KR100406391B1 - The method of manufacturing non-oriented electrical steel with better core loss at high frequency - Google Patents

The method of manufacturing non-oriented electrical steel with better core loss at high frequency Download PDF

Info

Publication number
KR100406391B1
KR100406391B1 KR10-1998-0052840A KR19980052840A KR100406391B1 KR 100406391 B1 KR100406391 B1 KR 100406391B1 KR 19980052840 A KR19980052840 A KR 19980052840A KR 100406391 B1 KR100406391 B1 KR 100406391B1
Authority
KR
South Korea
Prior art keywords
steel sheet
oriented electrical
electrical steel
less
annealing
Prior art date
Application number
KR10-1998-0052840A
Other languages
Korean (ko)
Other versions
KR20000037999A (en
Inventor
박종태
김현태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-1998-0052840A priority Critical patent/KR100406391B1/en
Publication of KR20000037999A publication Critical patent/KR20000037999A/en
Application granted granted Critical
Publication of KR100406391B1 publication Critical patent/KR100406391B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

본 발명은 고주파용 무방향성 전기강판의 제조방법에 관한 것으로, 그 목적은 통상의 무방향성 전기강판인 냉간압연판에 전기도금법으로 Mn도금을 실시한 후 합금화소둔하여 강판내부로 Mn을 균일하게 확산시킴으로써 고주파 철손특성이 우수한 무방향성 전기강판을 저렴하게 대량으로 제조하는 방법을 제공함에 있다.The present invention relates to a method of manufacturing a non-oriented electrical steel sheet for high frequency, the object of the conventional non-oriented electrical steel sheet by cold-rolled Mn by electroplating method by annealing alloying to diffuse the Mn uniformly into the steel sheet It is to provide a method for producing a large amount of non-oriented electrical steel sheet having excellent high-frequency iron loss characteristics inexpensively.

이와 같은 목적을 갖는 본 발명은, 규소강슬라브를 열간압연, 냉간압연하여 냉간압연판을 제조하는 공정을 포함한 무방향성전기강판의 제조방법에 있어서,In the present invention having such an object, in the method for producing a non-oriented electrical steel sheet comprising the step of hot-rolled, cold-rolled silicon steel slab to produce a cold rolled sheet,

상기 냉간압연판의 양면에 Mn도금피막이 0.05mm이하가 되도록 전기도금한 다음, 합금화소둔하는 것을 포함하여 이루어지는 고주파 철손특성이 우수한 무방향성 전기강판의 제조방법에 관한 것을 그 기술적 요지로 한다.The technical gist of the non-oriented electrical steel sheet having excellent high-frequency iron loss characteristics, including electroplating the Mn plated film to 0.05 mm or less on both surfaces of the cold rolled sheet, and then annealing the alloy.

Description

고주파 철손특성이 우수한 무방향성 전기강판의 제조방법{THE METHOD OF MANUFACTURING NON-ORIENTED ELECTRICAL STEEL WITH BETTER CORE LOSS AT HIGH FREQUENCY}Method for manufacturing non-oriented electrical steel sheet having excellent high-frequency iron loss characteristics {THE METHOD OF MANUFACTURING NON-ORIENTED ELECTRICAL STEEL WITH BETTER CORE LOSS AT HIGH FREQUENCY}

본 발명은 고주파용 무방향성 전기강판의 제조방법에 관한 것으로, 특히 철손이 낮은 고주파용 무방향성 전기강판을 저렴하게 대량으로 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing high-frequency non-oriented electrical steel sheet, and more particularly, to a method for manufacturing a high-frequency non-oriented electrical steel sheet with low iron loss at low cost.

무방향성 전기강판은 뛰어난 자기특성을 가지고 있으므로 각종 모터의 철심재료로 널리 사용되어 왔다. 최근 에너지절약의 차원에서 전기기가 고효율화 되는 추세에 있고 이러한 목적으로 고주파영역에서 사용되는 경향이 증가하고 있으며, 이에 따라 모터의 철심으로 사용되는 전기강판에도 뛰어난 고주파 자기특성이 요구되고 있다.Since non-oriented electrical steel has excellent magnetic properties, it has been widely used as iron core material of various motors. Recently, electric energy has become more efficient in terms of energy saving, and the tendency to use it in the high frequency range is increasing for this purpose. Accordingly, excellent high-frequency magnetic properties are required for the electric steel sheet used as the iron core of the motor.

전기강판을 고주파영역에서 자화하면 와전류 손실이 증가하므로 철손이 급격히 증가하게 된다. 그러므로, 전기강판의 두께를 얇게 하든가 또는, 고유저항을 높여 와전류손실을 감소시켜왔다. 즉, 이제까지 고주파용도로는 고유저항을 높이는 측면에서 Si+Al을 다량 첨가하고, 강판의 두께를 0.1-0.25mm로 얇게 한 고주파용도의 무방향성 전기강판이 사용되어 왔다. 그러나, 중량%로 Si 함유량이 4% 또는 Al함유량이 3%를 넘으면 강판의 연성저하가 현저해져 판파단을 일으키지 않고 냉간압연을 하는 것이 곤란하므로 냉간압연판을 공업적으로 제조하는 것이 불가능하다. 이 때문에 Si 또는 Si+Al 함량의 증대에 의한 전기강판의 자성개선에는 한계가 있었다.When the steel sheet is magnetized in the high frequency region, the loss of eddy current increases, so the iron loss increases rapidly. Therefore, eddy current loss has been reduced by reducing the thickness of the electrical steel sheet or increasing the resistivity. In other words, high frequency non-oriented electrical steel sheet has been used in high frequency applications in which a large amount of Si + Al is added in terms of increasing the resistivity, and the thickness of the steel sheet is reduced to 0.1-0.25 mm. However, if the Si content is 4% or Al content is more than 3% by weight, the ductility decrease of the steel sheet is remarkable, and it is difficult to cold-roll without causing plate breakage, making it impossible to industrially manufacture the cold rolled plate. For this reason, the magnetic improvement of the electrical steel sheet by the increase of Si or Si + Al content had a limit.

이러한 문제를 해결하기 위한 선행기술로는, 일본 공개특허공보 (소)62-227079호, 일본 공개특허공보 (소)58-45349호, 일본 공개특허공보 (평)7-258863호 등이 있다.As a prior art for solving such a problem, Unexamined-Japanese-Patent No. 62-227079, Unexamined-Japanese-Patent No. 58-45349, Unexamined-Japanese-Patent No. 7-258863, etc. are mentioned.

상기 일본 공개특허공보 소62-227079호에는 SiCl4가스분위기중에서 기상화학증착(CVD)과 그 후의 확산열처리로 강대를 침규처리하는 방법에 의하여 연속적으로 고규소강판을 제조하는 방법이 제안되어 있다. 이 방법은 공업적으로 실시 가능하지만 CVD를 위한 전용설비를 필요로 하고, 또한 증착시간이 길어 생산성이 열화되므로 비경제적이고 SiCl4가 맹독성 가스라서 작업환경이 나쁜 문제가 있다. 또한, Si의 융점이 1410℃로 높아 합금화소둔시간이 길어지므로 비경제적이다.Japanese Laid-Open Patent Publication No. 62-227079 proposes a method of continuously manufacturing high silicon steel sheet by a method of immersing a steel strip by vapor phase chemical vapor deposition (CVD) and subsequent diffusion heat treatment in a SiCl 4 gas atmosphere. Although this method is industrially feasible, it requires a dedicated facility for CVD, and also has a long deposition time, which leads to deterioration in productivity, and thus, SiCl 4 is a toxic gas and thus has a bad working environment. In addition, since the melting point of Si is high at 1410 ° C., the annealing time is long, which is uneconomical.

또, 일본 공개특허공보 소 58-45349호에는, Si 5-8%를 함유하는 고규소용강을 급냉응고법에 의하여 박막화하여 고규소강판을 얻는 방법이 제안되어 있다. 그러나, 이 방법으로는 30㎛정도 이하의 얇은 두께밖에 제조할 수 없고, 판두께의 정도가 나쁠 뿐만 아니라 판폭이 좁다는 결정적인 단점이 있다.Japanese Laid-Open Patent Publication No. 58-45349 proposes a method of obtaining a high silicon steel sheet by thinning a high silicon molten steel containing 5-8% of Si by a quench solidification method. However, this method can produce only a thin thickness of about 30 μm or less, and there is a decisive disadvantage that not only the degree of plate thickness is bad but also the plate width is narrow.

상기 일본 공개특허공보 평 7-258863호에는 중량%로, Si:4%이하, Al:3%이하이며 Si+Al의 합이 5%이하, C:0.01%이하, Mn:1%이하, 나머지 Fe 및 불가피한 불순물로 이루어지는 전기강판에 용융도금법 또는 용융염 전해도금법에 의하여 두께 0.1mm 이하의 Al 도금피막 혹은 Mn함유량 50% 이하인 두께 0.1mm 이하의 Al-Mn 합금도금피막을 형성한 후 합금화소둔하는 무방향성 전기강판의 제조방법이 기재되어 있다. 그러나, Al은 융점이 660℃로, 90%Al-10%Mn 합금의 경우 융점이 800℃, 70%Al-30%Mn 합금의 경우 융점이 950℃, 50%Al-50%Mn 합금의 경우 융점이 1100℃ 정도에 불과하여 통상적인 합금화 소둔온도인 1050-1200℃ 범위에서 소둔처리하는 것이 불가능하므로, 이 선행기술은 대량 생산되는 연속라인에는 적용할 수 없다는 치명적인 문제점을 갖고 있다.In Japanese Laid-Open Patent Publication No. 7-258863, by weight%, Si: 4% or less, Al: 3% or less, and the sum of Si + Al is 5% or less, C: 0.01% or less, Mn: 1% or less, and the rest. Alloying annealing after forming an Al plating film having a thickness of 0.1 mm or less or an Al-Mn alloy coating film having a thickness of 0.1 mm or less having a Mn content of 50% or less by an electroplating method or a molten salt electroplating method on an electrical steel sheet made of Fe and unavoidable impurities. A method for producing a non-oriented electrical steel sheet is described. However, Al has a melting point of 660 ° C, a melting point of 800 ° C for 90% Al-10% Mn alloys, a melting point of 950 ° C for 70% Al-30% Mn alloys and a 50% Al-50% Mn alloy. Since the melting point is only about 1100 ° C., it is impossible to anneal in the range of 1050-1200 ° C., which is a typical alloying annealing temperature. Therefore, this prior art has a fatal problem that it cannot be applied to a continuous line of mass production.

본 발명자들은 상기 선행기술이 갖는 문제를 개선하면서 고규소강판과 동등한 수준의 고주파 철손특성을 갖는 무방향성 전기강판을 저렴하게 대량으로 제조하는 방법을 개발하기 위해 끊임없이 연구하고 그 실험결과에 기초하여 본 발명을 제안하게 이르렀다.The present inventors have continuously studied to develop a method for producing a large amount of non-oriented electrical steel sheet having a high frequency iron loss characteristic equivalent to that of high silicon steel sheet at low cost while improving the problems of the prior art and based on the experimental results. It came to propose invention.

본 발명은 통상의 무방향성 전기강판인 냉간압연판에 전기도금법으로 Mn도금을 실시한 후 합금화소둔하여 강판내부로 Mn을 균일하게 확산시킴으로써 고주파 철손특성이 우수한 무방향성 전기강판을 저렴하게 대량으로 제조하는 방법을 제공하는데, 그 목적이 있다.The present invention is to inexpensively manufacture a large amount of non-oriented electrical steel sheet having excellent high frequency iron loss characteristics by performing Mn plating on a cold rolled sheet, which is a conventional non-oriented electrical steel sheet, by electroplating, and then annealing alloys to uniformly diffuse Mn into the steel sheet. To provide a method, the purpose is.

상기 목적을 달성하기 위한 본 발명의 무방향성 전기강판 제조방법은,Non-oriented electrical steel sheet manufacturing method of the present invention for achieving the above object,

통상의 무방향성 전기강판용 규소강슬라브를 열간압연, 냉간압연하여 냉간압연판을 만들고, 이 냉간압연판의 양면에 Mn도금피막이 0.05mm이하가 되도록 전기도금한 다음, 합금화소둔하는 것을 포함하여 구성된다.The non-oriented silicon steel slab for non-oriented electrical steel sheet is hot rolled and cold rolled to make a cold rolled sheet, and the surface of the cold rolled sheet is electroplated so that the Mn plating film is 0.05 mm or less, followed by alloy annealing. .

이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

일반적으로 고주파용 무방향성 전기강판(약 0.1-0.25mm 두께)을 수백-수천㎐의 주파수영역에서 자화시킨 경우의 저철손은 주로 와전류손실에 의하여 결정된다. 이는 와전류손실은 주파수의 제곱에 비례하는 반면, 이력손실은 단순히 주파수에 비례하여 증가하기 때문이다. 따라서, 고주파 철손특성을 향상시키려면 와전류손실을 감소시키는 것이 효과적이며, 이러한 와전류손실은 전기비저항의 제곱에 반비례하므로 전기비저항을 높이는 합금원소를 다량 함유시켜야 한다.In general, low iron loss when magnetizing high frequency non-oriented electrical steel sheet (about 0.1-0.25mm thickness) in the frequency range of hundreds to thousands of kHz is mainly determined by eddy current loss. This is because the eddy current loss is proportional to the square of the frequency, while the hysteresis loss simply increases with the frequency. Therefore, it is effective to reduce the eddy current loss in order to improve the high frequency iron loss characteristics, and the eddy current loss is inversely proportional to the square of the electrical resistivity, so it must contain a large amount of alloying element to increase the electrical resistivity.

전기비저항을 높여주는 대표적인 합금원소로는 Si, Al, Mn 등이 있으나, 이러한 합금원소들을 다량 함유하는 무방향성 전기강판을 통상적인 고로-제강-열간압연-냉간압연의 공정을 거쳐 제조하는데는 많은 어려움이 따른다. 즉, Si과 Al의 경우, Si은 약 4.0%이상, Al은 약 3.0%이상 함유되어 있으면 냉간압연시 판파단이 일어나 냉간압연이 곤란하다. 한편, Mn을 다량 첨가하게 되면 제강작업시 과도한 온도저하가 발생하여 작업성이 크게 떨어질 뿐만 아니라, 열간압연공정에서 Mn산화물이 많이 형성되어 산세성도 매우 나빠진다. 통상적인 제조방법으로는 이러한 합금원소를 다량 함유한 제품을 제조하는 것이 불가능하거나, 비경제적이다.Representative alloying elements that increase the electrical resistivity are Si, Al, Mn, etc., but many non-oriented electrical steel sheets containing a large amount of these alloying elements are manufactured through a conventional blast furnace-steel-hot rolling-cold rolling process. Difficulties follow That is, in the case of Si and Al, when Si is about 4.0% or more and Al is about 3.0% or more, breakage occurs during cold rolling, which makes cold rolling difficult. On the other hand, when a large amount of Mn is added, excessive temperature decrease occurs during steelmaking, greatly reducing workability, and a large amount of Mn oxide is formed in the hot rolling process, thus deteriorating pickling properties. In a conventional manufacturing method, it is impossible or impossible to manufacture a product containing a large amount of such alloying elements.

이런 연유로 본 발명자들은 무방향성 전기강판의 냉간압연판을 기존의 도금설비와 소둔설비를 활용하여 상기 문제점을 해결할 수 있는 방법을 조사하였다. 이러한 합금원소들을 도금한 다음 강판내부로 짧은 시간안에 연속적으로 균일하게 확산시키려면 도금층의 융점이 통상적인 합금화 소둔온도 보다는 높지만 그 차이는 작을수록 효과적이라는 사실을 발견할 수 있었다. Si는 용융도금이나 전기도금법으로 피막을 입히는 것이 어려우므로, 기상화학증착방법으로 SiCl4분위기에서 침규처리하여 합금화소둔하는 방법이 제안되어 있으나, 이 방법은 증착시간이 길어 생산성이 열화되고 작업환경이 매우 나쁠 뿐만 아니라 Si의 융점이 1410℃로 높아 소둔시간이 길어지므로 비경제적이다. 그리고, Al을 도금하는 경우에는 도금은 용융도금으로도 가능하지만 Al의 융점이 660℃로 낮기 때문에 고온에서의 합금화 소둔자체가 불가능하므로 공업적으로 이용할 수 없다. 따라서, 본 발명자들은, Si와 마찬가지로 전기비저항을 높여 철손을 감소시킬 수 있고 합금화소둔온도인 1050-1200℃의 범위에서 용융되지 않고 매우 용이하게 확산될 수 있는 여러 가지 원소에 대하여 연구와 실험을 행한 결과, Mn이 이러한 조건에 적합한 이상적인 원소임을 발견하였다. 특히, Mn은 융점이 1245℃이므로 융점이 1410℃인 Si에 비하여 합금화소둔온도인 1050-1200℃범위에서 확산이 훨씬 더 빠르게 일어나는 장점을 가지고 있다. 또한, Mn의 융점은 Al에 비하여 현저히 높기 때문에 용융도금법으로는 도금이 어렵지만 전기도금법으로 도금이 가능할 뿐만 아니라 도금을 행하지 않는 강판의 통상적인 합금화소둔온도에 가까우므로 단시간에 균일하게 확산되었다.For this reason, the present inventors investigated a method for solving the above problems by using a cold rolled sheet of non-oriented electrical steel sheet using an existing plating facility and annealing facility. It was found that the melting point of the plated layer was higher than the normal alloying annealing temperature, but the smaller the difference was, the more effective it was to plate these alloy elements and then spread them uniformly into the steel sheet in a short time. Since Si is difficult to coat by hot-dip galvanizing or electroplating, it is proposed to anneal the alloy by annealing in SiCl 4 atmosphere by vapor chemical vapor deposition, but this method has a long deposition time, which leads to deterioration of productivity and working environment. Not only is it very bad, but the melting point of Si is 1410 ° C., so the annealing time is long, which is uneconomical. When Al is plated, plating may be performed by hot dip plating, but since Al has a low melting point of 660 ° C., alloying annealing itself at a high temperature is impossible and cannot be used industrially. Therefore, the inventors have conducted studies and experiments on various elements that can reduce the iron loss by increasing the electrical resistivity as in Si, and can be diffused very easily without melting in the range of alloy annealing temperature of 1050-1200 ° C. As a result, Mn was found to be an ideal element suitable for these conditions. In particular, since Mn has a melting point of 1245 ° C., diffusion has a much faster diffusion rate in the alloy annealing temperature range of 1050-1200 ° C. compared with Si having a melting point of 1410 ° C. In addition, since the melting point of Mn is significantly higher than that of Al, plating is difficult by the hot dip plating method, but not only is possible by the electroplating method, but also close to the normal alloying annealing temperature of the steel plate which is not plated, and thus it is uniformly spread in a short time.

이러한 연구결과에 기초하여 완성된 본 발명은, 통상적인 조성의 무방향성 전기강판인 냉간압연판의 양면에 전기도금법으로 Mn 도금피막을 형성한 후 합금화 소둔하는 것을 특징으로 하는 것이다. 이러한 본 발명에 적용되는 냉간압연판은 통상의 무방향성 전기강판용 규소강슬라브를 통상의 열간압연, 냉간압연을 통해 제조되는 것이다.The present invention completed on the basis of the results of the research, characterized in that the alloying annealing after forming the Mn plating film by the electroplating method on both sides of the cold-rolled sheet which is a non-oriented electrical steel sheet of a conventional composition. The cold rolled sheet applied to the present invention is a conventional non-oriented electrical steel sheet silicon steel slab is produced through the usual hot rolling, cold rolling.

통상의 규소강슬라브로는 중량%로, C:0.01%이하, Si:4.0%이하, Al:0.1-3.0%이하, Mn:2.0%이하, P:0.2%이하, S:0.007%이하, N:0.005%이하를 포함하는 성분계를 예로 들 수 있으며, 이 성분한정이유를 설명하면 다음과 같다.As a conventional silicon steel slab, in weight%, C: 0.01% or less, Si: 4.0% or less, Al: 0.1-3.0% or less, Mn: 2.0% or less, P: 0.2% or less, S: 0.007% or less, N A component system containing less than 0.005% may be exemplified. The reason for limitation of this component is as follows.

상기 C는 제조공정에서 자연탈탄되는 데는 한계가 있으므로 0.01%이상 함유되어 있으면 전기기기의 사용도중 철손이 급격히 높아지므로 첨가량은 0.01% 이하로 한다.Since the C is limited in spontaneous decarburization in the manufacturing process, if it is contained in an amount of 0.01% or more, the iron loss is rapidly increased during use of the electric equipment, so the amount of addition is made 0.01% or less.

상기 Si은 고유저항을 증가시켜 철손을 감소시키는데, 4.0%를 넘으면 냉간압연이 곤란하므로 4.0%이하로 한정한다.The Si reduces the iron loss by increasing the resistivity, if more than 4.0% is cold rolling is limited to less than 4.0%.

상기 Al은 Si와 마차가지로 고유저항을 증가시켜 철손을 감소시키는데, 자구의 이동을 방해하는 미세한 AlN의 석출을 방지하기 위하여 0.1%이상 첨가하는 것이 필요하나, 3.0%를 넘으면 냉간압연성이 나빠지므로 0.1-3.0% 범위로 하는 것이 바람직하다.Al increases the resistivity as much as Si, and reduces iron loss. It is necessary to add 0.1% or more in order to prevent the precipitation of fine AlN, which hinders the movement of magnetic domains. Therefore, it is preferable to set it in the range of 0.1-3.0%.

상기 Mn은 열간가공성을 향상시킬 뿐만 아니라 고유저항을 높여 철손을 감소시키지만 2.0%를 넘으면 열간압연판의 산세성이 급격히 열화되므로 2.0%이하로 제한하는 것이 바람직하다.The Mn not only improves the hot workability but also improves the resistivity, thereby reducing the iron loss, but when it exceeds 2.0%, the pickling property of the hot rolled plate is rapidly deteriorated, so it is preferable to limit the Mn to 2.0% or less.

상기 P도 고유저항을 높여 철손향상에 기여하지만 0.2% 이상이 되면 냉간압연성이 불량해지므로 0.2%이하로 제한한다.The P also increases the resistivity and contributes to the improvement of iron loss, but if it is 0.2% or more, the cold rolling property becomes poor, so it is limited to 0.2% or less.

상기 S는 미세한 유화물을 형성하여 자기특성을 떨어뜨리므로 0.007%이하로 한정한다.S is limited to 0.007% or less because it forms a fine emulsion and degrades magnetic properties.

상기 N도 미세한 AlN을 형성하여 자기특성을 떨어뜨리므로 0.005%이하로 제한하는 것이 바람직하다.N is also limited to 0.005% or less since it forms fine AlN and degrades magnetic properties.

상기와 같이 조성되는 규소강슬라브는 통상적으로 열간압연, 열연판소둔, 냉간압연공정을 통해 냉간압연판으로 제조되는데, 본 발명에서는 이 냉간압연판에 Mn을 전기도금하고 합금화처리한다. 이때 본 발명에 적용되는 냉간압연판의 두께는 최종제품의 두께에서 전기도금으로 증가된 만큼의 두께를 뺀 것으로 조절할 수 있다.The silicon steel slab formed as described above is usually manufactured as a cold rolled plate through hot rolling, hot rolled sheet annealing, cold rolling, and the present invention is electroplated and alloyed with Mn on the cold rolled sheet. At this time, the thickness of the cold rolled sheet applied to the present invention can be adjusted by subtracting the thickness increased by the electroplating from the thickness of the final product.

상기 냉간압연판에 Mn을 본 발명에 따라 도금하는 방법을 설명한다.A method of plating Mn according to the present invention on the cold rolled plate will be described.

먼저, 냉간압연판에 Mn의 도금은 전기도금법에 의해 그 양면에 실시한다. 이는 Mn은 융점이 1245℃로 높으므로 용융도금법으로는 도금이 어렵기 때문이고, 또한, 냉간압연판의 한쪽 면에만 Mn을 도금하는 경우에 비하여 그 양면에 도금하는 경우가 동일한 조건에서 확산히 훨씬 용이하게 일어나므로 합금화 소둔에 필요한 시간을 줄일 수 있기 때문이다.First, plating of Mn on a cold rolled plate is performed on both surfaces thereof by the electroplating method. This is because Mn has a high melting point of 1245 ° C, which makes it difficult to plate by the hot dip plating method. Furthermore, when Mn is plated on only one side of a cold rolled plate, plating on both sides is much more diffused under the same conditions. The reason for this is that the time required for alloying annealing can be reduced because it occurs easily.

전기도금법에 의한 Mn도금피막의 두께는 0.05mm이하로 하는 것이 좋은데, 이는 도금피막의 두께가 0.05mm를 넘으면 균일한 두께의 피막을 얻을 수 없을 뿐만 아니라, 합금화소둔단계에서 단시간에 연속적으로 상호확산을 일으키는 것이 어렵기 때문이다.The thickness of the Mn plating film by electroplating should be less than 0.05mm. If the thickness of the plating film is more than 0.05mm, it will not be possible to obtain a film of uniform thickness. This is because it is difficult to cause.

Mn의 전기도금방법은 전기도금분야에서 공지된 방법으로 행하면 된다. 즉, 불용성 양극(TiO2나 Pb)을 사용하고 음극이 무방향성 전기강판으로 구성된 도금셀에서 MnSO4·2H2O 50-200g/ℓ, (NH4)2SO4로 3.0-5.5, 전류밀도 20-100A/d㎡의 조건으로 두께 0.05mm 이하로 도금할 수 있다.The electroplating method of Mn may be performed by a method known in the electroplating field. In other words, in a plating cell using an insoluble anode (TiO 2 or Pb) and the cathode consisting of non-oriented electrical steel sheet, MnSO 4 · 2H 2 O 50-200 g / l, (NH 4 ) 2 SO 4 to 3.0-5.5, current density It may be plated with a thickness of 0.05 mm or less under the condition of 20-100 A / dm 2.

전기도금법에 의하여 냉간압연판의 양면에 Mn 도금피막을 형성시킨 후 합금화소둔을 행하여 도금피막중의 Mn이 모재강판의 Fe와 상호확산을 일으켜 강판내부의 조성을 동일하게 만든다. 합금화소둔시 Mn은 산화되기 쉬우므로 열처리분위기는 비산화성분위기로 하는 것이 바람직하다. 이 합금화소둔에 의하여 도금피막중의 Mn이 강판내부로 균일하게 확산되어야 하므로 합금화소둔의 조건은 이러한 목적이 충분히 달성될 수 있도록 선택하여야 한다. 합금화소둔은 모재인 냉연강판의 두께, 도금피막의 두께, 피막의 조성에 따라 다르지만 1050-1200℃에서 10초-10분간 처리하는 것이 바람직하고, 그 후의 냉각속도에는 특별한 제한이 없다.After the Mn plated films are formed on both sides of the cold rolled sheet by electroplating, annealing is performed to make Mn in the plated film mutually diffuse with Fe of the base steel sheet to make the composition inside the steel sheet the same. Since Mn is easily oxidized at the time of annealing, the heat treatment atmosphere is preferably a non-oxidizing component. Since annealing of Mn in the coating film must be uniformly diffused into the steel sheet, the conditions of annealing should be selected so that this object can be sufficiently achieved. The alloy annealing varies depending on the thickness of the cold rolled steel sheet, the thickness of the plated coating, and the composition of the coating, but is preferably treated at 1050-1200 ° C. for 10 seconds to 10 minutes, and there is no particular limitation on the cooling rate thereafter.

상기 합금화소둔 온도는 도금을 행하지 않는 강판의 경우에 있어서 통상적인 합금화소둔 온도로써, 본 발명에서는 Mn을 적정범위로 전기도금함에 의하여 상기 합금화소둔 온도에서 소둔을 행하는 것이 가능하다.The alloy annealing temperature is a conventional alloy annealing temperature in the case of a steel plate which is not plated, and in the present invention, it is possible to perform annealing at the alloy annealing temperature by electroplating Mn in an appropriate range.

이하, 본 발명을 실시예를 통하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail through examples.

[실시예1]Example 1

중량%로 Si:3.12%, Al:0.38%, C:0.0043%, Mn:0.25%, P:0.026%, S:0.0037%, N :0.0022%이고 나머지 Fe로 이루어지는 규소강 슬라브를 1160℃에서 2시간동안 재가열한 다음 두께 2.1mm로 열간압연하여 680℃에서 권취하였다. 이를 산세하여 두께가 각각 0.168mm, 0.20mm가 되도록 냉간압연을 행하였다. 두께가 0.168mm인 냉간압연판은 탈지 및 산세에 의하여 표면을 크리닝한 후 하기와 같은 조건으로 전기도금법에 의하여 그 양면에 0.016mm씩 Mn 도금을 실시하여 최종두께가 0.20mm가 되도록 하였다.A silicon steel slab consisting of Si: 3.12%, Al: 0.38%, C: 0.0043%, Mn: 0.25%, P: 0.026%, S: 0.0037%, and N: 0.0022% by weight of the remaining Fe at 1160 ° C. After reheating for a period of time and hot rolled to a thickness of 2.1mm it was wound up at 680 ℃. It was pickled and cold-rolled so that thickness might be 0.168 mm and 0.20 mm, respectively. The cold rolled sheet having a thickness of 0.168 mm was cleaned by degreasing and pickling, and then subjected to Mn plating of 0.016 mm on both sides by electroplating under the following conditions so that the final thickness was 0.20 mm.

이때의 전기도금조건은,The electroplating condition at this time,

-불용성 양극 : TiO2 Insoluble anode: TiO 2

-도금욕 조성 : MnSO4·2H2O 120g/ℓ, (NH4)2SO480g/ℓ, NH4CNS 60g/ℓPlating bath composition: MnSO 4 2H 2 O 120g / ℓ, (NH 4 ) 2 SO 4 80g / ℓ, NH 4 CNS 60g / ℓ

-전류밀도 : 60A/d㎡ 으로 하였다.-Current density: 60 A / dm 2.

전기도금이 완료된 강판을 비산화성 분위기에서 1150℃에서 5분간의 연속소둔으로 합금화소둔하였다. 또한 0.20mm 두께로 냉간압연된 강판도 동일한 조건으로 연속소둔하였다. 이렇게 하여 얻어진 전기강판을 내경 33mm, 외경 45mm인 링(ring)상으로 제작하여 자기특성을 측정한 결과를 표 1에 나타내었다.The electroplated steel sheet was alloyed and annealed by continuous annealing at 1150 ° C. for 5 minutes in a non-oxidizing atmosphere. In addition, the steel sheet cold rolled to a thickness of 0.20mm was continuously annealed under the same conditions. Table 1 shows the results of measuring the magnetic properties of the electrical steel sheet thus obtained in the form of a ring having an inner diameter of 33 mm and an outer diameter of 45 mm.

구 분division 제조 공정Manufacture process 최종판 두께Final plate thickness 철 손(w/kg)Iron hand (w / kg) 냉연판 두께Cold Rolled Sheet Thickness Mn 전기 도금유무Mn Electroplating 소둔조건Annealing Condition W10/400 W 10/400 W5/1000 W 5/1000 W2/5000 W 2/5000 비교재 1Comparative material 1 0.20mm0.20mm radish 1150℃ x 5분1150 ℃ x 5 minutes 0.20mm0.20mm 11.811.8 12.312.3 27.227.2 발명재 1Invention 1 0.168mm0.168 mm U 7.97.9 8.18.1 18.318.3 비교재 2Comparative material 2 6.5% Si강판(침규처리·합금화소둔)6.5% Si steel (precipitating, alloy annealing) 8.18.1 8.48.4 19.019.0 W10/400(w/kg) : 자속밀도 1.0Tesla, 주파수 400Hz에서의 철손 값.W5/1000(w/kg) : 자속밀도 0.5Tesla, 주파수 1000Hz에서의 철손 값.W2/5000(w/kg) : 자속밀도 0.2Tesla, 주파수 5000Hz에서의 철손 값.W 10/400 (w / kg): Loss value at magnetic flux density 1.0Tesla, frequency 400Hz.W 5/1000 (w / kg): Loss value at magnetic flux density 0.5Tesla, frequency 1000Hz.W 2/5000 (w / kg): Iron loss value at magnetic flux density 0.2Tesla, frequency 5000Hz.

상기 표 1에 나타난 바와 같이, 발명재 1은 통상적인 3%Si 강판의 비교재 1에 비하여 고주파 철손이 훨씬 우수할 뿐만 아니라, 6.5% 고규소강판과 동등하거나 더 우수한 철손을 보여준다는 사실을 알 수 있다.As shown in Table 1, Invention 1 is not only superior to the high frequency iron loss compared to the comparative material 1 of the conventional 3% Si steel sheet, it can be seen that shows the same or better iron loss than 6.5% high silicon steel sheet Can be.

상술한 바와 같이, 본 발명은 통상적인 방법으로 제조되는 무방향성 전기강판의 냉간압연판을 모재로 하고 여기에 전기도금법으로 양면에 Mn을 도금한 후 합금화소둔을 행하는 방법에 의하여 구성되므로 기존의 도금설비 및 소둔설비를 활용할 수 있다. 따라서 본 발명에 의하여 고주파 철손특성이 우수한 무방향성 전기강판을 저렴하게 대량으로 제조함으로써 전기기기의 효율을 높이는데 기여하는 효과가 있는 것이다.As described above, the present invention is composed of a cold-rolled sheet of a non-oriented electrical steel sheet produced by a conventional method as a base material, and is formed by a method of performing annealing of an alloy after plating Mn on both sides by an electroplating method. Facilities and annealing facilities can be utilized. Therefore, according to the present invention, by producing a large amount of non-oriented electrical steel sheet having excellent high-frequency iron loss characteristics at low cost, it is effective in contributing to increase the efficiency of the electric equipment.

Claims (3)

규소강슬라브를 열간압연, 냉간압연하여 냉간압연판을 제조하는 공정을 포함한 무방향성전기강판의 제조방법에 있어서,In the manufacturing method of the non-oriented electrical steel sheet comprising the step of producing a cold rolled sheet by hot-rolled, cold-rolled silicon steel slab, 상기 냉간압연판의 양면에 Mn도금피막이 0.05mm이하가 되도록 전기도금한 다음, 합금화소둔하는 것을 포함하여 이루어짐을 특징으로 하는 고주파 철손특성이 우수한 무방향성 전기강판의 제조방법.Mn plated film on both sides of the cold rolled sheet to be electroplated so as to be 0.05mm or less, and then annealing annealing, characterized in that the high-frequency iron loss characteristics excellent manufacturing method of the non-oriented electrical steel sheet. 제 1항에 있어서, 상기 규소강슬라브는 중량%로, C:0.01%이하, Si:4.0%이하, Al:0.1-3.0%이하, Mn:2.0%이하, P:0.2%이하, S:0.007%이하, N:0.005%이하를 포함하여 이루어짐을 특징으로 하는 고주파 철손특성이 우수한 무방향성 전기강판의 제조방법.The method of claim 1, wherein the silicon steel slab is by weight, C: 0.01% or less, Si: 4.0% or less, Al: 0.1-3.0% or less, Mn: 2.0% or less, P: 0.2% or less, S: 0.007 Method for producing a non-oriented electrical steel sheet having excellent high-frequency iron loss characteristics characterized in that less than, N: 0.005% or less. 제 1항에 있어서, 상기 합금화소둔은 1050-1200℃의 온도에서 10초-10분간 행함을 특징으로 하는 고주파 철손특성이 우수한 무방향성 전기강판의 제조방법.The method of claim 1, wherein the annealing is performed for 10 seconds to 10 minutes at a temperature of 1050-1200 ° C. 6.
KR10-1998-0052840A 1998-12-03 1998-12-03 The method of manufacturing non-oriented electrical steel with better core loss at high frequency KR100406391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1998-0052840A KR100406391B1 (en) 1998-12-03 1998-12-03 The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1998-0052840A KR100406391B1 (en) 1998-12-03 1998-12-03 The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Publications (2)

Publication Number Publication Date
KR20000037999A KR20000037999A (en) 2000-07-05
KR100406391B1 true KR100406391B1 (en) 2004-02-14

Family

ID=19561207

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1998-0052840A KR100406391B1 (en) 1998-12-03 1998-12-03 The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Country Status (1)

Country Link
KR (1) KR100406391B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2407574B1 (en) * 2009-03-13 2018-10-24 Nippon Steel & Sumitomo Metal Corporation Non-oriented magnetic steel sheet and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227079A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip in continuous line
JPS62274090A (en) * 1986-05-23 1987-11-28 Sumitomo Metal Ind Ltd Al-mn alloy plated metallic material
JPH07258863A (en) * 1994-03-24 1995-10-09 Sumitomo Metal Ind Ltd Production of silicon steel sheet excellent in magnetic property

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227079A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip in continuous line
JPS62274090A (en) * 1986-05-23 1987-11-28 Sumitomo Metal Ind Ltd Al-mn alloy plated metallic material
JPH07258863A (en) * 1994-03-24 1995-10-09 Sumitomo Metal Ind Ltd Production of silicon steel sheet excellent in magnetic property

Also Published As

Publication number Publication date
KR20000037999A (en) 2000-07-05

Similar Documents

Publication Publication Date Title
US3932236A (en) Method for producing a super low watt loss grain oriented electrical steel sheet
EP3569726B1 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
EP0971374B1 (en) Ultralow-iron-loss grain oriented silicon steel plate and process for producing the same
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
KR940008933B1 (en) Method of producing non-oriented electromagnetic steel strip having superior magnetic properties and appearance
JPH04247849A (en) Cold rolled steel sheet excellent in press formability and phosphating property and its manufacture
JP2827890B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JPS62161915A (en) Manufacture of grain-oriented silicon steel sheet with superlow iron loss
KR100342310B1 (en) Method for manufacturing hot dip galvanized steel sheets with excellent plating adhesion and corrosion resistance
KR100406391B1 (en) The method of manufacturing non-oriented electrical steel with better core loss at high frequency
KR20210069757A (en) Zinc plated steel sheet having excellent surface quality and spot weldability and manufacturing method thereof
JP3020846B2 (en) Manufacturing method of high-strength hot-dip galvanized steel sheet
JP2787371B2 (en) Manufacturing method of aluminum plated steel sheet with excellent plating adhesion and appearance
JPH05171281A (en) Production of high silicon steel sheet
JPH11323511A (en) Silicon steel sheet low in residual magnetic flux density and excellent in high frequency core loss characteristic
JPH11236682A (en) Superlow core loss grain oriented silicon steel sheet and its production
JPH08144036A (en) Production of galvanized steel sheet by using hot rolled steel sheet as base metal
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP3456869B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP3336142B2 (en) Manufacturing method of grain-oriented silicon steel sheet with excellent magnetic properties
JPH0413856A (en) Production of galvannealed steel sheet having superior corrosion resistance
JPH11243005A (en) Ultra-low iron loss unidirectional silicon steel sheet and manufacture thereof
JPH0885858A (en) Production of high tensile strength hot dip galvanized steel sheet
KR100515461B1 (en) Ultra-low iron loss unidirectional silicon steel sheet
JPH11329819A (en) Ultra-small core loss unidirectional silicon steel plate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121101

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20131105

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20141105

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20151104

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20161107

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20171102

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee