JPS62227079A - Manufacture of high silicon steel strip in continuous line - Google Patents

Manufacture of high silicon steel strip in continuous line

Info

Publication number
JPS62227079A
JPS62227079A JP7148686A JP7148686A JPS62227079A JP S62227079 A JPS62227079 A JP S62227079A JP 7148686 A JP7148686 A JP 7148686A JP 7148686 A JP7148686 A JP 7148686A JP S62227079 A JPS62227079 A JP S62227079A
Authority
JP
Japan
Prior art keywords
steel strip
cooling
magnetic field
treatment
cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7148686A
Other languages
Japanese (ja)
Other versions
JPH0549746B2 (en
Inventor
Masahiro Abe
阿部 正広
Kazuhisa Okada
和久 岡田
Yasushi Tanaka
靖 田中
Masayuki Yamato
正幸 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7148686A priority Critical patent/JPS62227079A/en
Publication of JPS62227079A publication Critical patent/JPS62227079A/en
Publication of JPH0549746B2 publication Critical patent/JPH0549746B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled steel strip having high quality and high magnetic characteristics without extending a line by subjecting a steel strip to siliconization by chemical vapor deposition (CVD), diffusion treatment, cooling in a magnetic field in part of a cooling stage and coiling. CONSTITUTION:A steel strip is continuously siliconized by CVD at 1,023-1,200 deg.C in an atmosphere of a nonoxidizing gas contg. 5-35mol% SiCl4. The siliconized steel strip is subjected to diffusion treatment in an atmosphere of a nonoxidizing gas contg. no SiCl4 to diffuse Si almost uniformly into the interior of the steel strip. The steel strip is then cooled in a magnetic field by passing through a coil for applying a magnetic field fitted to a cooling furnace and the cooled steel strip is coiled. The steel strip may be cooled, coated with an insulating film, baked, cooled and coiled as required. In this case, the steel strip is cooled in a magnetic field in part of the cooling stage after the diffusion treatment and/or the cooling stage after the baking.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続ラインにおける化学気相蒸着(以下、C
VDと称す)法による高珪素鋼帯の製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention relates to continuous line chemical vapor deposition (hereinafter referred to as C
The present invention relates to a method for manufacturing high-silicon steel strips by a method (referred to as VD).

[従来の技術] 電磁鋼板として高珪素鋼板が用いられている。[Conventional technology] High-silicon steel sheets are used as electrical steel sheets.

この種の鋼板はSiの含有量が増すほど鉄損が低減され
、Si : 8.5%では、磁歪がOとなり、最大透磁
率もピークとなる等量も優れた磁気特性を呈することが
知られている。
It is known that the iron loss of this type of steel sheet decreases as the Si content increases, and that at 8.5% Si, the magnetostriction reaches O and the maximum magnetic permeability peaks. It is being

従来、高珪素鋼板を製造する方法として、圧延法、直接
鋳造法及び滲珪法があるが、このうち圧延法はSi含有
ri4%程度までは製造可能であるが、それ以上のSi
含有量では加工性が著しく悪くなるため冷間加工は困難
である。また直接鋳造法、いわゆるストリップキャステ
ィングは圧延法のような加工′性の問題は生じないが、
未だ開発途上の技術であり、形状不良を起こし易く、特
に高珪素鋼板の製造は困難である。
Conventionally, methods for manufacturing high-silicon steel sheets include the rolling method, direct casting method, and extrusion method. Of these, the rolling method can produce Si up to about 4% Si, but
If the content is high, the workability deteriorates significantly, making cold working difficult. Also, direct casting method, so-called strip casting, does not have workability problems like rolling method, but
This technology is still under development and is prone to shape defects, making it particularly difficult to manufacture high-silicon steel sheets.

これに対し、滲珪法は低珪素鋼を溶製して圧延により薄
板とした後、表面からSiを浸透させることにより高珪
素鋼板を製造するもので、これによれば加工性や形状不
良の問題を生じることなく高珪素鋼板を得ることができ
る。
On the other hand, the silicon permeation method produces high-silicon steel sheets by melting low-silicon steel, rolling it into thin sheets, and then infiltrating Si from the surface. A high-silicon steel plate can be obtained without causing any problems.

[発明が解決しようとする問題点] この滲珪法は、五目、同郡により提案され、三番、大凶
らにより詳しく検討されたものであるが従来提案された
方法はいずれも浸透処理時間が30分以上と長く、事実
上連続ラインには適用できないという根本的な問題があ
る。また処理温度も1230°C程度と極めて1イ6い
ことから浸透処理後の薄鋼板の形状が極めて悪く、加え
て処理温度が高過ぎるためエツジ部が過加熱によって溶
解するおそれがあり、連続ラインでの安定通板が期待で
きない。
[Problems to be solved by the invention] This infiltration method was proposed by Gomoku and Dogun, and was studied in detail by Sanban and Daikyo, but all of the previously proposed methods require a long infiltration treatment time. The fundamental problem is that it is long, over 30 minutes, and cannot be applied to continuous lines. In addition, the treatment temperature is extremely low at around 1230°C, so the shape of the thin steel sheet after penetration treatment is extremely poor.In addition, because the treatment temperature is too high, the edges may melt due to overheating. Stable sheet threading cannot be expected.

本発明はこのような従来技術の欠点を改善するためにな
されたもので、滲珪法を用い、連続ラインにおいて短面
・間でしかも高品質の高珪素鋼帯を安定して製造するこ
とができる方法の提供を目的とする。
The present invention has been made to improve the drawbacks of the prior art, and it is possible to stably produce high-quality high-silicon steel strips on a continuous line on a continuous line by using the silicon extrusion method. The purpose is to provide a method that can be used.

[問題を解決するための手段1 このため本発明は鋼帯を、SiC見4を■0見分率で5
〜35%含んだ無酸化性ガス雰囲気中で、化学気相蒸着
法により1023〜1200℃の温度で連続的に滲珪処
理し、次いで、S:C1aを含まない無酸化性ガス雰囲
気中でSiを鋼帯内部に略均一に拡散させる拡散処理を
施し、続く冷却過程の一部において鋼帯を磁場中冷却し
た後捲取るようにしたことをその基本的特徴とする。
[Means for Solving the Problem 1] For this reason, the present invention uses a steel strip, SiC grade 4, and
In a non-oxidizing gas atmosphere containing ~35%, silicon was continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then Si was treated in a non-oxidizing gas atmosphere containing no S:C1a. Its basic feature is that it undergoes a diffusion treatment to diffuse almost uniformly into the steel strip, and as part of the subsequent cooling process, the steel strip is cooled in a magnetic field and then rolled up.

また本発明は、上記拡散処理−冷却後、絶縁被膜コーテ
ィングを施し、焼付処理後捲取るようにするとともに、
Fii場中冷却を、塗装焼付温度等に応じ、拡散処理後
の冷却過程または焼付処理後の冷却過程、若しくは両方
の冷却過程の一部において行うようにしたことを他の基
本的特徴とする・以下1本発明の詳細な説明する。
Further, the present invention provides an insulating film coating after the above-mentioned diffusion treatment and cooling, which is then rolled up after the baking treatment, and
Another basic feature is that in-situ cooling is performed in the cooling process after diffusion treatment, the cooling process after baking treatment, or a part of both cooling processes, depending on the paint baking temperature etc. The present invention will be explained in detail below.

本発明において、母材たる鋼帯(出発薄鋼帯)の成分組
成は、特に限定はないが、優れた磁気特性を得るため以
下のように定めるのが好ましい。
In the present invention, the composition of the steel strip (starting thin steel strip) serving as the base material is not particularly limited, but is preferably determined as follows in order to obtain excellent magnetic properties.

■ 3〜6.5%Si −Fe合金の場合c:o、ot
%以下、 Si: O〜4.0%、Nn:2%以下、そ
の他不可避的不純物は極力低い方が望ましい。
■ For 3-6.5% Si-Fe alloy c: o, ot
% or less, Si: O to 4.0%, Nn: 2% or less, and other unavoidable impurities are desirably as low as possible.

■ センダスト合金の場合 C:o、ot%以下、Si:4%以下、Ai : 3〜
8%、旧:4%以下、Mn:2%以下、Cr。
■ For Sendust alloy C: o, ot% or less, Si: 4% or less, Ai: 3~
8%, old: 4% or less, Mn: 2% or less, Cr.

Tiなどの耐食性を増す元素5%以下、その他の不可避
的不純物は極力低い方が望ましい。
It is desirable that the content of elements that increase corrosion resistance, such as Ti, be 5% or less, and that other unavoidable impurities be as low as possible.

鋼帯は熱間圧延−冷間圧延により得られるものに限らず
、直接鋳造・急冷凝固法により得られたものでもよい。
The steel strip is not limited to one obtained by hot rolling-cold rolling, but may be one obtained by direct casting or rapid solidification.

なお、鋼帯はCVD処理により板厚が減少するものであ
り、このため最終製品板厚に対し減少板厚分を付加した
板厚のものを用いる必要がある。
Note that the thickness of the steel strip is reduced by CVD treatment, and therefore it is necessary to use a steel strip with a thickness equal to the thickness of the final product plus the reduced thickness.

本発明は、このような鋼帯にCVD法による滲珪処理−
拡散処理を施すことにより高珪素鋼帯を得るものである
The present invention provides such a steel strip with a silicon-etched treatment by the CVD method.
A high-silicon steel strip is obtained by performing a diffusion treatment.

第1図は本発萌を実施するための連続処理ラインを示す
もので、lは加熱炉、2はCVD処理炉、3は拡散処理
炉、4は冷却炉である。
FIG. 1 shows a continuous processing line for carrying out the main sprouting, in which 1 is a heating furnace, 2 is a CVD processing furnace, 3 is a diffusion processing furnace, and 4 is a cooling furnace.

鋼帯Sは加熱炉lでCVD処理温度またはその近傍まで
無酸化加熱された後、CVD処理炉2に導かれ、 Si
 CJL4を含む無酸化性ガス雰囲気中でCVD法によ
る滲珪処理が施される。5iunsを含む無酸化性ガス
とは、中性或いは還元性ガスを意味−し、Si C交4
のキャリアガスとしては、Ar。
The steel strip S is heated without oxidation in a heating furnace 1 to a CVD treatment temperature or around it, and then guided to a CVD treatment furnace 2, where Si
A silicon exfoliation treatment is performed by the CVD method in a non-oxidizing gas atmosphere containing CJL4. The non-oxidizing gas containing 5 iuns means a neutral or reducing gas.
As the carrier gas, Ar is used.

I2 、He  、  )12  、 C)14等を使
用することができる、これらキャリアガスのうち、排ガ
スの処理性を考慮した場合、82.CI4等は)l C
1を発生させその処理の必要性が生じる難点があり、こ
のような問題を生じないAr、He、 N2が望ましく
、さらに材料の窒化を防止するという観点からすればこ
れらのうちでも特にAr、Heが最も好ましい。
Among these carrier gases that can be used include I2, He, )12, C)14, etc., 82. CI4 etc.) l C
However, Ar, He, and N2 are preferable because they do not cause such problems, and from the viewpoint of preventing nitridation of the material, Ar, He, and N2 are particularly preferable. is most preferred.

CVD処理における鋼帯表面の主反応は。What are the main reactions on the steel strip surface during CVD treatment?

5Fe+Si  Cna  −+Fe3  Si+2 
 Fe  C1z  ↑である。Sit原子が鋼帯面に
蒸着してFe3 Si層を形成し、Fe2原子がFeC
l2となり、FeC12f)沸点1023℃以上の温度
において気体状態で鋼帯表面から拡散される。したがっ
て、Si原子量が2B、08B、 Fe原子量が55.
847−t’あることから、鋼帯は質量減少し、これに
伴い板厚も減少することになる。ちなみに、Si3%鋼
帯を母材とし、CVD処理でSi 8.5%鋼帯を製造
すると、質量は8.7%減少し、−板厚は約7.1%減
少する。
5Fe+Si Cna −+Fe3 Si+2
Fe C1z ↑. Sit atoms are deposited on the steel strip surface to form a Fe3Si layer, and Fe2 atoms are deposited on the FeC
12f) and is diffused from the surface of the steel strip in a gaseous state at a temperature above the boiling point of 1023°C. Therefore, the Si atomic weight is 2B, 08B, and the Fe atomic weight is 55.
847-t', the mass of the steel strip decreases, and the plate thickness also decreases accordingly. By the way, when a 3% Si steel strip is used as the base material and an 8.5% Si steel strip is produced by CVD treatment, the mass decreases by 8.7% and the plate thickness decreases by about 7.1%.

従来法においてCVD処理に時間がかかり過ぎるのは、
そのCVD処理条件に十分な検討が加えられていなかっ
たことによるものと考えられる。
The reason why CVD processing takes too much time in conventional methods is that
This is thought to be due to insufficient consideration being given to the CVD processing conditions.

本発明者等が検討したところでは、CVD処理を迅速に
行うための要素には次のようなものがあることが判った
The inventors of the present invention have investigated and found that the following factors are necessary for performing CVD processing quickly.

■ 雰囲気ガス中のSi C文ne度の適正化。■ Optimization of the Si/C concentration in the atmospheric gas.

■ 処理温゛度の適正化。■ Optimization of processing temperature.

■ Si C立4の鋼帯表面への拡散及びFe C見2
の鋼帯表面からの放散の促進。
■ Diffusion of Si C 4 onto the steel strip surface and Fe C 2
promotion of dissipation from the steel strip surface.

このため本発明ではCVD処理における雰囲気ガス中の
Si濃度及び処理温度を規定するものである。
Therefore, in the present invention, the Si concentration in the atmospheric gas and the processing temperature in the CVD processing are specified.

まず、CV D、処理における無酸化性ガス雰囲気中の
Si C14a度をlon分率で5〜35%に規定し、
このような露囲気中で鋼帯を連続的にCVD処理する。
First, the degree of Si C14a in the non-oxidizing gas atmosphere during CVD treatment is defined as 5 to 35% in terms of lon fraction,
The steel strip is continuously subjected to CVD treatment in such an open atmosphere.

雰囲気中のSi C文4が5%未満であると期待するS
i富化効果が得られず、また、例えば鋼帯のSiを1.
0%富化するために5分以上も必要となる等、処理に時
間がかかり過ぎ、連続プロセス化することが困難となる
S expects that SiC structure 4 in the atmosphere is less than 5%
The i-enriching effect cannot be obtained, and for example, if the Si of the steel strip is 1.
The treatment takes too much time, such as requiring 5 minutes or more to achieve 0% enrichment, making it difficult to implement a continuous process.

一方、5iCu4を35%を超えて含有させても界面に
おける反応が律速になり、それ以上のSi富化効果が期
待できなくなる。
On the other hand, even if 5iCu4 is contained in an amount exceeding 35%, the reaction at the interface becomes rate-limiting, and no further Si enrichment effect can be expected.

またCVD処理では、Si C1< 濃度が高いほど所
謂カーケンダールポイドと称する大きなボイドが生成し
易い、このボイドはSi(:fLs6度が15%程度ま
ではほとんど見られないが、15%を超えると生成しは
じめる。しかし、’;icl<濃度が35%以下では、
ボイドが生成してもCVD処理に引き続き行われる拡散
処理によりほぼ完全に消失させることができる。換言す
れば、5iCJla濃度が35%を超えるとボイドの生
成が著しく、拡散処理後でもボイドが残留してしまう、
第11図は5i(dL420%の雰囲気でCVD処理し
た直後の鋼帯断面を示すもので、蒸着層にはボイドがみ
もれる。第12図はこの鋼帯を1200℃X 20 w
inの拡散処理した後の断面を示すものであり、CVD
処理直後のボイドはほぼ完全に消失している。これに対
し第13図はSi C文440%でCVD処理し、その
後拡散処理した鋼帯の断面を示すもので、ボイドが層状
に残留していることが判る。
In addition, in CVD processing, the higher the concentration of Si C1 However, when the concentration is below 35%,
Even if voids are generated, they can be almost completely eliminated by a diffusion process performed subsequent to the CVD process. In other words, when the 5iCJla concentration exceeds 35%, voids are significantly generated and remain even after diffusion treatment.
Fig. 11 shows a cross section of the steel strip immediately after CVD treatment in an atmosphere of 5i (dL420%), and voids are seen in the vapor deposited layer. Fig. 12 shows this steel strip at 1200℃ x 20 w.
It shows a cross section after diffusion treatment of in, and CVD
Immediately after treatment, the voids almost completely disappeared. On the other hand, FIG. 13 shows a cross section of a steel strip that was subjected to CVD treatment with 440% SiC content and then diffusion treatment, and it can be seen that voids remain in a layered manner.

CVD処理温度は1023〜1200℃の範囲とする。The CVD treatment temperature is in the range of 1023 to 1200°C.

CVD処理反応は鋼帯表面における反応であるから、こ
の処理温度は厳密には鋼帯表面温度である。
Since the CVD treatment reaction is a reaction on the steel strip surface, the treatment temperature is strictly the steel strip surface temperature.

CVD処理による反応生成物であるFeCl2の沸点は
1023℃であり、この温度以下ではFeC12f に液体状に付着して蒸着反応を阻害してしまう。
The boiling point of FeCl2, which is a reaction product from the CVD process, is 1023°C, and below this temperature it will adhere to FeCl2f in a liquid state and inhibit the vapor deposition reaction.

本発明者らが行った基礎実験の結果では、このFeC1
yの沸点を境に、単位時間当りのSiの富化割合が著し
く異なり、 1023℃以下では7X着速度が小さいた
め連続プロセスへの適用は困難である。
According to the results of basic experiments conducted by the present inventors, this FeC1
The enrichment rate of Si per unit time differs markedly at the boiling point of y, and the 7X deposition rate is low below 1023°C, making it difficult to apply to a continuous process.

このため処理温度の下限は1023℃とする。Therefore, the lower limit of the processing temperature is set to 1023°C.

一方、上限を1200℃と規定する理由は次の通りであ
る* Fe3 S+の融点は、第3図に示すFe−5i
状態図から明らかなように1250℃であるが、発明者
等の実験によれば、1250℃より低い1230℃程度
で処理した場合でも、鋼帯表面が部分的に溶解し、また
、鋼帯エツジ部分が過加熱のため溶解する。
On the other hand, the reason why the upper limit is specified as 1200°C is as follows.* The melting point of Fe3S+ is
As is clear from the phase diagram, the temperature is 1250°C, but according to experiments conducted by the inventors, even when the steel strip surface is processed at about 1230°C, which is lower than 1250°C, the steel strip surface partially melts, and the steel strip edge Parts melt due to overheating.

このように1250℃以下でも鋼帯が溶解するのは、鋼
帯表面ではFe3 Si相当のSi濃度14.5%以上
にSiが蒸着されているためであると推定される。これ
に対し処理温度が1200℃以下であれば鋼帯表面は溶
解は全く認められず、また、エツジの過加熱も、鋼帯中
心部の平均温度を1200°Cとすることで、1220
℃程度におさえることが可能であり、微量な溶解で済む
ことが実験的に確認できた0以上の理由から、CVD処
理温度は1023℃〜1200”c!と規定する。
The reason why the steel strip melts even below 1250° C. is presumed to be because Si is deposited on the surface of the steel strip at a Si concentration of 14.5% or more equivalent to Fe3Si. On the other hand, if the treatment temperature is 1200°C or lower, no melting will be observed on the surface of the steel strip, and overheating of the edges can be prevented by setting the average temperature at the center of the steel strip to 1200°C.
The CVD treatment temperature is specified as 1023° C. to 1200”c!, because it has been experimentally confirmed that the temperature can be kept at about 1023° C. and only a small amount of dissolution is required.

以上のようにしてCVD処理された鋼帯Sは、引き続き
拡散炉3に導かれS:C1aを含まない無酸化性ガス雰
囲気中で拡散処理される。すなわち、(、/D処理直後
では、鋼帯表面近くはSi濃度が高く、中心部分では母
材Si濃度のままであり、これを均熱・拡散処理し均−
Si濃度とする必要がある。
The steel strip S subjected to the CVD treatment as described above is subsequently led to a diffusion furnace 3 and subjected to a diffusion treatment in a non-oxidizing gas atmosphere that does not contain S:C1a. In other words, immediately after the /D treatment, the Si concentration is high near the steel strip surface, and the Si concentration in the center remains the same as the base material.
It is necessary to set the Si concentration.

この拡散処理は、鋼帯表面を酸化させない為に、無酸化
雰囲気中で行う必要があり、また高温で行うほど処理時
間が少なくて済む。
This diffusion treatment must be performed in a non-oxidizing atmosphere in order not to oxidize the surface of the steel strip, and the higher the temperature, the shorter the treatment time.

この拡散処理は、一定温度で行ってもよいが、第3図の
Fe−9i状態図から判るように、拡散の進行とともに
鋼帯表層部のSi濃度が減少しその融点が上がることか
ら、拡散の進行に住い鋼帯を溶解させない程度に徐々に
昇温させる(例えば複数段階で昇温させる)ことにより
、拡散を促進させることができる0例えば8.5%Si
鋼の場合、エツジ部の過加熱を考慮しても1400℃ま
での昇温か可能である。
This diffusion treatment may be carried out at a constant temperature, but as can be seen from the Fe-9i phase diagram in Figure 3, as the diffusion progresses, the Si concentration in the surface layer of the steel strip decreases and its melting point increases. For example, 8.5% Si diffusion can be promoted by gradually increasing the temperature (for example, increasing the temperature in multiple steps) to an extent that does not melt the steel strip.
In the case of steel, it is possible to raise the temperature to 1400° C. even taking into account overheating of the edges.

このような拡散処理後、鋼帯Sは冷却炉4で冷却され、
しかる後捲取られるが、本発明では、この冷却過程の−
°部において鋼帯Sを磁場中冷却する。
After such a diffusion treatment, the steel strip S is cooled in a cooling furnace 4,
After that, it is rolled up, but in the present invention, the -
The steel strip S is cooled in a magnetic field in the ° section.

珪素鋼板は磁場中冷却を行うことによりその磁気特性が
著しく向上することが知られており1本発明では冷却過
程の一部において、鋼帯Sを磁場中に通板し、磁場中冷
却を実施する。
It is known that the magnetic properties of a silicon steel sheet are significantly improved by cooling it in a magnetic field. In the present invention, as part of the cooling process, the steel strip S is passed through a magnetic field and cooled in a magnetic field. do.

鋼帯Sはキューリ一点以下の温度において磁気の影響を
受け、磁場中冷却はこのキューリ一点以下の温度で実質
的な効果を発揮する。特に、磁場中冷却を鋼帯温度がA
2変態点を通過する際に行うことにより著しく磁気特性
が向上する。第14図は珪素鋼板の板温と磁場中冷却効
果との関係を示すもので1例えば8.5wt%Si鋼帯
の場合、温度t1がキューリ一点、温度t2がA2変態
点であり、磁場中冷却は通常温度t1 より高目の温度
Ts  (例えば750℃)から開始され、温度t2を
通過して温度TFで終了する。
The steel strip S is influenced by magnetism at temperatures below the Curie point, and cooling in a magnetic field exhibits a substantial effect at temperatures below the Curie point. In particular, when cooling in a magnetic field, the temperature of the steel strip is A
The magnetic properties are significantly improved by carrying out the process when passing through the second transformation point. Figure 14 shows the relationship between the plate temperature of a silicon steel sheet and the cooling effect in a magnetic field.1 For example, in the case of an 8.5 wt% Si steel strip, temperature t1 is the Curie point, temperature t2 is the A2 transformation point, and the temperature t2 is the A2 transformation point. Cooling starts from a temperature Ts (for example, 750° C.) higher than the normal temperature t1, passes through a temperature t2, and ends at a temperature TF.

第15図ないし第17図は磁場中冷却設備の一構成例を
示すもので、冷却炉に設けられる磁場印加用コイル8を
中空の銅管9により構成し、この銅管9内に冷却媒体1
0を通すことにより、磁場印加用コイル8内を通板する
鋼帯Sに磁場を印加しつつ、コイル内側面から放射冷却
を行うようにしている。なお、前記銅管9の外面には絶
縁皮膜11(Si 02等)が形成される。
15 to 17 show an example of the configuration of magnetic field cooling equipment, in which a magnetic field applying coil 8 provided in a cooling furnace is constructed from a hollow copper tube 9, and a cooling medium 1 is placed inside the copper tube 9.
By passing 0, a magnetic field is applied to the steel strip S passing through the magnetic field applying coil 8, and radiative cooling is performed from the inner surface of the coil. Note that an insulating film 11 (Si02, etc.) is formed on the outer surface of the copper tube 9.

前記冷却媒体としては、水を用いることもできるが、電
気的な問題がある場合、例えば絶縁性の大きいフッ素系
不活性液体を使用することもできる。
Water can be used as the cooling medium, but if there is an electrical problem, for example, a highly insulating fluorine-based inert liquid can also be used.

第18図は他の構成例を示すもので、磁場印加用コイル
8の鋼帯出側位置に冷却ガスをコイル内部に供給するた
めのノズル12を設け、さらに、磁場印加用コイル8の
上部及び下部に冷却ガス導入ダクト15及びフード14
を設け、ファン13により冷却ガスをコイル外側に供給
するよう構成したものである。
FIG. 18 shows another configuration example, in which a nozzle 12 for supplying cooling gas into the coil is provided at the steel strip exit position of the magnetic field applying coil 8, and further, the upper and lower parts of the magnetic field applying coil 8 are provided. Cooling gas introduction duct 15 and hood 14
The cooling gas is supplied to the outside of the coil by a fan 13.

第19図は、第15図ないし第17図に示す方式の装こ
において、磁場印加用コイル8の間隔(鋼管の間隔)を
鋼帯Sの入側から出側にかけて順次或いは段階的に密に
することにより均一な冷却と磁場冷却効果の向上を図る
ようにしたものである。すなわち、冷却体たるコイルが
密であるほど鋼帯の冷却速度が大きく、このため、この
ようなコイル内で鋼帯Sを通板させることにより、同図
に示すように鋼帯Sを一定速度で冷却することが可能で
あり、これによって板厚方向に均一な冷却を行うことが
でき、この結果変態をスムースに移行させ優れた磁気特
性が得られる。また、コイルが密であるほど鋼帯に強磁
場をかけることができるが、上述したように、鋼帯はキ
ューリ一点以下の低温域、特にA2変態点で磁場の影響
を強く受けるものであり、このため低温側でコイルを密
にし、少なくとも上記A2変態点通過時に強磁場をかけ
ることにより大きな磁場中冷却効果を得ることができる
FIG. 19 shows that in the installation method shown in FIGS. 15 to 17, the spacing between the magnetic field applying coils 8 (the spacing between the steel pipes) is made denser in sequence or in stages from the inlet side to the outlet side of the steel strip S. By doing so, it is possible to achieve uniform cooling and improve the magnetic field cooling effect. In other words, the denser the coil is, the faster the cooling rate of the steel strip becomes. Therefore, by passing the steel strip S through such a coil, the steel strip S is kept at a constant speed as shown in the figure. This allows for uniform cooling in the thickness direction, resulting in smooth transformation and excellent magnetic properties. In addition, the denser the coil, the stronger the magnetic field can be applied to the steel strip, but as mentioned above, the steel strip is strongly influenced by the magnetic field in the low temperature range below the Curie point, especially at the A2 transformation point. Therefore, by making the coil denser on the low temperature side and applying a strong magnetic field at least when passing the A2 transformation point, a large cooling effect in the magnetic field can be obtained.

なお、場合によっては、上記とは逆に磁場印加用コイル
8の間隔を鋼帯Sの入側で密にし、出側に向って順次線
にするような構造を採ることもできる。このような構造
では、鋼帯の急冷が可能であり、また少なくとも鋼帯が
A2変態点を通過するまでコイルを比較的密なものとし
ておくことにより、大きな磁場中冷却効果も確保するこ
とができる。
In some cases, contrary to the above, it is also possible to adopt a structure in which the intervals between the magnetic field applying coils 8 are made closer on the inlet side of the steel strip S, and are gradually arranged in lines toward the outlet side. With such a structure, rapid cooling of the steel strip is possible, and by keeping the coil relatively dense at least until the steel strip passes through the A2 transformation point, a large cooling effect in the magnetic field can be ensured. .

鋼帯Sは以上のようにして冷却され、コイルに捲取られ
る。この場合、一般にSi含有量が多く(例えば4.0
%以上)、板厚が比較的厚い鋼帯は温間で捲取る必要が
ある。
The steel strip S is cooled as described above and wound into a coil. In this case, the Si content is generally high (for example, 4.0
% or more), relatively thick steel strips need to be rolled up warm.

CVD処理速度を鋼帯の連続処理を可撤ならしめるまで
高めるには、上述したように雰囲気ガス中のSi CJ
14 濃度と処理温度の適正化を図ることが必要である
が、これに加え鋼帯表面へのSi 0文4拡散とFe 
0文、の鋼帯表面からの放散とを促進することによりC
VD処理速度をより高めることが可能となる。
In order to increase the CVD processing speed to the point where continuous processing of the steel strip becomes possible, it is necessary to
14 It is necessary to optimize the concentration and treatment temperature, but in addition to this, it is necessary to
C by promoting the dissipation from the steel strip surface.
It becomes possible to further increase the VD processing speed.

従来では、CVD処理で反応ガスを大きく流動させると
、蒸着層にボイドが発生し、また蒸着層、の純度も低下
するとされ、このためガス流動は必要最小限にとどめる
という考え方が定着していた。しかし本発明者等の研究
では、このようにガス流動が抑えられることにより、反
応ガスの母材界面への拡散移動、及び反応副生成物の界
面表層からの離脱がスムースに行われず、このため処理
に長時間を要すること、さらにはガス流動が抑えられる
ためCVD処理炉内の反応ガス濃度に分布を生じ、この
結果蒸着膜厚の不均一化を招くことが判った。
Conventionally, it has been thought that if the reactive gas is allowed to flow greatly during CVD processing, voids will occur in the vapor deposited layer and the purity of the vapor deposited layer will also decrease.Therefore, the idea has been that the gas flow should be kept to the minimum necessary. . However, in the research conducted by the present inventors, due to the gas flow being suppressed in this way, the diffusion movement of the reaction gas to the base material interface and the separation of reaction by-products from the interface surface layer do not occur smoothly. It has been found that the treatment takes a long time, and furthermore, because the gas flow is suppressed, the concentration of the reactant gas in the CVD treatment furnace is distributed, resulting in non-uniformity in the thickness of the deposited film.

そして、このような事実に基づきさらに検討を加えた結
果、CVD処理炉において吹込ノズルにより雰囲気ガス
を被処理材に吹付け、或いはファン等により雰囲気を強
制循環せることにより5iC1aの鋼帯表面への拡散及
び反応生成物たるFe C立2の鋼帯表面からの放散を
著しく促進し、高い蒸着速度でしかも蒸着膜の不均一化
を抑えつつCVD処理できることが判った。
Based on these facts, we conducted further studies and found that 5iC1a could be applied to the surface of the steel strip by blowing atmospheric gas onto the treated material using a blowing nozzle in the CVD processing furnace, or by forcing the atmosphere to circulate using a fan, etc. It was found that the diffusion and reaction product, FeCl2, from the surface of the steel strip was significantly promoted, and CVD processing could be performed at a high deposition rate while suppressing non-uniformity of the deposited film.

このようなCVD処理性の向上は、吹付ノズルにより雰
囲気ガスを鋼帯表面に吹付ける方法が特に有効である。
A method in which atmospheric gas is sprayed onto the surface of the steel strip using a spray nozzle is particularly effective for improving CVD processability.

第4図はこのノズル吹付方式による。実施状況を示すも
ので、CVD処理炉2内に鋼帯Sに面して吹付ノズル5
が配置され、鋼帯表面に5illsを含む雰囲気ガスが
吹付けられる。第5図(イ)及び(ロ)は、吹付ノズル
5による吹付状況を示すもので、(イ)に示すように鋼
帯面に対して直角に或いは(ロ)に示すように斜め方向
から吹付けることができる。
Figure 4 shows this nozzle spraying method. This shows the implementation status, and a spray nozzle 5 is installed in the CVD treatment furnace 2 facing the steel strip S.
is placed, and an atmospheric gas containing 5ills is blown onto the surface of the steel strip. Figures 5 (a) and (b) show the spraying conditions by the spray nozzle 5, in which the spraying is performed at right angles to the steel strip surface as shown in (a) or from an oblique direction as shown in (b). Can be attached.

このようなノズル吹付による単位時間当りのSi富化割
合は、ガスの鋼帯表面に対する衝突流速の増大に比例し
て大きくなるが、流速を過剰に大きくしても界面におけ
る反応律速となるためそれ以上のSi富化効果は期待で
きない、一般的には、5NW7sec以下の流速で十分
な効果が得られる。
The Si enrichment rate per unit time due to such nozzle spray increases in proportion to the increase in the velocity of the gas impinging on the steel strip surface. The above Si-enriching effect cannot be expected; generally, a sufficient effect can be obtained with a flow rate of 5NW7 sec or less.

また本発明では、上記拡散処理−冷却後、鋼帯に連続的
に絶縁被膜コーティングを施し、焼付処理後捲取るよう
にすることができる。第2図はこのための連続処理ライ
ンを示すもので、6はコーティング装置、7は焼付炉で
ある。
Further, in the present invention, after the above-mentioned diffusion treatment and cooling, the steel strip can be continuously coated with an insulating film, and can be rolled up after the baking treatment. FIG. 2 shows a continuous processing line for this purpose, where 6 is a coating device and 7 is a baking furnace.

電磁鋼板は通常積層状態で使用され、この場合積層され
る各鋼板はそれぞれ絶縁される必要がある。このため電
磁鋼板には絶縁皮膜コーティングが施される。
Electrical steel sheets are usually used in a laminated state, and in this case, each of the laminated steel sheets needs to be insulated. For this reason, electrical steel sheets are coated with an insulating film.

Si含有量が4.0%以上の鋼帯は、常温状態ではぜい
性材料であ′す、はとんど塑性変形しない、このため絶
縁被膜コーティングをCVD処理ラインと別ラインで行
った場合、コイルの捲戻し、捲取り時に鋼帯が破断する
おそれがある。そこで、本発明は拡散処理−冷却後、鋼
帯Sにコーティング装置6で絶縁塗料を塗布し、次いで
塗装焼付炉7で焼付処理する。
Steel strips with a Si content of 4.0% or more are brittle materials at room temperature and rarely undergo plastic deformation, so if the insulation film coating is done on a separate line from the CVD treatment line, There is a risk that the steel strip will break during unwinding and unwinding of the coil. Therefore, in the present invention, after the diffusion treatment and cooling, an insulating paint is applied to the steel strip S in a coating device 6, and then a baking treatment is performed in a paint baking furnace 7.

絶縁塗料としては、無機系、有機系の適宜なものを用い
ることができる。無機系塗料としては。
As the insulating paint, appropriate inorganic or organic paints can be used. As an inorganic paint.

例えばリン酸マグネシウム、無水クロム酸、シリカゾル
等が、また有機系塗料としてはプラスチ−2り樹脂等が
用いられる。塗料はロールコータ方式、スプレ一方式等
により鋼帯Sに塗布され、無機系塗料の場合には約80
0℃程度、有機系塗料の場合には200〜300℃程度
で焼付処理する。
For example, magnesium phosphate, chromic anhydride, silica sol, etc. are used, and as the organic paint, Plasti-2 resin etc. are used. The paint is applied to the steel strip S using a roll coater method, one-way spray method, etc., and in the case of inorganic paint, approximately 80%
Baking treatment is carried out at about 0°C, and in the case of organic paints, at about 200 to 300°C.

以上のような絶縁被膜コーティング−焼付処理を行う場
合、磁場中冷却を行う時期が問題となる、すなわち、コ
ーテイング後の焼付処理では塗膜を700°C以上の高
温で焼付ける場合があり、こ′ のように高温焼付を行
うと、仮に前工程たるCVD処理−拡散処理後の冷却に
おいて磁場中冷却を行ってもその効果が消失してしまう
When performing the above-mentioned insulating film coating-baking treatment, the timing of cooling in a magnetic field is an issue. If high-temperature baking is performed as in ', even if cooling in a magnetic field is performed in the cooling after the previous step of CVD treatment and diffusion treatment, the effect will disappear.

したがって、絶縁被膜コーティング−焼付処理を伴う工
程では、磁場中冷却を、塗装焼付温度等に応じ、拡散処
理後の冷却過程または焼付処理後の冷却過程で行うこと
ができる。磁場中冷却の効果が消失する再加熱温度は約
850℃前後とされており、このため焼付処理温度が8
5θ℃以上の場合には焼付処理後の冷却過程で、また焼
付処理温度が850℃未満の場合にはCVD処理−拡散
処理後の冷却過程でそれぞれ磁場中冷却を行うようにす
ることが好ましい。
Therefore, in a process involving insulating film coating and baking, cooling in a magnetic field can be performed in the cooling process after the diffusion process or in the cooling process after the baking process, depending on the coating baking temperature and the like. The reheating temperature at which the effect of cooling in a magnetic field disappears is said to be around 850°C, so the baking treatment temperature is 850°C.
It is preferable to perform cooling in a magnetic field in the cooling process after the baking process when the temperature is 5θ°C or higher, and in the cooling process after the CVD process-diffusion process when the baking process temperature is less than 850°C.

一般に、無機系塗料を焼付ける場合には、鋼帯を800
℃程度まで加熱し、したがってこの場合には、コーティ
ング前に磁場中冷却しても意味がなく、焼付処理後の冷
却過程で磁場中冷却することが好ましい、また有機系塗
料の場合には200℃〜300℃程度の焼付温度で済み
、この場合にはCVD処理−拡散処理後の冷却過程で磁
場中冷却を実施することができる。
Generally, when baking inorganic paint, a steel strip with a
Therefore, in this case, there is no point in cooling in a magnetic field before coating, and it is preferable to cool in a magnetic field during the cooling process after baking. A baking temperature of about 300° C. is sufficient, and in this case, cooling in a magnetic field can be performed in the cooling process after the CVD treatment and the diffusion treatment.

なお、磁場中・冷却は、場合によってはCVD処理−拡
散処理後の冷却過程とコーティング−焼付処理後の冷却
過程の両方で行うことができる。
Note that the cooling in a magnetic field can be performed both in the cooling process after the CVD process and the diffusion process and in the cooling process after the coating and baking process, depending on the case.

前記加熱炉lでは無酸化加熱が行われるものであり、こ
のため電気間接加熱、誘導加熱、ラジアントチューブ間
接加熱、直火還元加熱等の加熱方式を単独または適当に
組み合せた加熱方法が採られる。なお、間接加熱方式を
採る場合、加熱に先立ち電気洗浄等の前処理が行われる
。前処理を含めた加熱方式として例えば次のようなもの
を採用できる。
Non-oxidation heating is performed in the heating furnace I, and for this reason, a heating method such as electric indirect heating, induction heating, radiant tube indirect heating, direct fire reduction heating, etc. may be used alone or in an appropriate combination. Note that when using an indirect heating method, a pretreatment such as electric washing is performed prior to heating. For example, the following heating method including pretreatment can be adopted.

■ 前処理−〔予熱〕−電気間接加、!8(または誘導
加熱) ■ 前処理−〔予熱〕−ラジアントチューブ加熱−電気
間接加熱(または誘導加熱) ■ 〔予熱〕−直火還元加熱−電気間接加熱(または誘
導加熱) ■ 前処理−〔予熱〕−ラジアントチューブ間接加熱(
セラミックラジアントチューブ方式) %式% また、冷却炉4での冷却方式に特に限定はなく、ガスジ
ェット冷却、ミスト冷却、放射冷却等の各種冷却方式を
単独または組合せた形で採用することができる。
■ Pretreatment - [Preheating] - Electrical contact,! 8 (or induction heating) ■ Pretreatment - [Preheating] - Radiant tube heating - Electrical indirect heating (or induction heating) ■ [Preheating] - Direct flame reduction heating - Electrical indirect heating (or induction heating) ■ Pretreatment - [Preheating] ] - Radiant tube indirect heating (
Ceramic radiant tube system) % formula % Furthermore, there is no particular limitation on the cooling method in the cooling furnace 4, and various cooling methods such as gas jet cooling, mist cooling, and radiation cooling can be employed alone or in combination.

本発明は、8.5%S+鋼帯のような珪素含有量が極め
て高い鋼帯の製造に好適なものであることは以上述べた
通りであるが、従来、圧延法で製造する場合に変形が多
く歩留りが悪かったSi:2〜4%程度の高珪素鋼帯も
容易に製造できる利点がある。
As mentioned above, the present invention is suitable for manufacturing steel strips with extremely high silicon content, such as 8.5% S+ steel strips. There is an advantage that high-silicon steel strips with a Si content of about 2 to 4%, which had a poor yield due to a large amount of Si, can be easily manufactured.

[実施例] O実施例−1 小型のCVD処理炉−拡散処理炉を用い、CVD処理性
に対する5iC1sfa度及びCVD処理温度の影響を
調べた。その結果を第6図及び第7図に示す。
[Example] O Example-1 Using a small CVD processing furnace-diffusion processing furnace, the influence of 5iC1sfa degrees and CVD processing temperature on CVD processing performance was investigated. The results are shown in FIGS. 6 and 7.

図中、Aが雰囲気法、すなわちノズル吹付を行わないで
CVD処理した場合、またBがノズル吹付法、すなわち
第4図に示すように雰囲気ガスを鋼帯面に0.5■、/
Sの流速で吹き付けつつCVD処理した場合を示す、な
お、Si富、化割合とは、母材当初のSi濃度に対する
CVD処理−拡散処理後のSi増加分を示す。
In the figure, A is the atmosphere method, that is, CVD treatment without nozzle spraying, and B is the nozzle spraying method, that is, as shown in FIG.
It shows the case where CVD treatment is performed while spraying at a flow rate of S. Note that the Si enrichment ratio indicates the increase in Si after the CVD treatment-diffusion treatment with respect to the initial Si concentration of the base material.

こht、:よhば、SiCjLm濃度5%以上、cvn
処理温度1023℃以上において大きなSi富化効果が
得られている。また同じ条件でも、吹付ノズルにより雰
囲気ガスを吹付ける方法の場合、単に雰囲気中で鋼帯を
通板せしめる場合に較べ格段に優れたSi富化効果(c
vn処理性)が得られていることが判る。
ht: If SiCjLm concentration is 5% or more, cvn
A large Si-enriching effect is obtained at a treatment temperature of 1023° C. or higher. Even under the same conditions, the method of spraying atmospheric gas with a spray nozzle has a much superior Si enrichment effect (c
vn processability) was obtained.

第8図は同様のCVD処理炉−拡散処理炉を用い、雰囲
気法Aとノズル吹付法Bの蒸着時間と鋼帯中Si濃度(
拡散処理後のSi濃度)との関係を。
Figure 8 shows the deposition time and Si concentration in the steel strip (
(Si concentration after diffusion treatment).

Si:3%、板厚 0.5i+層のtjI4帯を5iC
1a濃度21%、処理温度1150℃でCVD処理した
場合について調べたものである。なお、ノズル吹付法で
は。
Si: 3%, plate thickness 0.5i+ layer tjI4 band 5iC
This is an investigation of the case where CVD treatment was performed at a 1a concentration of 21% and a treatment temperature of 1150°C. In addition, in the nozzle spray method.

スリットノズルにより鋼帯に対し垂直方向から0゜2N
m/seeの流速で雰囲気ガスを吹付けた。同図から判
るように、 6.5%Si鋼とするために雰囲気法Aで
は7分かかるのに対し、ノズル吹付法Bでは 1.5分
で処理することができた。
0°2N from the perpendicular direction to the steel strip using a slit nozzle
Atmospheric gas was blown at a flow rate of m/see. As can be seen from the figure, it took 7 minutes in atmosphere method A to obtain 6.5% Si steel, whereas it took 1.5 minutes in nozzle spray method B.

第9図はノズル吹付法における衝突ガス流速と鋼帯のS
i富化割合(拡散処理後の割合)との関係を示すもので
あり、所定レベルまでは衝突ガス流速に比例して鋼帯の
Si富化割合が増大している。
Figure 9 shows the collision gas flow velocity and S of the steel strip in the nozzle spraying method.
This shows the relationship with the i enrichment ratio (the ratio after diffusion treatment), and the Si enrichment ratio of the steel strip increases in proportion to the collision gas flow rate up to a predetermined level.

0 実施例−2 第1図に示す連続プロセスで板厚0.35mm、板幅9
00mm 、 Si3.5%含有鋼帯を母材とし、ライ
ンスピード25■p■でSi : 8.5%含有鋼帯を
製造した。
0 Example-2 A plate with a thickness of 0.35 mm and a plate width of 9 was manufactured using the continuous process shown in Figure 1.
A steel strip containing 8.5% Si was manufactured using a steel strip having a thickness of 00 mm and containing 3.5% Si as a base material at a line speed of 25 pm.

なお、冷却炉では磁場中冷却を実施し、またCVD処理
炉では吹付ノズル方式により、 Arをキャリアガスと
したSi C見4e度20sa1%の雰囲気ガスを鋼板
に対し0.3N層/secの流速で吹きつけた。
In addition, in the cooling furnace, cooling is carried out in a magnetic field, and in the CVD processing furnace, using a spray nozzle method, an atmospheric gas of 4E 20sa 1% with Ar as a carrier gas is applied to the steel plate at a flow rate of 0.3N layers/sec. I sprayed it with

第10図はこの場合の熱サイクルを示すもので、本実施
例では拡散処理時に1200℃から1320℃の2段昇
熱を実施した。この結果、V’i+o/lo : 0.
55W / Kgという極めて低鉄損の良質な6.5%
S:w4帯を製造できた。
FIG. 10 shows the thermal cycle in this case, and in this example, two-stage heating from 1200° C. to 1320° C. was performed during the diffusion treatment. As a result, V'i+o/lo: 0.
High quality 6.5% with extremely low core loss of 55W/Kg
S: W4 belt could be manufactured.

O実施例−3 CVD処理−拡散処理後の鋼帯をその冷却過程で磁場中
冷却し、その磁気特性を調べた。第20図はその結果を
示すもので、図中■が磁場中冷却をかけない場合、■が
均等ピッチで巻き付けたコイルにより300eの磁場を
かけた場合、■が第19図に示す装置により同図に示す
ように段階的に磁場を強くして磁場中冷却した場合をそ
れぞれ示しており、特にA2変態点通過前後に強磁場が
かかるようにした第19図の方式で磁場中冷却を実施す
ることにより、極めて優れた磁気特性が得られているこ
とが判る。
Example 3 A steel strip after CVD treatment and diffusion treatment was cooled in a magnetic field during the cooling process, and its magnetic properties were investigated. Figure 20 shows the results. In the figure, ■ indicates that cooling is not applied in a magnetic field, ■ indicates that a magnetic field of 300 e is applied using a coil wound at an even pitch, and ■ indicates that the same result is obtained using the apparatus shown in Fig. 19. As shown in the figure, the cases in which the magnetic field is strengthened step by step and cooled in the magnetic field are shown, and in particular, cooling in the magnetic field is performed using the method shown in Figure 19, in which a strong magnetic field is applied before and after passing the A2 transformation point. As a result, it can be seen that extremely excellent magnetic properties are obtained.

[発明の効果] 以上述べた本発明によれば、連続ラインにおいて短時間
でCVD処理を行うことができ、また1200℃以下の
温度でCVD処理を行うため鋼帯の形状不良やエツジ部
溶解等の問題を生じさせることがなく、しかも優れた磁
気特性の鋼板を得ることができ、このようなことから、
ラインの長大化を招くことなく高品質・高磁気特性の高
珪素鋼板を滝率的に製造することができる。
[Effects of the Invention] According to the present invention described above, CVD treatment can be performed in a short time on a continuous line, and since the CVD treatment is performed at a temperature of 1200°C or less, there are no problems such as poor shape of the steel strip or edge melting. It is possible to obtain a steel plate that does not cause any problems and has excellent magnetic properties.
High-quality, high-magnetic, high-silicon steel sheets can be produced at a high rate without increasing the length of the line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明法を実施するための
連続処理ラインを示す説明図である。第3図はFe−3
i系状態図である。第4図及び第5図(イ)、(ロ)は
ノズル吹付方式によるCVD処理状況を示すもので、第
4図は全体説明図、第5市(イ)及び(ロ)はそれぞれ
ノズル吹付方法を示す説明図である。第6図はCVD処
理におけるガス中Si C文4c度と鋼帯Si富化割合
との関係、第7図はCVD処理温度と鋼帯Si富化割合
との関係をそれぞれ示すものである。第8図は本発明に
おけるSi蒸若時間と鋼帯中5iIH度との関係を、雰
囲気法及びノズル吹付法で比較して示したものである。 第9図はノズル吹付法によるCVD処理において、雰囲
気ガスの鋼帯に対する衝突ガス波速と鋼帯Si富化割合
との関係を示すものである。第1O図は本発明実施例に
おける処理熱サイクルを示すものである。第11図ない
し第13図は本発明材及び比較材たる鋼帯断面の金属組
織を示すli3微鏡拡大写真であり、第11図はSi 
C見4:20%の雰囲気でCVD処理した直後の組織、
第12図はそのm 4i’tを拡散熱処理した後の組織
、第13図はSi C見4 :40%でCVD処理し、
その後拡散処理した後の組織を示している。第14図は
珪素鋼板の板温と磁場中冷却効果との関係を示すもので
ある。第15図ないし第17図は磁場中冷却設備の一構
成例を示すもので、第15図は斜視図、第1B図はコイ
ルの断面図、第17図はコイルを構成する鋼管の断面図
である。第18図は磁場中冷却設備の他の構成例を示す
説明図である。第18図は磁場中冷却の好ましい設備及
びこれによる磁場中冷却方法を示す説明図である。第2
0図は磁場中冷却した場合の磁気特性を、単純冷却の場
合と比較して示すものである。 図において、1は加熱炉、2はCVD処理炉。 3は拡散処理炉、4は冷却炉、6はコーティング装ご、
7は焼付炉、Sは鋼帯である。 −惨 温度 (0c) s;  l  イpg11  分 (wt’10)Si
  $イ乙1”Je  (Wiolo)Si  ”l 
 うし@11 A、   (olo)漏10図 負” 11f3.’J 仁・12督 xl(1)O α;13 坏 第15図 第16図   第17図 第18図 e  OOOOOQ 0000 oooooooooo
。 □う4〉力筒 S1濃度 (wt%)
FIGS. 1 and 2 are explanatory diagrams showing continuous processing lines for carrying out the method of the present invention, respectively. Figure 3 shows Fe-3
It is an i-system state diagram. Figures 4 and 5 (a) and (b) show the CVD processing situation using the nozzle spraying method. FIG. FIG. 6 shows the relationship between the SiC concentration in the gas (4c degree) and the Si enrichment ratio in the steel strip in the CVD treatment, and FIG. 7 shows the relationship between the CVD treatment temperature and the Si enrichment ratio in the steel strip. FIG. 8 shows a comparison of the relationship between the Si vaporization time and the degree of 5iIH in the steel strip in the present invention using the atmosphere method and the nozzle spraying method. FIG. 9 shows the relationship between the impinging gas wave velocity of the atmospheric gas against the steel strip and the Si enrichment ratio of the steel strip in the CVD treatment using the nozzle spraying method. FIG. 1O shows a processing heat cycle in an example of the present invention. Figures 11 to 13 are li3 microscopic enlarged photographs showing the metallographic structures of cross sections of steel strips of the present invention material and comparative material, and Figure 11 is a Si
C View 4: Structure immediately after CVD treatment in a 20% atmosphere,
Figure 12 shows the structure after diffusion heat treatment of the m4i't, and Figure 13 shows the structure after CVD treatment with SiC4:40%.
The tissue after being subjected to diffusion treatment is shown. FIG. 14 shows the relationship between the temperature of a silicon steel plate and the cooling effect in a magnetic field. Figures 15 to 17 show an example of the configuration of magnetic field cooling equipment. Figure 15 is a perspective view, Figure 1B is a cross-sectional view of the coil, and Figure 17 is a cross-sectional view of the steel pipe that constitutes the coil. be. FIG. 18 is an explanatory diagram showing another example of the configuration of the cooling equipment in a magnetic field. FIG. 18 is an explanatory diagram showing a preferred equipment for cooling in a magnetic field and a cooling method in a magnetic field using the equipment. Second
Figure 0 shows the magnetic properties when cooled in a magnetic field compared to when cooled simply. In the figure, 1 is a heating furnace, and 2 is a CVD processing furnace. 3 is a diffusion treatment furnace, 4 is a cooling furnace, 6 is a coating equipment,
7 is a baking furnace, and S is a steel strip. - Miserable temperature (0c) s; l Ipg11 min (wt'10)Si
$I Otsu1”Je (Wiolo)Si ”l
Ushi @ 11 A, (olo) leak 10 figure negative"11f3.'J Jin・12 command xl (1) O α; 13 坏 figure 15 figure 16 figure 17 figure 18 figure OOOOOOQ 0000 ooooooooooo
. □U4> Power cylinder S1 concentration (wt%)

Claims (2)

【特許請求の範囲】[Claims] (1)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いで、SiCl_4を含まない無酸化性ガス雰囲気中で
Siを鋼帯内部に略均一に拡散させる拡散処理を施し、
続く冷却過程の一部において鋼帯を磁場中冷却した後捲
取ることを特徴とする連続ラインにおける高珪素鋼帯の
製造方法。
(1) Steel strip with SiCl_4 in a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing Si, silicon is continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then Si is deposited inside the steel strip in a non-oxidizing gas atmosphere containing no SiCl_4. A diffusion process is applied to disperse the material almost uniformly,
A method for manufacturing a high-silicon steel strip in a continuous line, characterized in that in a part of the subsequent cooling process, the steel strip is cooled in a magnetic field and then rolled up.
(2)鋼帯を、SiCl_4をmol分率で5〜35%
含んだ無酸化性ガス雰囲気中で、化学気相蒸着法により
1023〜1200℃の温度で連続的に滲珪処理し、次
いで、SiCl_4を含まない無酸化性ガス雰囲気中で
Siを鋼帯内部に略均一に拡散させる拡散処理を施し、
冷却後、絶縁被膜コーティングを施して焼付処理し、冷
却後捲取るようにし、前記拡散処理後の冷却過程及び/
または焼付処理後の冷却過程の一部において鋼帯を磁場
中冷却することを特徴とする連続ラインにおける高珪素
鋼帯の製造方法。
(2) Steel strip with SiCl_4 at a mol fraction of 5 to 35%
In a non-oxidizing gas atmosphere containing Si, silicon is continuously treated by chemical vapor deposition at a temperature of 1023 to 1200°C, and then Si is deposited inside the steel strip in a non-oxidizing gas atmosphere containing no SiCl_4. A diffusion process is applied to disperse the material almost uniformly,
After cooling, an insulating film coating is applied and baked, and after cooling, it is rolled up, and the cooling process after the diffusion treatment and/or
Alternatively, a method for producing a high-silicon steel strip in a continuous line, characterized in that the steel strip is cooled in a magnetic field during part of the cooling process after baking treatment.
JP7148686A 1986-03-28 1986-03-28 Manufacture of high silicon steel strip in continuous line Granted JPS62227079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7148686A JPS62227079A (en) 1986-03-28 1986-03-28 Manufacture of high silicon steel strip in continuous line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7148686A JPS62227079A (en) 1986-03-28 1986-03-28 Manufacture of high silicon steel strip in continuous line

Publications (2)

Publication Number Publication Date
JPS62227079A true JPS62227079A (en) 1987-10-06
JPH0549746B2 JPH0549746B2 (en) 1993-07-27

Family

ID=13462028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7148686A Granted JPS62227079A (en) 1986-03-28 1986-03-28 Manufacture of high silicon steel strip in continuous line

Country Status (1)

Country Link
JP (1) JPS62227079A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902419A (en) * 1995-10-06 1999-05-11 Nkk Corporation Silicon steel sheet and method thereof
KR100406391B1 (en) * 1998-12-03 2004-02-14 주식회사 포스코 The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827055A (en) * 1971-06-03 1973-04-10
JPS4893522A (en) * 1972-03-13 1973-12-04
JPS5011942A (en) * 1973-06-08 1975-02-06
JPS5242731A (en) * 1975-09-29 1977-04-02 Xerox Corp Method of liquid development
JPS5779120A (en) * 1980-11-01 1982-05-18 Noboru Tsuya Production of electrical steel strip formed with easy magnetization anisotropy in longitudinal direction
JPS60103163A (en) * 1983-11-08 1985-06-07 Matsushita Electric Ind Co Ltd Method and device for treating light-gage amorphous magnetic alloy strip

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4827055A (en) * 1971-06-03 1973-04-10
JPS4893522A (en) * 1972-03-13 1973-12-04
JPS5011942A (en) * 1973-06-08 1975-02-06
JPS5242731A (en) * 1975-09-29 1977-04-02 Xerox Corp Method of liquid development
JPS5779120A (en) * 1980-11-01 1982-05-18 Noboru Tsuya Production of electrical steel strip formed with easy magnetization anisotropy in longitudinal direction
JPS60103163A (en) * 1983-11-08 1985-06-07 Matsushita Electric Ind Co Ltd Method and device for treating light-gage amorphous magnetic alloy strip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902419A (en) * 1995-10-06 1999-05-11 Nkk Corporation Silicon steel sheet and method thereof
US6045627A (en) * 1995-10-06 2000-04-04 Nkk Corporation Silicon steel sheet and method thereof
US6241829B1 (en) 1995-10-06 2001-06-05 Nkk Corporation Silicon steel sheet and method thereof
KR100406391B1 (en) * 1998-12-03 2004-02-14 주식회사 포스코 The method of manufacturing non-oriented electrical steel with better core loss at high frequency

Also Published As

Publication number Publication date
JPH0549746B2 (en) 1993-07-27

Similar Documents

Publication Publication Date Title
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
JP4791482B2 (en) Continuous annealing hot dip plating method and continuous annealing hot dip plating apparatus for steel sheet containing Si
JPH02104650A (en) Method for continuous hot dipping of a steel strip with use of aluminium
JP4307558B2 (en) Method for producing FeCrAl ferritic stainless steel strip
JPH0643607B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227079A (en) Manufacture of high silicon steel strip in continuous line
JPS62227034A (en) Manufacture of high silicon steel strip in continuous line
JPH0643608B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227035A (en) Manufacture of high silicon steel strip in continuous line
JPH0643611B2 (en) Method for producing high silicon steel strip in continuous line
JPS62227080A (en) Manufacture of high silicon steel strip in continuous line
KR100451675B1 (en) Method and device for producing a honeycombed body of heat-treated two or multilayered metal foils
JPH0465902B2 (en)
JPH0549743B2 (en)
JPH0465898B2 (en)
US3511686A (en) Method for annealing and coating metal strip
JPH11300450A (en) Fe base amorphous alloy thin band having extremely thin oxidized layer
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
KR102109238B1 (en) Continuous annealing apparatus for reducing surface oxide of high strength steel
JPH048504B2 (en)
JP4010089B2 (en) Method for producing high silicon steel sheet
JPS62227077A (en) Manufacture of high silicon steel material
JPS61207563A (en) Production of alloyed hot dip galvanized steel sheet
JPS6324033A (en) Production of metallic material by utilizing chemical vapor deposition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees