is negligibly small, and on the contrary, the iron loss decreases due to the decrease in hysteresis loss accompanying the improvement of the texture. 17 But in the diffusion area? If the degree of a is high or the diffusion region is wide, the effect of suppressing grain growth by these elements will appear, and the iron loss will not decrease. Therefore, the element diffusion region must be 20% or less of the product board thickness. In addition, the optimum grain size to minimize the iron loss value is 5if
It varies depending on fi, or approximately 60 for 1% Si steel.
μm, preferably l[)[)trm or more for 3% Si steel.

このような結果は、他のTc、Sc、Bi、Pb、Sn
、Asの元素でも同様であり、また、sbを含むこれら
の元素を2種以上用いた場合も同様である。
Such results are similar to other Tc, Sc, Bi, Pb, Sn
, As, and the same applies when two or more of these elements including sb are used.

そして、以上の理山から本発明では、表層部の厚さを鋼
板の全厚さに対して鋼板両面の合i+で20%以下、片
面にて2μm以上と現定し、[1つ表層部に含まれるS
e、Te、Sb、Bi 、PI)、S11.ASの1種
または 2 2種の元素の合計を0.02wt、1以上と規定する。
Based on the above-mentioned theory, in the present invention, the thickness of the surface layer is determined to be 20% or less of the total thickness of the steel plate in terms of i+ on both sides of the steel plate, and 2 μm or more on one side. S contained in
e, Te, Sb, Bi, PI), S11. The total of one or two elements of AS is defined as 0.02wt, 1 or more.

一方、内層部においてSc、Tc、Sb、Bi、Pb、
Sn、AsのうちIF!r!または2種以上の元素が合
計で0.003wt%を超えると、粒成長性が低下して
鉄損が劣化してしまい、このため山層部については、上
記合金元素は合計で0.003vt%以下とする。
On the other hand, in the inner layer part, Sc, Tc, Sb, Bi, Pb,
IF among Sn and As! r! Alternatively, if the total amount of two or more elements exceeds 0.003 wt%, grain growth will decrease and iron loss will deteriorate. The following shall apply.

また、他の成分の限定理巾は以下の通りである。Further, the limiting widths of other components are as follows.

C:0.0050wt%を超えると磁気特性が劣化し、
また磁気時効上も問題を生じる。
C: If it exceeds 0.0050wt%, the magnetic properties will deteriorate,
Further, problems arise in terms of magnetic aging.

N :0.0030wt%を超えると鋼中のARと反応
して微細なAρNが大量に析出し、このため、粒成長性
が低下して鉄損が劣化する。
N: If it exceeds 0.0030 wt%, a large amount of fine AρN will precipitate by reacting with AR in the steel, resulting in a decrease in grain growth and a deterioration in iron loss.

Si : 1.0wt%未満になると固有抵抗の減少に
より渦流損が増加し、鉄損値の向上が少ない。
Si: When it is less than 1.0 wt%, eddy current loss increases due to a decrease in specific resistance, and improvement in iron loss value is small.

方、4.0wt%を超えると冷延性が悪くなる。On the other hand, if it exceeds 4.0 wt%, cold rollability will deteriorate.

Afl:0.1wt%未満では鋼中のNと反応してA、
QNが微細に析出し、このためフェライ)・粒成長性が
低下して磁気特性が劣化する。一方、A、clはSiと
1111様、固有抵抗を下げ鉄損を低下させるが、2w
t%を超えると冷延性が悪くなる。
Afl: If it is less than 0.1 wt%, it will react with N in the steel and cause A,
QN is finely precipitated, which reduces ferrite grain growth and deteriorates magnetic properties. On the other hand, A, cl are similar to Si and 1111, which lowers the specific resistance and reduces iron loss, but 2w
If it exceeds t%, cold rollability will deteriorate.

 3 次に、本発明の駆込法について説明する。3 Next, the driving method of the present invention will be explained.

本発明法では、C20,005wt%、Si : 1.
0〜4.Owt%、Ai):0.1〜2.0wt%、N
≦0.0030wt%、Sb、Se、Te,Bi,Pb
、Sn、Asのうちの1種または2種以上の元素か合計
で0.003vt%以下、残部Reおよび不可避的不純
物からなる電磁鋼スラブを熱間圧延した後700℃以下
で巻取り、その後、該熱延板を酸洗する。
In the method of the present invention, C20,005wt%, Si: 1.
0-4. Owt%, Ai): 0.1-2.0wt%, N
≦0.0030wt%, Sb, Se, Te, Bi, Pb
, Sn, As, a total of 0.003 vt% or less of one or more elements, the balance being Re and unavoidable impurities, is hot rolled and then coiled at 700 ° C. or less, and then, The hot rolled sheet is pickled.

鋼板表面にスケールがある状態で5c−Asπ9の化合
物を塗布し焼鈍すると、窒化を防止することはできるか
、スケールにより鋼中への元素の拡散浸透が抑制されて
しまう。このため本発明では熱延板の酸洗は必須である
。また、熱延後の在取温度が700℃を超えると表層ス
ケールが厚く坐成するため酸洗性が低下11、脱スケー
ルか難1. くなる。
If a 5c-Asπ9 compound is applied and annealed with scale present on the surface of the steel sheet, it may be possible to prevent nitridation, but the scale will inhibit the diffusion of elements into the steel. Therefore, in the present invention, pickling of the hot rolled sheet is essential. In addition, if the stock temperature after hot rolling exceeds 700°C, the surface scale will become thick and sedentary, resulting in a decrease in pickling properties11 and difficulty in descaling1. It becomes.

上記酸洗後、Se、Te、Sb、Bi 、Pb、Sn、
Asのうち1種または2種以上を含む化合物の水溶戚ま
たは懸濁波を塗イliして乾燥させる。
After the above pickling, Se, Te, Sb, Bi, Pb, Sn,
A water-soluble compound or suspension of a compound containing one or more of As is applied and dried.

最終焼鈍時の集合組織を上記5e−As等の元素で磁気
特性に良好なものとするためには、最終焼鈍前において
すでに5e−As等の元素が鋼板表層部に4 拡散した状態でなければならない。すなわち、冷圧後5
e−As等の化合物を塗布し、焼鈍した場合、最終焼鈍
段階において、5e−As等の元素の鋼板山部への弘散
とフェライトの再結晶反応が同11、シに進行するため
、磁気特性に良好な集合組織を形成させることが難しい
。したがって、Se−As等の化合物は熱延板の酸洗後
に塗布し、その後の焼鈍により鋼板表層部に拡散させな
ければならない。これら元素の懸濁液または水溶液の塗
布方法は、これらの元素の表面拡散層が均一に生成する
方法であれば、スプレィ、浸漬、その他いかなる方法で
もよく、酸洗ライン後段の水洗檜で浸漬する方法は効果
的である。また、熱延板をスキンバスし、鋼板表面に歪
を導入した後塗布すれば、短時間で拡散させることがで
きる。
In order for the texture at the time of final annealing to have good magnetic properties due to elements such as 5e-As mentioned above, elements such as 5e-As must already be diffused into the surface layer of the steel sheet before final annealing. It won't happen. That is, after cold pressing 5
When a compound such as e-As is applied and annealed, the diffusion of elements such as 5e-As into the peaks of the steel plate and the recrystallization reaction of ferrite proceed in the same manner as in the final annealing stage, resulting in magnetic It is difficult to form a texture with good properties. Therefore, a compound such as Se-As must be applied to the hot-rolled sheet after pickling, and then diffused into the surface layer of the steel sheet by annealing. The suspension or aqueous solution of these elements may be applied by spraying, dipping, or any other method as long as a surface diffusion layer of these elements is formed uniformly.The method is to apply the suspension or aqueous solution of these elements by spraying, dipping, or any other method. The method is effective. Furthermore, if the hot-rolled sheet is subjected to a skin bath to introduce strain to the surface of the steel sheet and then applied, diffusion can be achieved in a short time.

Sc〜八sへ化合物としては、例えばKzSeOs、K
cTcO3SbC,h 、 BiC,h 、 PbCh
 、 SnCρ2 、 AsC,Q3等があり、これら
の1種または2種以上を含む水溶液または懸濁液が用い
られる。
Examples of compounds from Sc to 8s include KzSeOs, K
cTcO3SbC,h, BiC,h, PbCh
, SnCρ2, AsC, Q3, etc., and an aqueous solution or suspension containing one or more of these is used.

上記化合物の懸?lA液等の塗イits乾燥後、熱延板
 5 を熱延板焼鈍する。磁気特性に良好な集合組織とするた
めには、冷圧前の熱延板のフェライト組織が完全に再結
していなければならない。Siを1wt%以上含も°す
る珪素鋼板の場合、熱延巻取り時の再結晶は著しく低下
するため、熱延板を焼鈍し、フェライト組織を完全に再
結晶させなければならない。また、最終焼鈍時において
、5e−AsZ’2の表層拡散領域での磁気特性と良好
な集合組織を形成させるためには、5e−As等の化合
物を塗布後、拡散処理しなければならない。このような
効果を発揮させるためには750℃以上の焼hl17J
<望ま]2い。
Concerns about the above compounds? After coating with IA liquid, etc. and drying it, the hot-rolled sheet 5 is annealed. In order to obtain a texture with good magnetic properties, the ferrite structure of the hot-rolled sheet before cold rolling must be completely reconsolidated. In the case of a silicon steel sheet containing 1 wt% or more of Si, recrystallization during hot rolling and winding is significantly reduced, so the hot rolled sheet must be annealed to completely recrystallize the ferrite structure. Further, in order to form magnetic properties and good texture in the surface diffusion region of 5e-AsZ'2 during final annealing, a diffusion treatment must be performed after coating a compound such as 5e-As. In order to achieve this effect, baking HL17J at a temperature of 750℃ or higher is required.
<Wanted> 2.

また、5c−As等の元素の拡散反応を有効に反応させ
るためには、熱延板焼鈍時の雰囲気を非酸化雰囲気にし
、これらの化合物の酸化反応を防止しなければならない
。望ましくは、5%日2以上のN2−H2混合ガスある
いはAr−口2雰囲気が良い。
In addition, in order to effectively carry out the diffusion reaction of elements such as 5c-As, the atmosphere during annealing of the hot rolled sheet must be a non-oxidizing atmosphere to prevent the oxidation reaction of these compounds. Preferably, a N2-H2 mixed gas or an Ar atmosphere with a concentration of 5% or more per day is preferred.

熱延板焼鈍された鋼板は、次いで最終板厚まで冷間圧延
された後、最終焼鈍が胞される。
The hot-rolled and annealed steel sheet is then cold-rolled to the final thickness and then subjected to final annealing.

なお、本発明鋼板を得る方法としては、上述したように
熱延板に化合物を塗イliする以外に、例え 6 ば熱延板を酸洗後、CVD (化学気相蒸着)法により
5e−As等の元素を付着させることもでき、この場合
には元素そのものが鋼板面に蒸着される。
In addition, as a method for obtaining the steel sheet of the present invention, in addition to coating the hot-rolled sheet with a compound as described above, for example, after pickling the hot-rolled sheet, 5e- It is also possible to deposit an element such as As, in which case the element itself is deposited on the surface of the steel sheet.

7 f’z ] 8 〔実 施 例〕 実施例 1 第1表中、5teel Aの組成を有するスラブから以
下のような工程および条件で無方向性電磁鋼板を製造し
た。得られた鋼板の構成および磁気特性をその製造条件
とともに第2表に示す。
7 f'z ] 8 [Examples] Example 1 A non-oriented electrical steel sheet was manufactured from a slab having the composition of 5teel A in Table 1 using the following steps and conditions. The structure and magnetic properties of the obtained steel plate are shown in Table 2 along with the manufacturing conditions.

丈施例 2 沁1表中、5teel Bおよび5teel Cの組成
を有するスラブから以下のような工程および条件で無方
向性電磁鋼板を製造した。得られた鋼板の構成および磁
気特性を第3表に示す。
Example 2 Non-oriented electrical steel sheets were manufactured from slabs having compositions 5teel B and 5teel C in Table 1 using the following process and conditions. Table 3 shows the structure and magnetic properties of the obtained steel plate.

o  5teel B 1 熱延板−酸洗−8bCj) 3塗布−熱延板焼鈍→冷圧
−焼鈍(0,8g/耐) B2.スラブにsbcρ3塗イji 10 g / r
vf (220mm t )熱延板−酸洗□熱延板焼鈍
−冶延−焼鈍3 熱延板−酸洗一熱延板焼鈍一冷圧一 5bCh塗布−焼鈍 (0,8g/rd’) B4 : 熱延板−・酸洗□冷圧−8bC,h塗布→焼タ屯(0,
8g /rf) B5 : 熱延板−酸洗−・熱延仮焼#1li−冷圧一・焼鈍2 6 熱延板−酸洗 冷圧−・焼鋪 5teel  C 1 熱延板−酸洗一熱延板焼鈍一・冷圧−・焼鈍熱延条件 1120℃加熱、830℃仕上げ、6500C8取り、
2.1)mmt 熱延板焼鈍条件 800℃xioh、炉冷、75%+12−25%N2最
終焼鈍条件 900℃X 2 mll+ 、空冷、25%ロ?−75
%N2、板厚0.5mm+ 3 第 表 *○:本発不発、△:比較例
o 5teel B 1 Hot rolled sheet - Pickling - 8bCj) 3 Coating - Hot rolled sheet annealing → Cold pressing - Annealing (0.8g/proof) B2. sbcρ3 coating on slab 10 g/r
vf (220mm t) Hot rolled sheet - Pickling □ Hot rolled sheet annealing - Rolling - Annealing 3 Hot rolled sheet - Pickling - Hot rolled board annealing - Cold rolling - 5bCh coating - Annealing (0.8g/rd') B4 : Hot-rolled sheet - Pickling □ Cold pressing - 8bC, h coating → Baking ton (0,
8g/rf) B5: Hot rolled sheet - pickling - hot rolling calcined #1li - cold rolling 1 / annealing 2 6 hot rolling sheet - pickling cold pressing - annealing 5teel C 1 hot rolling sheet - pickling 1 Hot rolled plate annealing - cold pressing - annealing hot rolling conditions 1120℃ heating, 830℃ finishing, 6500C8,
2.1) mmt Hot rolled plate annealing conditions: 800°C xioh, furnace cooling, 75% + 12-25% N2 Final annealing conditions: 900°C x 2 ml+, air cooling, 25% xioh? -75
%N2, plate thickness 0.5mm + 3 Table *○: Main failure, △: Comparative example

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、酸洗後の熱延板に、拡散させるべき元素を含
んた化合物を塗布後焼鈍し、その後冷圧した後最終焼鈍
1.た場合の鋼板板1苧方向における払散元索の濃度プ
ロファイルを示したものである。 第2図は、酸洗により脱スケールした熱延板表面にSb
C,hの懸′/iJJ液を塗・lfIした後、熱延板焼
鈍、冷圧および最終焼鈍を行って得られた鋼板の81)
拡散4 領域およびそのsb濃度ど、同一のプロセスにおいて5
bCL+を塗布しないで得られた鋼板との磁気特性値の
差を示したちのである。 5
FIG. 1 shows a hot-rolled sheet after pickling, coated with a compound containing the element to be diffused, annealed, cold-pressed, and finally annealed. This figure shows the concentration profile of the dispersion source cable in the direction of the steel plate 1 in the case of 1. Figure 2 shows that Sb is present on the surface of a hot-rolled sheet that has been descaled by pickling.
81) of a steel plate obtained by applying hot-rolled plate annealing, cold pressing and final annealing after applying C, h's suspension'/iJJ liquid and applying lfI.
5 in the same process, including the diffusion 4 region and its sb concentration.
This shows the difference in magnetic property values from a steel sheet obtained without bCL+ coating. 5

Claims (2)

【特許請求の範囲】[Claims] (1)厚さが鋼板の全厚さに対して鋼板両面の合計で2
0%以下、片面にて2μm以上である限定された表層部
における合金組成が、C≦0.0050wt%、Si:
1.0〜4.0wt%、Al:0.1〜2.0wt%、
N≦0.0030wt%、Se,Te,Sb,Bi,P
b,Sn,Asのうち1種または2種以上の元素が合計
で0.02wt%以上、残部Feおよび不可避的不純物
で構成され、板厚方向残部の内層部における合金組成が
、C≦0.0050wt%、Si:1.0〜4.0wt
%、Al:0.1〜2.0wt%、N≦0.0030w
t%、Sc,Te,Sb,Bi,Pb,Sn,Asのう
ち1種または2種以上の元素が合計で0.003wt%
以下、残部Feおよび不可避的不純物で構成される多層
構造の磁気特性に優れた無方向性電磁鋼板。
(1) The total thickness of both sides of the steel plate is 2 compared to the total thickness of the steel plate.
The alloy composition in a limited surface layer part that is 0% or less and 2 μm or more on one side is C≦0.0050wt%, Si:
1.0 to 4.0 wt%, Al: 0.1 to 2.0 wt%,
N≦0.0030wt%, Se, Te, Sb, Bi, P
B, Sn, and As, one or more elements in total are 0.02 wt% or more, the balance being Fe and unavoidable impurities, and the alloy composition in the remaining inner layer in the thickness direction is C≦0. 0050wt%, Si: 1.0-4.0wt
%, Al: 0.1-2.0wt%, N≦0.0030w
t%, one or more elements among Sc, Te, Sb, Bi, Pb, Sn, and As total 0.003 wt%
Hereinafter, a non-oriented electrical steel sheet with a multilayer structure composed of the balance Fe and unavoidable impurities and excellent magnetic properties will be described.
(2)C≦0.0050wt%、Si:1.0〜4.0
wt%、Al:0.1〜2.0wt%、N≦0.003
0wt%、Se,Te,Sb,Bi,Pb,Sn,As
のうち1種または2種以上の元素が合計で0.003w
t%以下、残部Feおよび不可避的不純物からなる電磁
鋼スラブを熱間圧延した後、700℃以下で巻取り、該
熱延板を酸洗後、Se,Te,Sb,Bi,Pb,Sn
,Asのうち1種または2種以上を含む化合物の水溶液
または懸濁液を塗布して乾燥させた後、非酸化雰囲気中
にて熱延板焼鈍し、さらに冷間圧延により最終板厚とし
た後最終焼鈍を行い、厚さが鋼板の全厚さに対して鋼板
両面の合計で20%以下、片面にて2μm以上である限
定された表層部における合金組成が、C≦0.0050
wt%、Si:1.0〜4.0wt%、Al:0.1〜
2.0wt%、N≦0.0030wt%、Sc,Tc,
Sb,Bi,Pb,Sn,Asのうち1種または2種以
上の元素が合計で0.02wt%以上、残部Feおよび
不可避的不純物で構成され、板厚方向残部の内層部にお
ける合金組成が、C≦0.0050wt%、Si:1.
0〜4.0wt%、Al:0.1〜2.0wt%、N≦
0.0030wt%、Se,Te,Sb,Bi,Pb,
Sn,Asのうち1種または2種以上の元素が合計で0
.003wt%以下、残部Feおよび不可避的不純物で
構成される多層構造の無方向性電磁鋼板を製造すること
を特徴とする磁気特性に優れた無方向性電磁鋼板の製造
方法。
(2) C≦0.0050wt%, Si: 1.0 to 4.0
wt%, Al: 0.1-2.0wt%, N≦0.003
0wt%, Se, Te, Sb, Bi, Pb, Sn, As
The total amount of one or more elements is 0.003w
After hot-rolling an electrical steel slab consisting of t% or less, the balance being Fe and unavoidable impurities, it is wound up at 700°C or less, and after pickling the hot-rolled plate, Se, Te, Sb, Bi, Pb, Sn
, After coating and drying an aqueous solution or suspension of a compound containing one or more of As, the hot-rolled plate was annealed in a non-oxidizing atmosphere, and the final plate thickness was obtained by cold rolling. After final annealing, the alloy composition in a limited surface layer where the total thickness of both sides of the steel plate is 20% or less of the total thickness of the steel plate and 2 μm or more on one side is C≦0.0050.
wt%, Si: 1.0 to 4.0 wt%, Al: 0.1 to
2.0wt%, N≦0.0030wt%, Sc, Tc,
One or more elements among Sb, Bi, Pb, Sn, and As are composed of a total of 0.02 wt% or more, the balance being Fe and unavoidable impurities, and the alloy composition in the inner layer portion of the remaining part in the thickness direction is as follows: C≦0.0050wt%, Si:1.
0 to 4.0 wt%, Al: 0.1 to 2.0 wt%, N≦
0.0030wt%, Se, Te, Sb, Bi, Pb,
Total of one or more elements among Sn and As is 0
.. A method for producing a non-oriented electrical steel sheet with excellent magnetic properties, characterized by producing a non-oriented electrical steel sheet with a multilayer structure composed of 0.003 wt% or less, the balance being Fe and unavoidable impurities.
JP1166523A 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same Expired - Fee Related JP2540946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166523A JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166523A JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0336242A true JPH0336242A (en) 1991-02-15
JP2540946B2 JP2540946B2 (en) 1996-10-09

Family

ID=15832896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166523A Expired - Fee Related JP2540946B2 (en) 1989-06-30 1989-06-30 Non-oriented electrical steel sheet with excellent magnetic properties and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2540946B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JP2009256758A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Soft magnetic steel sheet for core, and member for core
JP2011256463A (en) * 2009-10-28 2011-12-22 Nippon Steel Corp Ferrous metal sheet
CN104302801A (en) * 2012-08-21 2015-01-21 杰富意钢铁株式会社 Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from punching process
CN104302801B (en) * 2012-08-21 2016-11-30 杰富意钢铁株式会社 The iron loss characteristic that punch press process causes deteriorates less non-oriented electromagnetic steel sheet having
RU2621541C2 (en) * 2013-03-15 2017-06-06 ДжФЕ СТИЛ КОРПОРЕЙШН List of non-oriented electrical steel with excellent iron loss at high frequencies
RU2650469C2 (en) * 2013-03-22 2018-04-13 ДжФЕ СТИЛ КОРПОРЕЙШН Non-oriented magnetic steel sheet with excellent high frequency iron loss characteristics

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101482312B1 (en) 2012-09-05 2015-01-13 주식회사 포스코 Non-oriented electric steel plate having excellent magnetism and method for manufacturing the same
KR101904309B1 (en) 2016-12-19 2018-10-04 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844140A (en) * 1971-10-11 1973-06-25
JPS5468717A (en) * 1977-11-11 1979-06-02 Kawasaki Steel Co Production of unidirectional silicon steel plate with excellent electromagnetic property
JPS55158252A (en) * 1979-05-30 1980-12-09 Kawasaki Steel Corp Cold rolled nonoriented electrical steel sheet of low iron loss
JPS5648567A (en) * 1979-09-28 1981-05-01 Matsushita Electric Ind Co Ltd Acoustic device
JPH01132718A (en) * 1987-11-18 1989-05-25 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4844140A (en) * 1971-10-11 1973-06-25
JPS5468717A (en) * 1977-11-11 1979-06-02 Kawasaki Steel Co Production of unidirectional silicon steel plate with excellent electromagnetic property
JPS55158252A (en) * 1979-05-30 1980-12-09 Kawasaki Steel Corp Cold rolled nonoriented electrical steel sheet of low iron loss
JPS5648567A (en) * 1979-09-28 1981-05-01 Matsushita Electric Ind Co Ltd Acoustic device
JPH01132718A (en) * 1987-11-18 1989-05-25 Sumitomo Metal Ind Ltd Production of non-oriented electrical steel sheet

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171650A (en) * 1997-06-27 1999-03-16 Nkk Corp Nonoriented silicon steel sheet low in core loss
JP2009256758A (en) * 2008-04-21 2009-11-05 Nippon Steel Corp Soft magnetic steel sheet for core, and member for core
JP2011256463A (en) * 2009-10-28 2011-12-22 Nippon Steel Corp Ferrous metal sheet
JP5136687B2 (en) * 2009-10-28 2013-02-06 新日鐵住金株式会社 Fe-based metal plate and manufacturing method thereof
US8911565B2 (en) 2009-10-28 2014-12-16 Nippon Steel & Sumitomo Metal Corporation Fe-based metal plate and method of manufacturing the same
US9679687B2 (en) 2009-10-28 2017-06-13 Nippon Steel & Sumitomo Metal Corporation Fe-based metal plate and method of manufacturing the same
CN104302801A (en) * 2012-08-21 2015-01-21 杰富意钢铁株式会社 Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from punching process
EP2889389A4 (en) * 2012-08-21 2016-04-06 Jfe Steel Corp Non-oriented magnetic steel sheet that exhibits minimal degradation in iron-loss characteristics from a punching process
CN104302801B (en) * 2012-08-21 2016-11-30 杰富意钢铁株式会社 The iron loss characteristic that punch press process causes deteriorates less non-oriented electromagnetic steel sheet having
US9767946B2 (en) 2012-08-21 2017-09-19 Jfe Steel Corporation Non-oriented electrical steel sheet being less in deterioration of iron loss property by punching
RU2621541C2 (en) * 2013-03-15 2017-06-06 ДжФЕ СТИЛ КОРПОРЕЙШН List of non-oriented electrical steel with excellent iron loss at high frequencies
RU2650469C2 (en) * 2013-03-22 2018-04-13 ДжФЕ СТИЛ КОРПОРЕЙШН Non-oriented magnetic steel sheet with excellent high frequency iron loss characteristics

Also Published As

Publication number Publication date
JP2540946B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
US5512110A (en) Process for production of grain oriented electrical steel sheet having excellent magnetic properties
JP3386751B2 (en) Method for producing grain-oriented silicon steel sheet with excellent coating and magnetic properties
US6280534B1 (en) Grain oriented electromagnetic steel sheet and manufacturing thereof
JPH0336242A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
EP0490617A2 (en) Method for producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH08188824A (en) Production of grain oriented silicon steel sheet with ultrahigh magnetic flux density
JPH1136018A (en) Manufacture of grain oriented silicon steel sheet having extremely excellent glass film and magnetic property
JP2663229B2 (en) Method for producing grain-oriented electrical steel sheet having a uniform glass film and extremely excellent magnetic properties
JP3885428B2 (en) Method for producing grain-oriented electrical steel sheet
JP2001303131A (en) Method for producing high magnetic flux density grain oriented silicon steel sheet extremely small in surface defect and also excellent in magnetic property
JP2671084B2 (en) High magnetic flux density grain-oriented electrical steel sheet having excellent iron loss characteristics and method for producing the same
JP3921807B2 (en) Method for producing grain-oriented silicon steel sheet
JP2671088B2 (en) High magnetic flux density grain-oriented electrical steel sheet with excellent magnetic properties and remarkably excellent iron core workability, and manufacturing method thereof
JP2781524B2 (en) Method for manufacturing grain-oriented electrical steel sheet with extremely excellent glass coating and magnetic properties
JP3148093B2 (en) Method for manufacturing mirror-oriented electrical steel sheet with low iron loss
JPH0949027A (en) Separation agent for annealing for grain oriented silicon steel sheet excellent in surface characteristic and free from glass coating, and production of grain oriented silicon steel sheet using the same
JPH01132718A (en) Production of non-oriented electrical steel sheet
JP3443151B2 (en) Method for producing grain-oriented silicon steel sheet
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH03223424A (en) Production of semiprocessed nonoriented silicon steel sheet excellent in magnetic property
JPH11332183A (en) Method of annealing for eliminating distortion in laminated core
JP4374108B2 (en) Method for producing grain-oriented electrical steel sheet
WO2022168887A1 (en) Grain-oriented electromagnetic steel sheet production method and annealing separator used for same
KR100940719B1 (en) Method for manufacturing non-oriented electrical steel sheet having higher magnetic induction after stress relief annealing
JPH01139721A (en) Manufacture of semiprocessing non-oriented magnetic steel sheet having low iron loss and high magnetic permeability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees