JPH0643607B2 - Method for producing high silicon steel strip in continuous line - Google Patents

Method for producing high silicon steel strip in continuous line

Info

Publication number
JPH0643607B2
JPH0643607B2 JP61071488A JP7148886A JPH0643607B2 JP H0643607 B2 JPH0643607 B2 JP H0643607B2 JP 61071488 A JP61071488 A JP 61071488A JP 7148886 A JP7148886 A JP 7148886A JP H0643607 B2 JPH0643607 B2 JP H0643607B2
Authority
JP
Japan
Prior art keywords
steel strip
cooling
magnetic field
sicl
oxidizing gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61071488A
Other languages
Japanese (ja)
Other versions
JPS62227032A (en
Inventor
正広 阿部
和久 岡田
孝 有泉
雅彦 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP61071488A priority Critical patent/JPH0643607B2/en
Publication of JPS62227032A publication Critical patent/JPS62227032A/en
Publication of JPH0643607B2 publication Critical patent/JPH0643607B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、連続ラインにおける化学気相蒸着(以下、C
VDと称す)法による高珪素鋼帯の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is directed to chemical vapor deposition in a continuous line (hereinafter referred to as C
The present invention relates to a method for producing a high silicon steel strip by the VD method).

〔従来の技術〕[Conventional technology]

電磁鋼板として高珪素鋼板が用いられている。この種の
鋼板はSiの含有量が増すほど鉄損が低減され、Si:6.5
%では、鉄歪が0となり、最大透磁率もピークとなる等
最も優れた磁気特性を呈することが知られている。
A high silicon steel plate is used as the electromagnetic steel plate. With this type of steel sheet, the iron loss decreases as the Si content increases, and Si: 6.5
%, It is known that the iron strain is 0, and the maximum magnetic permeability also has a peak and exhibits the most excellent magnetic characteristics.

従来、高珪素鋼板を製造する方法として、圧延法、直接
鋳造法及び滲珪法があるが、このうち圧延法はSi含有量
4%程度までは製造可能であるが、それ以上のSi含有量
では加工性が著しく悪くなるため冷間加工は困難であ
る。また直接鋳造法、所謂ストリツプキヤステイングは
圧延法のような加工性の問題は生じないが、未だ開発途
上の技術であり、形状不良を起し易く、特に高珪素鋼板
の製造は困難である。
Conventionally, there are a rolling method, a direct casting method and a siliconizing method as a method for producing a high silicon steel sheet. Among them, the rolling method can produce a Si content up to about 4%, but a Si content higher than that can be produced. In that case, cold workability is difficult because the workability is significantly deteriorated. Further, the direct casting method, so-called strip casting, does not cause the problem of workability as in the rolling method, but it is still under development, and it is easy to cause shape defects, and it is particularly difficult to manufacture high silicon steel sheets. is there.

これに対し、滲珪法は低珪素鋼を溶製して圧延により薄
板とした後、表面からSiを浸透させることにより高珪素
鋼板を製造するもので、これによれば加工性や形状不良
の問題を生じることなく高珪素鋼板を得ることができ
る。
On the other hand, the siliconizing method produces low silicon steel by melting and rolling it into a thin plate, and then permeates Si from the surface to produce a high silicon steel plate. A high silicon steel plate can be obtained without causing any problems.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この滲珪法は、五弓、阿部により提案され、三谷、大西
らにより詳しく検討されたものであるが従来提案された
方法はいずれも浸透処理時間が30分以上と長く、事実
上連続ラインには適用できないという根本的な問題があ
る。また処理温度も1230℃程度と極めて高いことから浸
透処理後の薄鋼板の形状が極めて悪く、加えて処理温度
が高過ぎるためエツジ部が過加熱によつて溶解するおそ
れがあり、連続ラインでの安定通板が期待できない。
This silicidation method was proposed by Gokyu and Abe, and was examined in detail by Mitani and Onishi. However, all of the conventionally proposed methods have a long infiltration treatment time of 30 minutes or more, and are effectively continuous lines. There is a fundamental problem that is not applicable. In addition, since the treatment temperature is extremely high at about 1230 ° C, the shape of the thin steel sheet after the permeation treatment is extremely poor, and the treatment temperature is too high, and the edges may melt due to overheating. We cannot expect stable threading.

また、滲珪法では蒸着反応により鋼板面のFeがFeCl2
の形で放散され、これによつて板厚が減少する。しかし
この種の処理では、雰囲気ガス濃度分布の不均一性等の
原因で蒸着(膜厚)が不均一になり易く、この結果板厚
の減り方にバラツキを生じ、板厚が幅方向、長手方向で
不均一になり易いという問題がある。
Further, in the siliconizing method, Fe on the surface of the steel sheet is diffused in the form of FeCl 2 or the like due to the vapor deposition reaction, which reduces the sheet thickness. However, in this type of processing, the vapor deposition (film thickness) is likely to be non-uniform due to non-uniformity of the atmospheric gas concentration distribution, etc. As a result, there are variations in the reduction of the plate thickness, and the plate thickness is There is a problem that it tends to be non-uniform in the direction.

本発明はこのような従来技術の欠点を改善するためにな
されたもので、滲珪法を用い、連続ラインにおいて短時
間でしかも高品質の高珪素鋼帯を安定して製造すること
ができる方法の提供を目的とする。
The present invention has been made to solve the above-mentioned drawbacks of the prior art, and is a method capable of stably producing a high-quality high-silicon steel strip in a continuous line in a short time in a continuous line by using a siliconizing method. For the purpose of providing.

〔問題を解決するための手段〕[Means for solving problems]

このため本発明の基本的特徴とするところは以下の通り
である。
Therefore, the basic features of the present invention are as follows.

(1)鋼帯を無酸化性ガス雰囲気中で連続的に通板させつ
つ、SiCl4をmol分率で5〜35%含んだ無酸化性ガ
スを吹付ノズルから鋼帯面に吹き付けて1023〜12
00℃の温度で連続的に滲珪処理し、次いで、SiCl
4を含まない無酸化性ガス雰囲気中でSiを鋼帯内部に
略均一に拡散させる拡散処理を施し、続く冷却過程にお
いて鋼帯を磁場中冷却するとともに、該磁場中冷却の前
または後若しくは途中において、鋼帯を200〜600
℃で圧延により塑性加工することを特徴とする連続ライ
ンにおける高珪素鋼帯の製造方法。
(1) While continuously passing a steel strip in an atmosphere of non-oxidizing gas, a non-oxidizing gas containing SiCl 4 in a mol fraction of 5 to 35% is sprayed from a spray nozzle onto the surface of the steel strip to produce 1023 to 12
Continuously silicidized at a temperature of 00 ° C, then SiCl
Diffusion treatment for diffusing Si substantially uniformly inside the steel strip in a non-oxidizing gas atmosphere not containing 4 is performed, and the steel strip is cooled in a magnetic field in the subsequent cooling process, and before, after or during the cooling in the magnetic field. In, the steel strip is 200 to 600
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at ℃.

(2)鋼帯を無酸化性ガス雰囲気中で連続的に通板させつ
つ、SiClをmol分率で5〜35%含んだ無酸化性
ガスを吹付ノズルから鋼帯面に吹き付けて1023〜1
200℃の温度で連続的に滲珪処理し、次いで、SiC
4を含まない無酸化性ガス雰囲気中でSiを鋼帯内部
に略均一に拡散させる拡散処理を施し、続く冷却過程に
おいて鋼帯を磁場中冷却するとともに、該磁場中冷却の
前または後若しくは途中において、鋼帯を200〜60
0℃で圧延により塑性加工し、最終冷却後、絶縁被膜コ
ーティング及び焼付処理することを特徴とする連続ライ
ンにおける高珪素鋼帯の製造方法。
(2) While continuously passing the steel strip in an atmosphere of non-oxidizing gas, a non-oxidizing gas containing 5 to 35% of SiCl 4 in a mole fraction is sprayed from a spray nozzle onto the surface of the steel strip to produce 1023 to 1
Siliconized continuously at a temperature of 200 ° C, then SiC
A diffusion treatment for diffusing Si substantially uniformly inside the steel strip is performed in a non-oxidizing gas atmosphere containing no l 4 , and the steel strip is cooled in a magnetic field in the subsequent cooling process, before or after the cooling in the magnetic field, or On the way, the steel strip is 200-60
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at 0 ° C., final cooling, followed by insulation film coating and baking treatment.

(3)鋼帯を無酸化性ガス雰囲気中で連続的に通板させつ
つ、SiCl4をmol分率で5〜35%含んだ無酸化性ガ
スを吹付ノズルから鋼帯面に吹き付けて1023〜12
00℃の温度で連続的に滲珪処理し、次いで、SiCl
4を含まない無酸化性ガス雰囲気中でSiを鋼帯内部に
略均一に拡散させる拡散処理を施し、続く冷却過程の途
中または冷却後、鋼帯を200〜600℃で圧延により
塑性加工し、最終冷却後、絶縁被膜コーティング及び焼
付処理し、続く冷却過程において磁場中冷却することを
特徴とする連続ラインにおける高珪素鋼帯の製造方法。
(3) While continuously passing the steel strip in an atmosphere of non-oxidizing gas, a non-oxidizing gas containing 5 to 35% of SiCl 4 in a mole fraction is sprayed from a spray nozzle onto the surface of the steel strip to produce 1023 to 12
Continuously silicidized at a temperature of 00 ° C, then SiCl
Diffusion treatment for substantially uniformly diffusing Si into the steel strip in a non-oxidizing gas atmosphere not containing 4 is performed, and during or after the subsequent cooling process, the steel strip is plastically worked by rolling at 200 to 600 ° C., A method for producing a high-silicon steel strip in a continuous line, which comprises performing insulating film coating and baking treatment after final cooling, followed by cooling in a magnetic field in the subsequent cooling process.

(4)鋼帯を無酸化性ガス雰囲気中で連続的に通板させつ
つ、SiCl4をmol分率で5〜35%含んだ無酸化性ガ
スを吹付ノズルから鋼帯面に吹き付けて1023〜12
00℃の温度で連続的に滲珪処理し、次いで、SiCl
4を含まない無酸化性ガス雰囲気中でSiを鋼帯内部に
略均一に拡散させる拡散処理を施し、続く冷却過程にお
いて鋼帯を磁場中冷却するとともに、該磁場中冷却の前
または後若しくは途中において、鋼帯を200〜600
℃で圧延により塑性加工し、最終冷却後、絶縁皮膜コー
ティング及び焼付処理し、続く冷却過程において磁場中
冷却することを特徴とする連続ラインにおける高珪素鋼
帯の製造方法。
(4) While continuously passing the steel strip in an atmosphere of non-oxidizing gas, a non-oxidizing gas containing SiCl 4 in a mole fraction of 5 to 35% is sprayed from a spray nozzle onto the surface of the steel strip to produce 1023 to 12
Continuously silicidized at a temperature of 00 ° C, then SiCl
Diffusion treatment for diffusing Si substantially uniformly inside the steel strip in a non-oxidizing gas atmosphere not containing 4 is performed, and the steel strip is cooled in a magnetic field in the subsequent cooling process, and before, after or during the cooling in the magnetic field. In, the steel strip is 200 to 600
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at ℃, final cooling, insulating film coating and baking treatment, and cooling in a magnetic field in the subsequent cooling process.

以下、本発明の詳細を説明する。Hereinafter, the details of the present invention will be described.

本発明において、母材たる鋼帯(出発薄鋼帯)の成分組
成は、特に限定はないが、優れた磁気特性を得るため以
下のように定めるのが好ましい。
In the present invention, the composition of the steel strip (starting thin steel strip) as the base material is not particularly limited, but it is preferably determined as follows in order to obtain excellent magnetic properties.

3〜6.5%Si−Fe合金の場合 C:0.01%以下、Si:0〜4.0%、Mn:2%以下、その
他不可避不純物は極力低い方が望ましい。
3 to 6.5% Si-Fe alloy C: 0.01% or less, Si: 0 to 4.0%, Mn: 2% or less, and other unavoidable impurities are preferably as low as possible.

センダスト合金の場合 C:0.01%以下、Si:4%以下、Al:3〜8%、Ni:4
%以下、Mn:2%以下、Cr,Tiなどの耐食性を増す元素
5%以下、その他の不可避不純物は極力低い方が望まし
い。
In the case of Sendust alloy C: 0.01% or less, Si: 4% or less, Al: 3-8%, Ni: 4
%, Mn: 2% or less, elements such as Cr and Ti that increase corrosion resistance 5% or less, and other unavoidable impurities are preferably as low as possible.

鋼帯は熱間圧延−冷間圧延により得られるものに限ら
ず、直接鋳造・急冷凝固法により得られたものでもよ
い。
The steel strip is not limited to that obtained by hot rolling-cold rolling, and may be obtained by direct casting / rapid solidification.

なお、上述したように鋼帯はCVD処理により板厚が減
少するものであり、このため最終製品板厚に対し減少板
厚分を付加した板厚のものを用いる必要がある。
As described above, the steel strip has a reduced thickness due to the CVD treatment, and therefore, it is necessary to use a strip having a thickness reduced by the reduced thickness of the final product.

本発明は、このような鋼帯にCVD法による滲珪処理−
拡散処理を施すことにより高珪素鋼帯を得るものであ
る。
According to the present invention, such a steel strip is subjected to a siliconizing treatment by a CVD method.
A high silicon steel strip is obtained by performing a diffusion treatment.

第1図は本発明法を実施するための連続処理ラインを示
すもので、(1)は加熱炉、(2)はCVD処理炉、(3)は拡
散処理炉、(4)は冷却炉である。
FIG. 1 shows a continuous processing line for carrying out the method of the present invention. (1) is a heating furnace, (2) is a CVD processing furnace, (3) is a diffusion processing furnace, and (4) is a cooling furnace. is there.

鋼帯Sは加熱炉(1)でCVD処理温度またはその近傍ま
で無酸化加熱された後、CVD処理炉(2)に導かれ、SiC
l4 を含む無酸化性ガス雰囲気中でCVD法による滲珪
処理が施される。SiCl4 を含む無酸化性ガスとは、中性
或いは還元性ガスを意味し、SiCl4 のキヤリアガスとし
てはAr,N2,He,H2,CH4 等を使用することができる。
これらキヤリアガスのうち、排ガスの処理性を考慮した
場合、H2,CH4 等はHClを発生させその処理の必要性が
生じる難点があり、このような問題を生じないAr,He,
N2 が望ましく、さらに材料の窒化を防止するという観
点からすればこれらのうちでも特にAr,Heが最も好まし
い。
The steel strip S is non-oxidatively heated up to or near the CVD treatment temperature in the heating furnace (1) and then introduced into the CVD treatment furnace (2) to obtain SiC.
Silicidation is performed by the CVD method in an atmosphere of non-oxidizing gas containing l 4 . The non-oxidizing gas containing SiCl 4 means a neutral or reducing gas, and as the carrier gas of SiCl 4 , Ar, N 2 , He, H 2 , CH 4, etc. can be used.
Of these carrier gases, when considering the processability of exhaust gas, H 2 , CH 4, etc. generate HCl, and there is a drawback that the process is required, and Ar, He,
N 2 is preferable, and from the viewpoint of preventing nitriding of the material, Ar and He are particularly preferable among them.

CVD処理における鋼帯表面の主反応は、 5Fe+SiCl4 →Fe3Si+2FeCl2 ↑ である。Si1原子が鋼帯面に蒸着してFe3Si 層を形成
し、Fe2原子がFeCl2 となり、FeCl2 の沸点1023℃以上
の温度において気体状態で鋼帯表面から放散される。し
たがつてSi原子量が28.086、Fe原子量が55.847であるこ
とから、鋼帯は質量減少し、これに伴い板厚も減少する
ことになる。ちなみに、Si3%鋼帯を母材とし、CVD
処理でSi 6.5 %鋼帯を製造すると、質量は8.7 %減少
し、板厚は約7.1 %減少する。
The main reaction of the steel strip surface in the CVD treatment is 5Fe + SiCl 4 → Fe 3 Si + 2FeCl 2 ↑. One Si atom is vapor-deposited on the surface of the steel strip to form a Fe 3 Si layer, and Fe 2 atom becomes FeCl 2 , which is emitted from the steel strip surface in a gaseous state at a temperature of 1023 ° C. or higher of the boiling point of FeCl 2 . Therefore, since the Si atomic weight is 28.086 and the Fe atomic weight is 55.847, the mass of the steel strip is reduced, and the sheet thickness is also reduced accordingly. By the way, using Si3% steel strip as base material, CVD
If the process produces Si 6.5% steel strip, the mass is reduced by 8.7% and the strip thickness is reduced by about 7.1%.

従来法においてCVD処理に時間がかかり過ぎるのは、
そのCVD処理条件に十分な検討が加えられていなかつ
たことによるものと考えられる。本発明者等が検討した
ところでは、CVD処理を迅速に行うための要素には次
のようなものがあることが判つた。
In the conventional method, the CVD process takes too long,
It is considered that this is because the CVD processing conditions have not been sufficiently studied. The inventors of the present invention have studied and found that there are the following elements for rapid CVD processing.

雰囲気ガス中のSiCl4 濃度の適正化。Optimization of SiCl 4 concentration in atmospheric gas.

処理温度の適正化。Optimization of processing temperature.

SiCl4 の鋼帯表面への拡散及びFeCl2 の鋼帯表面から
の放散の促進。
Promotion of diffusion of SiCl 4 to the steel strip surface and emission of FeCl 2 from the steel strip surface.

このため本発明ではCVD処理における雰囲気ガス中の
Si濃度及び処理温度を規定するものである。
Therefore, in the present invention, in the atmosphere gas in the CVD process,
It specifies the Si concentration and the processing temperature.

まず、CVD処理における無酸化性ガス雰囲気中のSiCl
4 濃度をmol 分率で5〜35%に規定し、このような雰囲
気中で鋼帯を連続的にCVD処理する。
First, SiCl in a non-oxidizing gas atmosphere in the CVD process
4 Concentration is regulated to 5 to 35% by mol fraction, and the steel strip is continuously subjected to CVD treatment in such an atmosphere.

雰囲気中のSiCl4 が5%未満であると期待するSi富化効
果が得られず、また、例えば鋼帯のSiを1.0%富化する
ために5分以上も必要となる等、処理に時間がかかり過
ぎ、連続プロセス化することが困難となる。
The effect of Si enrichment, which is expected to be less than 5% of SiCl 4 in the atmosphere, cannot be obtained, and it takes more than 5 minutes to enrich Si of the steel strip by 1.0%. It takes too much time, and it becomes difficult to form a continuous process.

一方、SiCl4 を35%を超えて含有させても界面におけ
る反応が律速になり、それ以上のSi富化効果が期待でき
なくなる。
On the other hand, if SiCl 4 is contained in an amount of more than 35%, the reaction at the interface becomes rate-determining, and further Si enrichment effect cannot be expected.

またCVD処理では、SiCl4 濃度が高いほど所謂カーケ
ンダールボイドと称する大きなボイドが生成し易い。こ
のボイドはSiCl4 濃度が15%程度まではほとんど見ら
れないが、15%を超えると生成しはじめる。しかし、
SiCl4 濃度が35%以下では、ボイドが生成してもCV
D処理に引き続き行われる拡散処理によりほぼ完全に消
失させることができる。換言すればSiCl4 濃度が35%
を超えるとボイドの生成が著しく、拡散処理後でもボイ
ドが残留してしまう。第12図はSiCl4 20%の雰囲気
でCVD処理した直後の鋼帯断面を示すもので、蒸着層
にはボイドがみられる。第13図はこの鋼帯を1200℃×
20min の拡散処理した後の断面を示すものであり、CV
D処理直後のボイドはほぼ完全に消失している。これに
対し第14図はSiCl4 40%でCVD処理し、その後拡
散処理した鋼帯の断面を示すもので、ボイドが層状に残
留していることが判る。
Moreover, in the CVD process, the higher the SiCl 4 concentration, the more easily large voids called so-called Kirkendall voids are generated. This void is hardly seen up to a SiCl 4 concentration of about 15%, but begins to form when it exceeds 15%. But,
If the SiCl 4 concentration is 35% or less, CV
It can be almost completely eliminated by the diffusion process performed after the D process. In other words, the SiCl 4 concentration is 35%
If it exceeds, voids are remarkably generated and the voids remain even after the diffusion treatment. FIG. 12 shows a cross section of the steel strip immediately after the CVD treatment in the atmosphere of 20% of SiCl 4, in which the vapor deposition layer has voids. Figure 13 shows this steel strip at 1200 ℃ ×
It shows the cross section after the diffusion process for 20 min.
The void immediately after the D treatment disappeared almost completely. On the other hand, FIG. 14 shows a cross section of a steel strip which was subjected to a CVD treatment with 40% of SiCl 4 and then subjected to a diffusion treatment, and it can be seen that voids remain in a layered form.

CVD処理温度は1023〜1200℃の範囲とする。CVD処
理反応は鋼帯表面における反応であるから、この処理温
度は厳密には鋼帯表面温度である。
The CVD processing temperature is in the range of 1023 to 1200 ° C. Since the CVD treatment reaction is a reaction on the surface of the steel strip, this treatment temperature is strictly the surface temperature of the steel strip.

CVD処理による反応生成物であるFeCl2 の沸点は1023
℃であり、この温度未満ではFeCl2 が鋼帯表面から気体
状態で放散されず、鋼帯表面に液体状に付着して蒸着反
応を阻害してしまう。本発明者らが行つた基礎実験の結
果では、このFeCl2 の沸点を境に、単位時間当りのSiの
富化割合が著しく異なり、1023℃未満では蒸着速度が小
さいため連続プロセスへの適用は困難である。このため
処理温度の下限は1023℃とする。
The boiling point of FeCl 2 , which is a reaction product of the CVD process, is 1023.
The temperature is ℃, and below this temperature, FeCl 2 is not diffused from the surface of the steel strip in a gaseous state, and adheres to the surface of the steel strip in a liquid state to hinder the vapor deposition reaction. The results of the basic experiments conducted by the present inventors show that, with the boiling point of FeCl 2 as a boundary, the enrichment ratio of Si per unit time is remarkably different, and since the vapor deposition rate is lower than 1023 ° C., it is not applicable to a continuous process. Have difficulty. Therefore, the lower limit of processing temperature is 1023 ° C.

一方、上限を1200℃と規定する理由は次の通りである。
Fe3Si の融点は、第4図に示すFe−Si状態図から明らか
なように1250℃であるが、発明者等の実験によれば、12
50℃より低い1230℃程度で処理した場合でも、鋼帯表面
が部分的に溶解し、また、鋼帯エツジ部分が過加熱のた
め溶解する。このように1250℃以下でも鋼帯が溶解する
のは、鋼帯表面ではFe3Si 相当のSi濃度14.5%以上にSi
が蒸着されているためであると推定される。これに対し
処理温度が1200℃以下であれば鋼帯表面は溶解は全く認
められず、また、エツジの過加熱も、鋼帯中心部の平均
温度を1200℃とすることで、1220℃程度におさえること
が可能であり、微量な溶解で済むことが実験的に確認で
きた。以上の理由から、CVD処理温度は1023℃〜1200
℃と規定する。
On the other hand, the reason for defining the upper limit as 1200 ° C is as follows.
The melting point of Fe 3 Si is 1250 ° C. as is clear from the Fe-Si phase diagram shown in FIG.
Even when treated at 1230 ° C, which is lower than 50 ° C, the surface of the steel strip partially melts, and the edge of the steel strip melts due to overheating. In this way, the steel strip melts even at temperatures below 1250 ° C because the Si concentration corresponding to Fe 3 Si is 14.5% or higher on the surface of the steel strip.
Is presumed to have been deposited. On the other hand, if the treatment temperature is 1200 ° C or less, melting of the steel strip surface is not observed at all, and overheating of the edges can be done to about 1220 ° C by setting the average temperature of the steel strip center to 1200 ° C. It has been confirmed experimentally that it can be suppressed and only a small amount of dissolution is required. For the above reasons, the CVD processing temperature is 1023 ° C to 1200
Specified as ° C.

CVD処理速度を鋼帯の連続処理を可能ならしめるまで
高めるには、上述したように雰囲気ガス中のSiCl4
濃度と処理温度の適正化を図ることが必要であるが、こ
れに加え鋼帯表面へのSiCl4の供給・拡散と反応副
生成物たるFeCl2の鋼帯表面からの放散(離脱)と
を促進することによりCVD処理速度をより高めること
が必要となる。
In order to increase the CVD processing rate to the extent that continuous processing of steel strip is possible, SiCl 4 in the atmosphere gas as described above can be used.
It is necessary to optimize the concentration and treatment temperature. In addition to this, supply and diffusion of SiCl 4 to the surface of the steel strip and diffusion (desorption) of FeCl 2 as a reaction by-product from the surface of the steel strip are required. It is necessary to further increase the CVD processing speed by promoting it.

従来では、VCD処理で反応ガスを大きく流動させる
と、蒸着層にボイドが発生し、また蒸着層の純度も低下
するとされ、このためガス流動は必要最小限にとどめる
という考え方が定着していた。しかし本発明者等の研究
では、このようにガス流動が抑えられることにより、反
応ガスの母材界面への拡散移動、及び反応副生成物の界
面表層からの離脱がスムースに行われず、このため処理
に長時間を要すること、さらにはガス流動が抑えられる
ためCVD処理炉内の反応ガス濃度に分布を生じ、この
結果蒸着膜厚の不均一化を招くことが判った。
Conventionally, when the reaction gas is made to flow largely in the VCD process, voids are generated in the vapor deposition layer, and the purity of the vapor deposition layer is also lowered. Therefore, the idea that the gas flow is kept to a necessary minimum has been established. However, in the study by the present inventors, by suppressing the gas flow in this way, the diffusion transfer of the reaction gas to the base material interface and the separation of the reaction by-product from the interface surface layer are not smoothly performed, and therefore, It has been found that the processing requires a long time, and further, the gas flow is suppressed, so that the reaction gas concentration in the CVD processing furnace is distributed, and as a result, the deposition film thickness becomes nonuniform.

そして、このような事実に基づきさらに検討を加えた結
果、CVD処理炉において吹付ノズルにより雰囲気ガス
を被処理材に吹付けることによりSiCl4の鋼帯表面
への拡散及び反応生成物たるFeCl2の鋼帯表面から
の放散を著しく促進し、高い蒸着速度でしかも蒸着膜の
不均一化を抑えつつCVD処理できることが判った。
As a result of further study based on such facts, by spraying an atmosphere gas onto a material to be processed by a spray nozzle in a CVD processing furnace, diffusion of SiCl 4 to the surface of the steel strip and reaction product FeCl 2 of It was found that the CVD process can be carried out at a high vapor deposition rate while suppressing the non-uniformity of the vapor deposited film by significantly promoting the emission from the surface of the steel strip.

一般にCVD反応と呼ばれているものの多くは、気相中
でのガスの反応によって生成(析出)したものが基板面
に付着するものであり、この反応の場合の副生成物(反
応生成ガス)は気相中で生じ、固体側から発生するもの
ではない。これに対して鋼帯の滲珪処理では、Feと反
応ガス中のSiとが鋼帯表面で置換することで、Siが
鋼中に取り込まれる。これは置換型CVD反応と呼ばれ
るもので、鋼帯表面すなわち固体側からFeCl2が気
体(反応生成ガス)として発生する。したがって、この
ような置換型CVD反応を伴う処理では、反応生成ガス
が固体側から生じるという点で、一般に知られたCVD
反応とは異なる反応生成ガスの生成挙動を示す。
Most of what is generally called a CVD reaction is that which is produced (deposited) by the reaction of gas in the gas phase and adheres to the substrate surface. By-products (reaction product gas) in the case of this reaction Occurs in the gas phase and is not generated from the solid side. On the other hand, in the siliconizing treatment of the steel strip, Fe is replaced with Si in the reaction gas on the surface of the steel strip, so that Si is taken into the steel. This is called a substitutional CVD reaction, and FeCl 2 is generated as a gas (reaction product gas) from the surface of the steel strip, that is, the solid side. Therefore, in a process involving such a substitutional CVD reaction, the reaction product gas is generated from the solid side, which is a generally known CVD method.
The behavior of the reaction product gas different from the reaction is shown.

そして、このような置換型CVD反応では、反応ガスを
含む雰囲気ガスを鋼帯表面に次々に供給し、且つ反応生
成ガス(FeCl2等)を反応界面から速やかに離脱さ
せることが反応を促進させる上で極めて重要である。
In such a substitutional CVD reaction, the reaction is promoted by supplying atmospheric gas containing the reaction gas to the surface of the steel strip one after another, and quickly desorbing the reaction product gas (FeCl 2 or the like) from the reaction interface. Extremely important above.

この意味で、鋼帯面に吹付ノズルによって雰囲気ガスを
吹き付けることは、反応界面への反応ガスの供給と反応
生成ガスの反応界面からの離脱を促進することができる
という大きな利点がある。
In this sense, spraying the atmospheric gas onto the steel strip surface with a spray nozzle has a great advantage that the supply of the reaction gas to the reaction interface and the separation of the reaction product gas from the reaction interface can be promoted.

第5図はこのノズル吹付方式による実施状況を示すもの
で、CVD処理炉2内に鋼帯Sに面して吹付ノズル5が
配置され、鋼帯表面にSiCl4を含み雰囲気ガスが吹
き付けられる。第6図(イ)及び(ロ)は、吹付ノズルによる
吹付状況を示すもので、同図(イ)に示すように鋼帯面に
対して直角方向から、或いは(ロ)に示すように斜め方向
からガスを吹付けることができる。
FIG. 5 shows an implementation situation by this nozzle spraying method. A spray nozzle 5 is arranged in the CVD processing furnace 2 so as to face the steel strip S, and an atmosphere gas containing SiCl 4 is sprayed on the surface of the steel strip. 6 (a) and 6 (b) show the spraying condition by the spraying nozzle, as shown in FIG. 6 (a), from the direction perpendicular to the steel strip surface, or obliquely as shown in (b). Gas can be sprayed from the direction.

このようなノズル吹付による単位時間当りのSi富化割
合は、ガスの鋼帯表面に対する衝突流速の増大に比例し
て大きくなるが、流速を過剰に大きくしても界面におけ
る反応律速となるためそれ以上のSi富化効果は期待で
きない。一般には、5Nm/sec以下の流速で十分な
効果が得られる。
The Si enrichment rate per unit time due to such nozzle spraying increases in proportion to the increase in the collision flow velocity of the gas with respect to the steel strip surface, but even if the flow velocity is excessively increased, the reaction rate is limited at the interface. The above Si enrichment effect cannot be expected. Generally, a sufficient effect is obtained at a flow velocity of 5 Nm / sec or less.

以上のようにしてCVD処理された鋼帯Sは、引き続き
拡散炉(3)に導かれSiCl4 を含まない無酸化性ガス雰囲
気中で拡散処理される。すなわち、CVD処理直後で
は、鋼帯表面近くはSi濃度が高く、中心部分では母材S
i濃度のままであり、これを均熱・拡散処理し均一Si濃
度とする必要がある。
The steel strip S subjected to the CVD process as described above is continuously introduced into the diffusion furnace (3) and subjected to the diffusion process in the non-oxidizing gas atmosphere containing no SiCl 4 . That is, immediately after the CVD treatment, the Si concentration is high near the surface of the steel strip and the base metal S
The i concentration remains as it is, and it is necessary to carry out soaking / diffusion treatment to obtain a uniform Si concentration.

この拡散処理は、鋼帯表面を酸化させない為に、無酸化
雰囲気中で行う必要があり、また高温で行うほど処理時
間が少なくて済む。
This diffusion treatment needs to be performed in a non-oxidizing atmosphere so as not to oxidize the surface of the steel strip, and the treatment time is shorter as the temperature is higher.

この拡散処理は、一定温度で行つてもよいが、第4図の
Fe−Si状態図から判るように、拡散の進行とともに鋼帯
表層部のSi濃度が減少しその融点が上がることから、
拡散の進行に伴い鋼帯を溶解させない程度に徐々に昇温
させる(例えば複数段階で昇温させる)ことにより、拡
散を促進させることができる。例えば6.5%Si鋼の場
合、エツジ部の過加熱を考慮しても1400℃までの昇温が
可能である。
This diffusion process may be performed at a constant temperature, but in FIG.
As can be seen from the Fe-Si phase diagram, as the diffusion proceeds, the Si concentration in the surface layer of the steel strip decreases and its melting point rises.
The diffusion can be promoted by gradually raising the temperature so as not to melt the steel strip (for example, raising the temperature in a plurality of stages) as the diffusion progresses. For example, in the case of 6.5% Si steel, it is possible to raise the temperature to 1400 ° C even if the overheating of the edge portion is taken into consideration.

このような拡散処理後、鋼帯Sは冷却炉(4)で冷却さ
れ、しかる後捲取られるが、本発明ではこの冷却過程に
おいて鋼帯を磁場中冷却するとともに、この磁場中冷却
前または磁場中冷却後若しくは磁場中冷却の途中におい
て、鋼帯(S)を200〜600℃の温間状態で圧延により塑性
加工する。
After such a diffusion treatment, the steel strip S is cooled in a cooling furnace (4) and then wound up. In the present invention, the steel strip is cooled in a magnetic field in this cooling process, and before or in the magnetic field. After medium cooling or in the middle of magnetic field cooling, the steel strip (S) is plastically worked by rolling in a warm state of 200 to 600 ° C.

珪素鋼板は磁場中冷却を行うことによりその磁気特性が
著しく向上することが知られており、本発明では冷却過
程の一部において鋼帯(S)を磁場中に通板し、磁場中冷
却を実施する。
It is known that the magnetic properties of a silicon steel sheet are significantly improved by cooling it in a magnetic field. In the present invention, the steel strip (S) is passed through a magnetic field in a part of the cooling process to cool the magnetic field. carry out.

鋼帯(S)はキユーリー点以下の温度において磁気の影響
を受け、磁場中冷却はこのキユーリー点以下の温度で実
質的な効果を発揮する。特に、磁場中冷却を鋼帯温度が
A2変態点を通過する際に行うことにより著しく磁気特性
が向上する。第15図は珪素鋼板の板温と磁場中冷却効
果との関係を示すもので、例えば 6.5wt%Si鋼帯の場
合、温度t1がキユーリー点、温度t2がA2変態点であり、
磁場中冷却は通常温度t1より高目の温度TS(例えば750
℃)から開始され、温度t2を通過して温度TFで終了す
る。
The steel strip (S) is affected by magnetism at a temperature below the Curie point, and cooling in a magnetic field exerts a substantial effect at a temperature below the Curie point. In particular, if the steel strip temperature is
The magnetic properties are remarkably improved by performing the process when passing through the A 2 transformation point. FIG. 15 shows the relationship between the plate temperature of a silicon steel plate and the cooling effect in a magnetic field. For example, in the case of a 6.5 wt% Si steel strip, the temperature t 1 is the Curie point and the temperature t 2 is the A 2 transformation point.
Cooling in a magnetic field requires a temperature T S higher than the normal temperature t 1 (eg 750
℃), passes through temperature t 2 and ends at temperature T F.

第16図ないし第18図は磁場中冷却設備の一構成例を
示すもので、冷却炉に設けられる磁場印加用コイル(8)
を中空の銅管(9)により構成し、この銅管(9)内に冷却媒
体(10)を通すことにより、磁場印加用コイル(8)内を通
板する鋼帯(S)に磁場を印加しつつコイル内側面から放
射冷却を行うようにしている。なお、前記銅管(9)の外
面には絶縁皮膜(11)(SiO2等)が形成される。
FIG. 16 to FIG. 18 show an example of the configuration of a cooling facility in a magnetic field, and a magnetic field applying coil (8) provided in a cooling furnace.
Is composed of a hollow copper tube (9), and a cooling medium (10) is passed through the copper tube (9) to apply a magnetic field to the steel strip (S) that is passed through the magnetic field applying coil (8). Radiation cooling is performed from the inside surface of the coil while applying the voltage. An insulating film (11) (SiO 2 or the like) is formed on the outer surface of the copper tube (9).

前記冷却媒体としては、水を用いることもできるが、電
気的な問題がある場合、例えば絶縁性の大きいフツ素系
不活性液体を使用することもできる。
Water may be used as the cooling medium, but if there is an electrical problem, for example, a fluorine-based inert liquid having a large insulating property may be used.

第19図は他の構成例を示すもので、磁場印加用コイル
(8)の鋼帯出側位置に冷却ガスをコイル内部に供給する
ためのノズル12を設け、さらに、磁場印加用コイル(8)
の上部及び下部に冷却ガス導入ダクト(15)及びフード(1
4)を設けフアン(13)により冷却ガスをコイル外側に供給
するよう構成したものである。
FIG. 19 shows another configuration example, in which a magnetic field applying coil is used.
A nozzle 12 for supplying cooling gas into the coil is provided at the steel strip exit side position of (8), and further a magnetic field applying coil (8)
The cooling gas introduction duct (15) and the hood (1
4) is provided and the cooling gas is supplied to the outside of the coil by the fan (13).

第20図は第16図ないし第18図に示す方式の装置に
おいて、磁場印加用コイル(8)の間隔(銅管の間隔)を
鋼帯(S)の入側から出側にかけて順次或いは段階的に密
にすることにより均一な冷却と磁場冷却効果の向上を図
るようにしたものである。すなわち、冷却体たるコイル
が密であるほど鋼帯の冷却速度が大きく、このため、こ
のようなコイル内で鋼帯(S)を通板させることにより、
同図に示すように鋼帯(S)を一定速度で冷却することが
可能であり、これによつて板厚方向に均一な冷却を行う
ことができ、この結果変態をスムースに移行させ優れた
磁気特性が得られる。また、コイルが密であるほど鋼帯
に強磁場をかけることができるが、上述したように、鋼
帯はキユーリー点以下の低温域、特にA2変態点で磁場の
影響を強く受けるものであり、このため低温側でコイル
を密にし、少なくとも上記A2変態通過時に強磁場をかけ
ることにより大きな磁場中冷却効果を得ることができ
る。
FIG. 20 shows the apparatus of the system shown in FIGS. 16 to 18 in which the intervals of the magnetic field applying coils (8) (intervals of copper pipes) are sequentially or stepwise from the entrance side to the exit side of the steel strip (S). By making it dense, the uniform cooling and the improvement of the magnetic field cooling effect are achieved. That is, the denser the coil as the cooling body, the higher the cooling rate of the steel strip. Therefore, by passing the steel strip (S) through such a coil,
As shown in the figure, it is possible to cool the steel strip (S) at a constant rate, which enables uniform cooling in the plate thickness direction, and as a result, the transformation is smoothly transferred, which is excellent. Magnetic properties are obtained. Further, the denser the coil, the stronger the magnetic field can be applied to the steel strip, but as described above, the steel strip is strongly affected by the magnetic field in the low temperature region below the Curie point, especially at the A 2 transformation point. Therefore, a large cooling effect in a magnetic field can be obtained by making the coil dense on the low temperature side and applying a strong magnetic field at least when passing through the A 2 transformation.

なお場合によつては、上記とは逆に磁場印加用コイル
(8)の間隔を鋼帯(S)の入側で密にし、出側に向つて順
次疎にするような構造を採ることもできる。このような
構造では、鋼帯の急冷が可能であり、また少なくとも鋼
帯がA2変態点を通過するまでコイルを比較的密なものと
しておくことにより、大きな磁場中冷却効果も確保する
ことができる。
In some cases, contrary to the above, the magnetic field applying coil
It is also possible to adopt a structure in which the intervals of (8) are made closer on the inlet side of the steel strip (S) and are gradually reduced toward the outlet side. With such a structure, the steel strip can be rapidly cooled, and a large magnetic field cooling effect can be secured by keeping the coil relatively dense at least until the steel strip passes the A 2 transformation point. it can.

さらに本発明では、このような磁場中冷却の前または
後、若しくは途中において鋼帯(S)を200〜600℃の温間
状態で圧延により塑性加工する。
Further, in the present invention, the steel strip (S) is plastically worked by rolling in a warm state of 200 to 600 ° C. before, after, or during such cooling in a magnetic field.

上述したようにCVD処理では蒸着反応により鋼帯面の
FeがFeCl2 の形で放散され、その分板厚が減少すること
になるが、CVD処理炉(2)内での雰囲気ガス濃度分布
の不均一によりSi蒸着が不均一になり易く、このため、
CVD処理−拡散処理後の鋼帯(S)は幅方向、長手方向
で板厚にバラツキを生じている。そこで本発明では温間
状態にある鋼帯(S)に圧延(スキンパス圧延または通常
圧延)を施すことにより、板厚を均一化するものであ
り、かかる圧延により形状矯正と表面粗さの調整も合せ
て行うことができる。なお、圧延はスキンパス圧延のよ
うな軽圧下ではなく、板厚の減少を目的としてより大き
な圧下量(通常の圧延)で行つてもよい。本発明は高珪
素鋼帯を製造対象とするもので、このため鋼帯(S)の温
度が200〜600℃の温間状態で圧延を行う。すなわち鋼帯
温度が200℃未満では所望の塑性加工性が得られな
い。
As described above, in the CVD process, the vapor deposition reaction causes
Fe is diffused in the form of FeCl 2 and the plate thickness is reduced accordingly, but due to the non-uniform atmosphere gas concentration distribution in the CVD processing furnace (2), Si deposition is likely to be non-uniform. ,
The steel strip (S) after the CVD treatment-diffusion treatment has variations in the plate thickness in the width direction and the longitudinal direction. Therefore, in the present invention, the steel strip (S) in the warm state is subjected to rolling (skin pass rolling or normal rolling) to make the plate thickness uniform, and such rolling also corrects the shape and adjusts the surface roughness. It can be done together. Note that the rolling may be performed with a larger amount of reduction (normal rolling) for the purpose of reducing the plate thickness, instead of light reduction such as skin pass rolling. The present invention is intended for production of high-silicon steel strips, and therefore rolling is performed in a warm state where the temperature of the steel strip (S) is 200 to 600 ° C. That is, if the steel strip temperature is less than 200 ° C, desired plastic workability cannot be obtained.

この圧延による塑性加工は、前記磁場中冷却の前または
後、若しくは途中のいずれで行つてもよい。前述したよ
うに、磁場中冷却は、鋼帯温度がA2変態点(6.5%Si鋼
の場合には約300℃)を通過する際に磁場を印加してお
くことにより磁気特性向上効果が特に大きい性質があ
り、したがつて冷却過程において鋼帯温度が少なくとも
このA2変態点を通過する際に磁場中冷却が行われるよ
う、磁場中冷却と圧延による塑性加工を組み合せること
が好ましい。両処理の組み合せとしては、例えば次のよ
うなものが考えられる。
This plastic working by rolling may be performed before, after, or during the cooling in the magnetic field. As described above, magnetic field cooling is particularly effective in improving magnetic properties by applying a magnetic field when the strip temperature passes the A 2 transformation point (about 300 ° C for 6.5% Si steel). Therefore, it is preferable to combine the magnetic field cooling and the plastic working by rolling so that the magnetic field cooling is performed when the steel strip temperature passes at least this A 2 transformation point in the cooling process. The following may be considered as a combination of both processes.

鋼帯(S)は通常、常温ないし300℃までの温間状態で
巻取られ、一般にSi含有量が多く(例えば4.0%以
上)、板厚が比較的厚い鋼帯は温間で捲取ることが好ま
しく、この場合には上記、、のように、磁場中冷
却、圧延後、温間状態で捲取られる。
The steel strip (S) is usually wound in a warm state from room temperature to 300 ° C. Generally, a steel strip having a high Si content (for example, 4.0% or more) and a relatively thick plate is wound in the warm state. In this case, it is preferable to wind the film in a warm state after cooling in a magnetic field and rolling as described above.

第3図は磁場中冷却及び圧延による塑性加工を行うため
の冷却炉の具体的な構造例を示すもので、冷却炉(4)の
途中には中間室(16)が設けられ、この中間室(16)にスキ
ンパスミル(17)が配設されている。この中間室前段の前
部冷却室(41)内には磁場印加用コイル(8)が配設されて
いる。このような設備により、例えば上記、の工程
を実施する場合、拡散炉(3)を出た鋼帯(S)は冷却炉(4)
の前部冷却室(41)で所定の温度まで冷却された後、引き
続き磁場印加用コイル(8)中を通板することにより温間
状態まで磁場中冷却され、次いで中間室(16)のスキンパ
スミル(17)で圧延され、最終冷却されることなく温間状
態でそのまま捲取られるか、或いは引き続き後部冷却室
(42)で室温まで冷却された後、捲取られる。
FIG. 3 shows a concrete structural example of a cooling furnace for performing plastic working by cooling in a magnetic field and rolling. An intermediate chamber (16) is provided in the middle of the cooling furnace (4). A skin pass mill (17) is provided at (16). A magnetic field applying coil (8) is arranged in the front cooling chamber (41) at the front stage of the intermediate chamber. With such equipment, for example, when performing the above steps, the steel strip (S) exiting the diffusion furnace (3) is a cooling furnace (4).
After being cooled to a predetermined temperature in the front cooling chamber (41), it is cooled in the magnetic field to a warm state by continuously passing through the magnetic field applying coil (8), and then the skin pass of the intermediate chamber (16). It is rolled in a mill (17) and wound in the warm state as it is without final cooling, or it is continuously cooled in the rear cooling chamber.
After being cooled to room temperature in (42), it is wound up.

なお、実ラインにおいてはミルの上流に板厚計、プロフ
イル計を設け、これによる板厚、板形状の検出に基づき
ミルが制御される。
In the actual line, a plate thickness meter and a profile meter are provided upstream of the mill, and the mill is controlled based on the detection of the plate thickness and plate shape.

また本発明では、上記拡散処理−冷却及び圧延による塑
性加工後、鋼帯に連続的に絶縁被膜コーテイングを施
し、焼付処理後捲取るようにすることができる。第2図
はこのための連続処理ラインを示すもので、(6)はコー
テイング装置、(7)は焼付炉である。
Further, in the present invention, after the plastic treatment by the diffusion treatment-cooling and rolling, the steel strip may be continuously coated with an insulating coating, and the steel strip may be wound after the baking treatment. FIG. 2 shows a continuous processing line for this purpose. (6) is a coating device and (7) is a baking furnace.

電磁鋼板は通常積層状態で使用され、この場合積層され
る各鋼板はそれぞれ絶縁される必要がある。このため電
磁鋼板には絶縁皮膜コーテイングが施される。
Electromagnetic steel sheets are usually used in a laminated state, and in this case, each laminated steel sheet needs to be insulated. Therefore, the electrical steel sheet is coated with an insulating film.

Si含有量が4.0%以上の鋼帯は、常温状態ではぜい性
材料であり、ほとんど塑性変形しない。このため絶縁皮
膜コーテイングをCVD処理ラインと別ラインで行つた場
合、コイルの捲戻し、捲取り時に鋼帯が破断するおそれ
がある。そこで、本発明は拡散処理−冷却及び圧延によ
る塑性加工後、鋼帯(S)にコーテイング装置(6)で絶縁
塗料を塗布し、次いで塗装焼付炉(7)で焼付処理する。
A steel strip having a Si content of 4.0% or more is a brittle material at room temperature and hardly plastically deforms. For this reason, when the insulating film coating is performed on a line different from the CVD processing line, the steel strip may be broken when the coil is unwound or wound. Therefore, in the present invention, after the plastic processing by diffusion treatment-cooling and rolling, the steel strip (S) is coated with the insulating coating material by the coating device (6) and then baked by the coating baking furnace (7).

絶縁塗料としては、無機系、有機系の適宜なものを用い
ることができる。無機系塗料としては、例えばリン酸マ
グネシウム、無水クロム酸、シリカゾル等が、また有機
系塗料としてはプラスチツク樹脂等が用いられる。塗料
はロールコータ方式、スプレー方式等により鋼帯(S)に
塗布され、無機系塗料の場合には約800℃程度、有機
系塗料の場合には 200〜300℃程度で焼付処理する。
As the insulating coating material, an appropriate inorganic or organic coating material can be used. As the inorganic paint, for example, magnesium phosphate, chromic anhydride, silica sol and the like are used, and as the organic paint, plastic resin and the like are used. The paint is applied to the steel strip (S) by a roll coater method, a spray method or the like, and is baked at about 800 ° C for the inorganic paint and about 200 to 300 ° C for the organic paint.

以上のような絶縁被膜コーテイング−焼付処理を行う場
合、磁場中冷却を行う時期が問題となる。すなわち、コ
ーテイング後の焼付処理では塗膜を700℃以上の高温
で焼付ける場合があり、このように高温焼付を行うと、
仮に前工程たるCVD処理−拡散処理後の冷却において
磁場中冷却を行つてもその効果が消失してしまう。
In the case of performing the above-mentioned insulating film coating-baking treatment, the timing of cooling in a magnetic field becomes a problem. That is, in the baking treatment after coating, the coating film may be baked at a high temperature of 700 ° C. or higher.
Even if the cooling in the magnetic field is performed in the cooling after the CVD process-diffusion process which is the previous process, the effect disappears.

したがつて絶縁被膜コーテイング−焼付処理を伴う工程
では、磁場中冷却を、塗装焼付温度等に応じ、拡散処理
後の冷却過程または焼付処理後の冷却過程で行うことが
できる。磁場中冷却の効果が消失する再加熱温度は約6
50℃前後とされており、このため焼付処理温度が65
0℃以上の場合には焼付処理後の冷却過程で、また焼付
処理温度が650℃未満の場合にはCVD処理−拡散処
理後の冷却過程でそれぞれ磁場冷却を行うようにするこ
とが好ましい。
Therefore, in the process involving the insulating film coating-baking process, the cooling in the magnetic field can be performed in the cooling process after the diffusion process or the cooling process after the baking process depending on the coating baking temperature and the like. The reheating temperature at which the effect of cooling in a magnetic field disappears is about 6
It is said to be around 50 ° C, so the baking temperature is 65
When the temperature is 0 ° C. or higher, it is preferable to perform magnetic field cooling in the cooling process after the baking treatment, and when the baking temperature is less than 650 ° C., in the cooling process after the CVD treatment-diffusion treatment.

一般に、無機系塗料を焼付ける場合には、鋼帯を800
℃程度まで加熱し、したがつてこの場合にはコーテイン
グ前に磁場中冷却しても意味がなく、焼付処理後の冷却
過程で磁場冷却することが好ましい。また有機系塗料の
場合には200℃〜300℃程度の焼付温度で済み、この場合
にはCVD処理−拡散処理後の冷却過程で磁場中冷却を
実施することができる。
Generally, when baking an inorganic paint, a steel strip is
Therefore, there is no point in heating in a magnetic field before coating in order to heat up to about 0 ° C. Therefore, it is preferable to cool the magnetic field in the cooling process after the baking treatment. Further, in the case of an organic paint, a baking temperature of about 200 ° C. to 300 ° C. is sufficient, and in this case, cooling in a magnetic field can be carried out in the cooling process after the CVD treatment-diffusion treatment.

また、磁場冷却は、場合によつてはCVD処理−拡散処
理後の冷却過程とコーテイング−焼付処理後の冷却過程
の両方で行うことができる。
In some cases, the magnetic field cooling can be performed both in the CVD process-the cooling process after the diffusion process and in the cooling process after the coating-baking process.

このような絶縁皮膜コーテイング−焼付処理を伴う連続
プロセスにおける磁場中冷却と圧延による塑性加工の組
み合せとしては、例えば次のようなものが考えられる。
As a combination of cooling in a magnetic field and plastic working by rolling in a continuous process involving such insulating film coating-baking treatment, for example, the following is conceivable.

CVD処理速度を鋼帯の連続処理を可能ならしめるまで
高めるには、上述したように雰囲気ガス中のSiCl4 濃度
と処理温度の適正化を図ることが必要であるが、これに
加え鋼帯表面へのSiCl4 拡散とFeCl2 の鋼帯表面からの
放散とを促進することによりCVD処理速度をより高め
ることが可能となる。
In order to increase the CVD processing rate to the extent that continuous processing of steel strips is possible, it is necessary to optimize the concentration of SiCl 4 in the atmospheric gas and the processing temperature as described above. By promoting the diffusion of SiCl 4 into the steel strip and the emission of FeCl 2 from the surface of the steel strip, the CVD processing rate can be further increased.

従来では、CVD処理で反応ガスを大きく流動させる
と、蒸着層にボイドが発生し、また蒸着層の純度も低下
するとされ、このためガス流動は必要最小限にとどめる
という考え方が定着していた。しかし本発明者等の研究
では、このようにガス流動が抑えられることにより、反
応ガスの母材界面への拡散移動、及び反応副生成物の界
面表層からの離脱がスムースに行われず、このため処理
に長時間を要すること、さらにはガス流動が抑えられる
ためCVD処理炉内の反応ガス濃度に分布を生じ、この
結果蒸着膜厚の不均一化を招くことが判つた。
In the past, when a reaction gas was largely flowed in the CVD process, voids were generated in the vapor deposition layer and the purity of the vapor deposition layer was also lowered. Therefore, the idea that the gas flow should be kept to the minimum necessary was established. However, in the study by the present inventors, by suppressing the gas flow in this way, the diffusion transfer of the reaction gas to the base material interface and the separation of the reaction by-product from the interface surface layer are not smoothly performed, and therefore, It has been found that the processing requires a long time, and further, the gas flow is suppressed, so that the reaction gas concentration in the CVD processing furnace is distributed, resulting in nonuniform deposition film thickness.

そして、このような事実に基づきさらに検討を加えた結
果、CVD処理炉において吹込ノズルにより雰囲気ガス
を被処理材に吹付け、或いはフアン等により雰囲気を強
制循環させることによりSiCl4 の鋼帯表面への拡散及び
反応生成物たるFeCl2 の鋼帯表面からの放散を着しく促
進、高い蒸着速度でしかも蒸着膜の不均一化を抑えつつ
CVD処理できることが判つた。
As a result of further investigation based on such facts, in the CVD processing furnace, the atmosphere gas is blown to the material to be treated by the blowing nozzle, or the atmosphere is forcedly circulated by the fan or the like to the SiCl 4 steel strip surface. It has been found that the CVD process can be carried out at a high deposition rate while suppressing the non-uniformity of the deposited film, while promoting the diffusion of FeCl 2 and the diffusion of FeCl 2 as a reaction product from the surface of the steel strip.

このようなCVD処理性の向上は、吹付ノズルにより雰
囲気ガスを鋼帯表面に吹付ける方法が特に有効である。
第5図はこのノズル吹付方式による実施状況を示すもの
で、CVD処理炉(2)内に鋼帯(S)に面して吹付ノズル
(5)が配置され、鋼帯表面にSiCl4 を含む雰囲気ガスが
吹付けられる。第6図(イ)及び(ロ)は、吹付ノズル(5)に
よる吹付状況を示すもので、(イ)に示すように鋼帯面に
対して直角に、或いは(ロ)に示すように斜め方向から吹
付けることができる。
In order to improve the CVD processability as described above, it is particularly effective to spray atmospheric gas onto the surface of the steel strip with a spray nozzle.
Fig. 5 shows the state of implementation by this nozzle spraying method. The spray nozzle facing the steel strip (S) in the CVD processing furnace (2).
(5) is arranged, and the atmosphere gas containing SiCl 4 is sprayed on the surface of the steel strip. Figures 6 (a) and (b) show the spraying situation by the spray nozzle (5), which is perpendicular to the steel strip surface as shown in (a) or diagonally as shown in (b). Can be sprayed from any direction.

このようなノズル吹付による単位時間当りのSi富化割合
は、ガスの鋼帯表面に対する衝突流速の増大に比例して
大きくなるが、流速を過剰に大きくしても界面における
反応律速となるためそれ以上のSi富化効果は期待できな
い。一般的には5Nm/sec以上の流速で十分な効果が得ら
れる。
The Si enrichment rate per unit time due to such nozzle spraying increases in proportion to the increase in the collision flow velocity of the gas with respect to the steel strip surface.However, even if the flow velocity is excessively increased, the reaction rate is limited at the interface. The above Si enrichment effect cannot be expected. Generally, a sufficient effect can be obtained at a flow rate of 5 Nm / sec or more.

なお、前記加熱炉(1)では無酸化加熱が行われるもので
あり、このため電気間接加熱、誘導加熱、ラジアントチ
ユーブ間接加熱、直火還元加熱等の加熱方式を単独また
は適当に組み合せた加熱方法が採られる。なお、間接加
熱方式を採る場合、加熱に先立ち電気洗浄等の前処理が
行われる。前処理を含めた加熱方式として例えば次のよ
うなものを採用できる。
In the heating furnace (1), non-oxidative heating is performed, and therefore, heating methods such as electric indirect heating, induction heating, radiant tube indirect heating, and direct heating reduction heating are used alone or in an appropriate combination. Is taken. When the indirect heating method is adopted, pretreatment such as electric cleaning is performed before heating. As a heating method including pretreatment, for example, the following one can be adopted.

前処理−〔予熱〕−電気間接加熱(または誘導加熱) 前処理−〔予熱〕−ラジアントチユーブ加熱−電気間
接加熱(または誘導加熱) 〔予熱〕−直火還元加熱−電気間接加熱(または誘導
加熱) 前処理−〔予熱〕−ラジアントチユーブ間接加熱(セ
ラミツクラジアントチユーブ方式) 〔予熱〕−直火還元加熱 また、冷却炉(4)での冷却方式に特に限定はなくガスジ
エツト冷却、ミスト冷却、放射冷却等の各種冷却方式を
単独または組合せた形で採用することができる。
Pretreatment- [Preheating] -Electrical indirect heating (or induction heating) Pretreatment- [Preheating] -Radiant tube heating-Electrical indirect heating (or induction heating) [Preheating] -Open flame reduction heating-Electrical indirect heating (or induction heating) ) Pretreatment- [Preheating] -Radiant tube indirect heating (ceramics radiant tube method) [Preheating] -Direct flame reduction heating There is no particular limitation on the cooling method in the cooling furnace (4), gas jet cooling, mist cooling, radiant cooling. Various cooling methods such as the above can be used alone or in combination.

本発明は、6.5%Si鋼帯のような珪素含有量が極めて高
い鋼帯の製造に好適なものであることは以上述べた通り
であるが、従来、圧延法で製造する場合に変形が多く歩
留りが悪かつたSi:2〜4%程度の高珪素鋼帯も容易に
製造できる利点がある。
As described above, the present invention is suitable for the production of steel strips having an extremely high silicon content such as 6.5% Si steel strip. There is an advantage that a high silicon steel strip having a poor yield of Si: 2 to 4% can be easily manufactured.

〔実施例〕 実施例−1 小型のCVD処理炉−拡散処理炉を用い、CVD処理性
に対するSiCl4 濃度及びCVD処理温度の影響を調べ
た。その結果を第7図及び第8図に示す。
EXAMPLES Example -1 small CVD processing furnace - using diffusion treatment furnace, were examined effects of SiCl 4 concentration and CVD processing temperatures for CVD processing properties. The results are shown in FIGS. 7 and 8.

図中、Aが雰囲気法、すなわちノズル吹付を行わないで
CVD処理した場合、またBがノズル吹付法、すなわち
第5図に示すように雰囲気ガスを鋼帯面に0.5m/sの流
速で吹き付けつつCVD処理した場合を示す。なお、Si
富化割合とは、母材当初のSi濃度に対するCVD処理−
拡散処理後のSi増加分を示す。
In the figure, A is the atmosphere method, that is, the CVD process is performed without nozzle spraying, and B is the nozzle spraying method, that is, the atmosphere gas is sprayed on the steel strip surface at a flow rate of 0.5 m / s as shown in FIG. A case where the CVD process is performed while being shown. Note that Si
The enrichment ratio means the CVD process for the initial Si concentration of the base material.
The increase in Si after the diffusion treatment is shown.

これによれば、SiCl4 濃度5%以上、CVD処理温度10
23℃以上において大きなSi富化効果が得られている。
また同じ条件でも、吹付ノズルにより雰囲気ガスを吹付
ける方法の場合、単に雰囲気中で鋼帯を通板せしめる場
合に較べ格段に優れたSi富化効果(CVD処理性)が得
られていることが判る。
According to this, the SiCl 4 concentration is 5% or more, the CVD processing temperature is 10%.
A large Si enrichment effect is obtained at 23 ° C or higher.
Even under the same conditions, the method of spraying the atmospheric gas with the spray nozzle can obtain a significantly superior Si enrichment effect (CVD processability) as compared with the case of simply passing the steel strip in the atmosphere. I understand.

第9図は同様のCVD処理炉−拡散処理炉を用い、雰囲
気法Aとノズル吹付法Bの蒸着時間と鋼帯中Si濃度(拡
散処理後のSi濃度)との関係を、Si:3%、板厚 0.5mm
の鋼帯をSiCl4 濃度21%、処理温度1150℃でCVD処理
した場合について調べたものである。なお、ノズル吹付
法では、スリツトノズルにより鋼帯に対し垂直方向から
0.2Nm/sec の流速で雰囲気ガスを吹付けた。同図から
判るように、 6.5%Si鋼とするために雰囲気法Aでは7
分かかるのに対し、ノズル吹付法Bでは1.5分で処理す
ることができた。
FIG. 9 shows the relationship between the vapor deposition time and the Si concentration in the steel strip (Si concentration after diffusion treatment) in atmosphere method A and nozzle spraying method B using the same CVD treatment furnace-diffusion treatment furnace. , Board thickness 0.5mm
This is a case where the steel strip was subjected to CVD treatment at a SiCl 4 concentration of 21% and a treatment temperature of 1150 ° C. In the nozzle spray method, the slit nozzle is used to move the steel strip from the vertical direction.
Atmospheric gas was blown at a flow rate of 0.2 Nm / sec. As can be seen from the figure, it is 7 in the atmosphere method A in order to make 6.5% Si steel.
It took about 1.5 minutes, but in the nozzle spray method B, processing could be completed in 1.5 minutes.

第10図はノズル吹付法における衝突ガス流速と鋼帯の
Si富化割合(拡散処理後の割合)との関係を示すもので
あり、所定レベルまでは衝突ガス流速に比例して鋼帯の
Si富化割合が増大している。
Fig. 10 shows the collision gas velocity and steel strip in the nozzle spray method.
It shows the relationship with the Si enrichment ratio (proportion after diffusion treatment). Up to a predetermined level, it is proportional to the collision gas flow velocity
The Si enrichment ratio is increasing.

実施例−2 第1図に示す連続プロセスで板厚 0.35mm、板幅 900m
m、Si 3.5%含有鋼帯を母材とし、ラインスピード25mpm
でSi: 6.5%含有鋼帯を製造した。なお、冷却炉では
磁場中冷却を実施し、またCVD処理炉では、吹付ノズ
ル方式によりArをキヤリアガスとしたSiCl4 濃度20mo
l %の雰囲気ガスを、鋼板に対し0.3Nm/secのガス流速
で吹き付けた。第11図はこの場合の熱サイクルを示す
もので、本実施例では拡散処理時に1200℃から1320℃の
2段昇熱を実施した。この結果、W10/50:0.55W/Kgとい
う極めて低鉄損の良質な6.5 %Si鋼帯を製造できた。
Example-2 In the continuous process shown in FIG. 1, the plate thickness is 0.35 mm and the plate width is 900 m.
m, Si 3.5% steel strip as base material, line speed 25mpm
Then, a steel strip containing Si: 6.5% was manufactured. In the cooling furnace, cooling is performed in a magnetic field, and in the CVD processing furnace, a SiCl 4 concentration of 20 mo is used with Ar as a carrier gas by a spray nozzle method.
l% atmosphere gas was blown onto the steel sheet at a gas flow rate of 0.3 Nm / sec. FIG. 11 shows a thermal cycle in this case, and in this example, two-stage heating from 1200 ° C. to 1320 ° C. was performed during the diffusion treatment. As a result, a good quality 6.5% Si steel strip with an extremely low iron loss of W 10/50 : 0.55 W / Kg could be manufactured.

実施例−3 CVD処理−拡散処理後の鋼帯をその冷却過程で磁場冷
却し、その磁気特性を調べた。第21図はその結果を示
すもので、図中が磁場冷却をかけない場合、が均等
ピツチで巻き付けたコイルにより30Oeの磁場をかけた
場合、が第20図に示す装置により同図に示すように
段階的に磁場を強くして磁場冷却した場合をそれぞれ示
しており、特にA2変態点通過前後に強磁場がかかるよう
にした第20図の方式により磁場冷却を実施することに
より極めて優れた磁気特性が得られていることが判る。
Example 3 A steel strip after the CVD treatment-diffusion treatment was subjected to magnetic field cooling in the cooling process, and its magnetic characteristics were investigated. FIG. 21 shows the results. In the figure, when the magnetic field cooling is not applied, is applied when a magnetic field of 30 Oe is applied by the coil wound with the uniform pitch, as shown in the same figure by the device shown in FIG. In each case, the magnetic field is strengthened in a stepwise manner and the magnetic field is cooled. In particular, the magnetic field cooling is performed by the method of FIG. 20 in which a strong magnetic field is applied before and after passing through the A 2 transformation point. It can be seen that magnetic characteristics are obtained.

実施例−4 第1図に示す連続プロセスに第3図のスキンパスミルを
組み込んだプロセスラインにおいて、板厚 0.33mmのSi
3.5%含有鋼帯を母材とし、25 mpmのラインスピード
により、目標板厚0.30 mm、幅900 mmのSi 6.5%含有鋼
帯を製造した。この際、次の4条件によりそれぞれ鋼帯
を製造した。
Example-4 In a process line in which the skin pass mill shown in FIG. 3 was incorporated in the continuous process shown in FIG. 1, a Si plate having a thickness of 0.33 mm was used.
Using a 3.5% steel strip as a base metal, a 6.5 mm Si steel strip having a target plate thickness of 0.30 mm and a width of 900 mm was manufactured at a line speed of 25 mpm. At this time, steel strips were manufactured under the following four conditions.

A)CVD処理を、Ar80%、SiCl4 20%の雰囲気中
で実施し、スキンパス圧延を実施しない。
A) The CVD treatment is performed in an atmosphere of Ar 80% and SiCl 4 20%, and skin pass rolling is not performed.

B)A)と同様のCVD処理を行いスキンパス圧延を実
施。
B) The same CVD process as in A) was performed and skin pass rolling was performed.

C)CVD処理を、Ar80%、SiCl4 20%の反応ガス
をノズル吹付法で鋼帯に対し0.3Nm/Sのガス流速で衝
突させることにより実施し、スキンパス圧延を実施しな
い。
C) The CVD process is performed by causing a reaction gas of 80% Ar and 20% SiCl 4 to collide with a steel strip at a gas flow rate of 0.3 Nm / S by a nozzle spraying method, and does not perform skin pass rolling.

D)CVD処理をC)と同様に行い、スキンパス圧延を
実施。
D) CVD treatment is performed in the same manner as C), and skin pass rolling is performed.

第1表は、これらの各ケースのサンプルについて板厚偏
差(目標板厚に対する増減)及び表面粗さを測定した結
果を示したもので、スキンパス圧延を実施することによ
り板厚が精度良く均一化していることが判る。
Table 1 shows the results of measuring the plate thickness deviation (increase / decrease with respect to the target plate thickness) and the surface roughness of the samples in each of these cases. By performing skin pass rolling, the plate thickness was made uniform with high accuracy. You can see that

〔発明の効果〕 以上述べた本発明によれば連続ラインにおいて短時間で
CVD処理を行うことができ、また1200℃以下の温度で
CVD処理を行うため鋼帯の形状不良やエツジ部溶解等
の問題を生じさせることがなく、しかも優れた磁気特性
を有し且つ板厚が均一な鋼板を得ることができ、このよ
うなことから、ラインの長大化を招くことなく高品質、
高磁気特性の高珪素鋼板を能率的に製造することができ
る。
[Advantages of the Invention] According to the present invention described above, the CVD process can be carried out in a short time in a continuous line, and the CVD process is carried out at a temperature of 1200 ° C. or less. It is possible to obtain a steel sheet that does not cause a problem, has excellent magnetic characteristics, and has a uniform plate thickness, and as a result, high quality without increasing the length of the line,
It is possible to efficiently manufacture a high silicon steel sheet having high magnetic characteristics.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図はそれぞれ本発明法を実施するための
連続処理ラインを示す説明図である。第3図は第1図及
び第2図における冷却炉の具体的構成例を示す説明図で
ある。第4図はFe−Si系状態図である。第5図及び第6
図(イ)、(ロ)はノズル吹付方式によるCVD処理状況を示
すもので、第5図は全体説明図、第6図(イ)及び(ロ)はそ
れぞれノズル吹付方法を示す説明図である。第7図はC
VD処理におけるガス中SiCl4 濃度と鋼帯Si富化割合と
の関係、第8図はCVD処理温度と鋼帯Si富化割合との
関係をそれぞれ示すものである。第9図は本発明におけ
るSi蒸着時間と鋼帯中Si濃度との関係を、雰囲気法及び
ノズル吹付法で比較して示したものである。第10図は
ノズル吹付法によるCVD処理において、雰囲気ガスの
鋼帯に対する衝突ガス流速と鋼帯Si富化割合との関係を
示すものである。第11図は本発明実施例における熱サ
イクルを示すものである。第12図ないし第14図は本
発明材及び比較材たる鋼帯断面の金属組織を示す顕微鏡
拡大写真であり、第12図はSiCl4 :20%の雰囲気で
CVD処理した直後の組織、第13図はその鋼帯を拡散
熱処理した後の組織、第14図はSiCl4 :40%でCV
D処理し、その後拡散処理した後の組織を示している。
第15図は珪素鋼板の板温と磁場中冷却効果との関係を
示すものである。第16図ないし第18図は磁場中冷却
設備の一構成例を示すもので、第16図は斜視図、第1
7図はコイルの断面図、第18図はコイルを構成する銅
管の断面図である。第19図は磁場中冷却設備の他の構
成例を示す説明図である。第20図は磁場中冷却の好ま
しい設備及びこれによる磁場中冷却方法を示す説明図で
ある。第21図は磁場冷却した場合の磁気特性を、単純
冷却の場合と比較して示すものである。 図において、(1)は加熱炉、(2)はCVD処理炉、(3)は
拡散処理炉、(4)は冷却炉、(6)はコーテイング装置、
(7)は焼付炉、(8)は磁場印加用コイル、(9)はスキンパ
スミル、(S)は鋼帯である。
1 and 2 are explanatory views showing continuous processing lines for carrying out the method of the present invention. FIG. 3 is an explanatory view showing a specific structural example of the cooling furnace in FIGS. 1 and 2. FIG. 4 is a phase diagram of Fe-Si system. 5 and 6
FIGS. 5 (a) and 5 (b) show the state of the CVD process by the nozzle spraying method, FIG. 5 is an overall explanatory view, and FIGS. 6 (a) and 6 (b) are explanatory views showing the nozzle spraying method, respectively. . Figure 7 shows C
FIG. 8 shows the relationship between the SiCl 4 concentration in the gas and the Si enrichment ratio in the steel strip in the VD process, and FIG. 8 shows the relationship between the CVD treatment temperature and the Si enrichment ratio in the steel strip. FIG. 9 shows the relationship between the Si deposition time and the Si concentration in the steel strip in the present invention by comparing the atmosphere method and the nozzle spraying method. FIG. 10 shows the relationship between the collision gas flow velocity of the atmospheric gas with respect to the steel strip and the Si enrichment ratio of the steel strip in the CVD process by the nozzle spraying method. FIG. 11 shows the heat cycle in the example of the present invention. 12 to 14 are enlarged microscopic photographs showing the metal structures of the steel strip cross sections of the present invention material and the comparative material, and FIG. 12 is the structure immediately after the CVD treatment in the atmosphere of SiCl 4 : 20%, The figure shows the microstructure of the steel strip after diffusion heat treatment, and Figure 14 shows the CV at SiCl 4 : 40%.
It shows the tissue after D treatment and then diffusion treatment.
FIG. 15 shows the relationship between the plate temperature of a silicon steel plate and the cooling effect in a magnetic field. 16 to 18 show an example of the structure of a cooling facility in a magnetic field, and FIG. 16 is a perspective view, FIG.
FIG. 7 is a sectional view of the coil, and FIG. 18 is a sectional view of a copper tube forming the coil. FIG. 19 is an explanatory diagram showing another configuration example of the magnetic field cooling equipment. FIG. 20 is an explanatory view showing a preferable facility for cooling in a magnetic field and a method for cooling in a magnetic field using the facility. FIG. 21 shows the magnetic characteristics in the case of magnetic field cooling in comparison with the case of simple cooling. In the figure, (1) is a heating furnace, (2) is a CVD processing furnace, (3) is a diffusion processing furnace, (4) is a cooling furnace, (6) is a coating device,
(7) is a baking furnace, (8) is a magnetic field applying coil, (9) is a skin pass mill, and (S) is a steel strip.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C23C 16/54 7325−4K (56)参考文献 特公 昭45−21181(JP,B1) 特公 昭47−25564(JP,B1) 特公 昭53−42019(JP,B2)─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI technical display location C23C 16/54 7325-4K (56) References JP-B-45-21181 (JP, B1) JP-B Sho 47-25564 (JP, B1) Japanese Patent Sho 53-42019 (JP, B2)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】鋼帯を無酸化性ガス雰囲気中で連続的に通
板させつつ、SiCl4をmol分率で5〜35%含んだ無
酸化性ガスを吹付ノズルから鋼帯面に吹き付けて102
3〜1200℃の温度で連続的に滲珪処理し、次いで、
SiCl4を含まない無酸化性ガス雰囲気中でSiを鋼
帯内部に略均一に拡散させる拡散処理を施し、続く冷却
過程において鋼帯を磁場中冷却するとともに、該磁場中
冷却の前または後若しくは途中において、鋼帯を200
〜600℃で圧延により塑性加工することを特徴とする
連続ラインにおける高珪素鋼帯の製造方法。
1. A non-oxidizing gas containing SiCl 4 in a mole fraction of 5 to 35% is sprayed onto a steel strip surface from a spraying nozzle while continuously passing the steel strip in an non-oxidizing gas atmosphere. 102
Continuous silicidation at a temperature of 3 to 1200 ° C., then
A diffusion treatment for diffusing Si substantially uniformly inside the steel strip is performed in a non-oxidizing gas atmosphere containing no SiCl 4 , and the steel strip is cooled in a magnetic field in the subsequent cooling process, before or after the cooling in the magnetic field, or On the way, 200 steel strips
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at a temperature of up to 600 ° C.
【請求項2】鋼帯を無酸化性ガス雰囲気中で連続的に通
板させつつ、SiCl4をmol分率で5〜35%含んだ無
酸化性ガスを吹付ノズルから鋼帯面に吹き付けて102
3〜1200℃の温度で連続的に滲珪処理し、次いで、
SiCl4を含まない無酸化性ガス雰囲気中でSiを鋼
帯内部に略均一に拡散させる拡散処理を施し、続く冷却
過程において鋼帯を磁場中冷却するとともに、該磁場中
冷却の前または後若しくは途中において、鋼帯を200
〜600℃で圧延により塑性加工し、最終冷却後、絶縁
被膜コーティング及び焼付処理することを特徴とする連
続ラインにおける高珪素鋼帯の製造方法。
2. A steel strip is continuously passed in an atmosphere of non-oxidizing gas, and non-oxidizing gas containing SiCl 4 in a mole fraction of 5 to 35% is sprayed onto the surface of the steel strip from a spray nozzle. 102
Continuous silicidation at a temperature of 3 to 1200 ° C., then
A diffusion treatment for diffusing Si substantially uniformly inside the steel strip is performed in a non-oxidizing gas atmosphere containing no SiCl 4 , and the steel strip is cooled in a magnetic field in the subsequent cooling process, before or after the cooling in the magnetic field, or On the way, 200 steel strips
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at up to 600 ° C, final cooling, followed by insulation film coating and baking treatment.
【請求項3】鋼帯を無酸化性ガス雰囲気中で連続的に通
板させつつ、SiCl4をmol分率で5〜35%含んだ無
酸化性ガスを吹付ノズルから鋼帯面に吹き付けて102
3〜1200℃の温度で連続的に滲珪処理し、次いで、
SiCl4を含まない無酸化性ガス雰囲気中でSiを鋼
帯内部に略均一に拡散させる拡散処理を施し、続く冷却
過程の途中または冷却後、鋼帯を200〜600℃で圧
延により塑性加工し、最終冷却後、絶縁被膜コーティン
グ及び焼付処理し、続く冷却過程において磁場中冷却す
ることを特徴とする連続ラインにおける高珪素鋼帯の製
造方法。
3. A steel strip is continuously passed in an atmosphere of non-oxidizing gas, and a non-oxidizing gas containing 5 to 35% of SiCl 4 in a mole fraction is sprayed onto the surface of the steel strip from a spray nozzle. 102
Continuous silicidation at a temperature of 3 to 1200 ° C., then
Diffusion treatment is performed to diffuse Si substantially uniformly inside the steel strip in a non-oxidizing gas atmosphere containing no SiCl 4 , and the steel strip is plastically worked by rolling at 200 to 600 ° C. during or after the subsequent cooling process. A method for producing a high-silicon steel strip in a continuous line, which comprises, after final cooling, insulating film coating and baking treatment, followed by cooling in a magnetic field in the subsequent cooling process.
【請求項4】鋼帯を無酸化性ガス雰囲気中で連続的に通
板させつつ、SiCl4をmol分率で5〜35%含んだ無
酸化性ガスを吹付ノズルから鋼帯面に吹き付けて102
3〜1200℃の温度で連続的に滲珪処理し、次いで、
SiCl4を含まない無酸化性ガス雰囲気中でSiを鋼
帯内部に略均一に拡散させる拡散処理を施し、続く冷却
過程において鋼帯を磁場中冷却するとともに、該磁場中
冷却の前または後若しくは途中において、鋼帯を200
〜600℃で圧延により塑性加工し、最終冷却後、絶縁
皮膜コーティング及び焼付処理し、続く冷却過程におい
て磁場中冷却することを特徴とする連続ラインにおける
高珪素鋼帯の製造方法。
4. A steel strip is continuously passed in an atmosphere of non-oxidizing gas, and a non-oxidizing gas containing SiCl 4 in a mole fraction of 5 to 35% is sprayed onto the surface of the steel strip from a spray nozzle. 102
Continuous silicidation at a temperature of 3 to 1200 ° C., then
A diffusion treatment for diffusing Si substantially uniformly inside the steel strip is performed in a non-oxidizing gas atmosphere containing no SiCl 4 , and the steel strip is cooled in a magnetic field in the subsequent cooling process, before or after the cooling in the magnetic field, or On the way, 200 steel strips
A method for producing a high silicon steel strip in a continuous line, which comprises performing plastic working by rolling at ~ 600 ° C, final cooling, insulating film coating and baking treatment, and cooling in a magnetic field in the subsequent cooling process.
JP61071488A 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line Expired - Lifetime JPH0643607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61071488A JPH0643607B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61071488A JPH0643607B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Publications (2)

Publication Number Publication Date
JPS62227032A JPS62227032A (en) 1987-10-06
JPH0643607B2 true JPH0643607B2 (en) 1994-06-08

Family

ID=13462091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61071488A Expired - Lifetime JPH0643607B2 (en) 1986-03-28 1986-03-28 Method for producing high silicon steel strip in continuous line

Country Status (1)

Country Link
JP (1) JPH0643607B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019184838A1 (en) * 2018-03-29 2019-10-03 宝山钢铁股份有限公司 Manufacturing method for high silicon grain oriented electrical steel sheet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227078A (en) * 1986-03-28 1987-10-06 Nippon Kokan Kk <Nkk> Manufacture of high silicon steel strip continuous line
JP4484710B2 (en) 2002-11-11 2010-06-16 ポスコ Silica diffusion coating composition and method for producing high silicon electrical steel sheet using the same
KR100967049B1 (en) * 2002-11-11 2010-06-29 주식회사 포스코 Method for manufacturing a high-silicon steel sheet
JP5636627B2 (en) * 2008-12-05 2014-12-10 Jfeスチール株式会社 Ultra-thin silicon steel sheet and manufacturing method thereof
CN110158062A (en) * 2018-02-12 2019-08-23 宝山钢铁股份有限公司 Strip chemical vapor deposition stove

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012686B2 (en) * 1976-09-29 1985-04-03 株式会社日立製作所 floating magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019184838A1 (en) * 2018-03-29 2019-10-03 宝山钢铁股份有限公司 Manufacturing method for high silicon grain oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS62227032A (en) 1987-10-06

Similar Documents

Publication Publication Date Title
US5089061A (en) Method for producing high silicon steel strip in a continuously treating line
JP4791482B2 (en) Continuous annealing hot dip plating method and continuous annealing hot dip plating apparatus for steel sheet containing Si
JP2008523243A5 (en)
ITRM960606A1 (en) PROCEDURE FOR THE PRODUCTION OF MAGNETIC SHEET WITH ORIENT GRAIN = TO, STARTING FROM THIN SLAB
JP4307558B2 (en) Method for producing FeCrAl ferritic stainless steel strip
AU2015349052A2 (en) Method for producing a nitrided packaging steel
JPH04232238A (en) Method for coating steel strip with aluminum by means of high temperature quenching method and steel strip obtained by said method
JPH0643607B2 (en) Method for producing high silicon steel strip in continuous line
JPH0643611B2 (en) Method for producing high silicon steel strip in continuous line
JPH0643608B2 (en) Method for producing high silicon steel strip in continuous line
JPH0643610B2 (en) Method for producing high silicon steel strip in continuous line
JPH0643609B2 (en) Method for producing high silicon steel strip in continuous line
JPH0549746B2 (en)
JPH0549747B2 (en)
JPH0465898B2 (en)
JP4016756B2 (en) Method for producing grain-oriented electrical steel sheet
JPH0549743B2 (en)
JP3449310B2 (en) Method for producing hot-rolled steel sheet with excellent pickling properties and uniformity of coil material
JP2006307296A (en) Method for continuously heat-treating metallic strip and horizontal continuous heat treating furnace
JPS6326355A (en) Production of metallic material
JPH0549744B2 (en)
JP4448287B2 (en) Method for forming insulating coating on unidirectional electrical steel sheet
JP3289632B2 (en) Manufacturing method and equipment for high silicon steel strip with excellent flatness
JPH028360A (en) Manufacture of enameling sheet
CN114423877A (en) Method for producing grain-oriented electromagnetic steel sheet