JPH02215010A - Insulated electric wire - Google Patents

Insulated electric wire

Info

Publication number
JPH02215010A
JPH02215010A JP1034526A JP3452689A JPH02215010A JP H02215010 A JPH02215010 A JP H02215010A JP 1034526 A JP1034526 A JP 1034526A JP 3452689 A JP3452689 A JP 3452689A JP H02215010 A JPH02215010 A JP H02215010A
Authority
JP
Japan
Prior art keywords
layer
aluminum
sol
gel method
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1034526A
Other languages
Japanese (ja)
Inventor
Shinji Inasawa
信二 稲澤
Kazuo Sawada
澤田 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP1034526A priority Critical patent/JPH02215010A/en
Priority to KR1019900702253A priority patent/KR940001884B1/en
Priority to PCT/JP1990/000177 priority patent/WO1990009670A1/en
Priority to KR1019900702253A priority patent/KR910700533A/en
Priority to CA002027553A priority patent/CA2027553C/en
Priority to DE69013784T priority patent/DE69013784T2/en
Priority to EP90902832A priority patent/EP0410003B1/en
Priority to US07/598,629 priority patent/US5091609A/en
Publication of JPH02215010A publication Critical patent/JPH02215010A/en
Priority to HK96695A priority patent/HK96695A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1262Process of deposition of the inorganic material involving particles, e.g. carbon nanotubes [CNT], flakes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing

Abstract

PURPOSE:To improve insulating capacity and elasticity under high temperature environments and eliminate the necessity for a gas absorption source by a method wherein an insulated electric wire is constituted of a base material, an aluminum anode oxide layer and an oxide insulating layer. CONSTITUTION:An anode oxide coating 2 is formed on an aluminum layer 1 or an aluminum alloy layer 1, while on the anode oxide coating 2 an insulating oxide coating 3 is formed by means of the sol-gel method being a solution method. The sol-gel method refers to a method wherein solution obtained by hydrolyzing and dehydratingly condensing alkoxide is applied on an outer surface to be formed and a film is formed from the solution, while a film 3 formed by the sol-gel method is ceramic oxide. This provides heat-resistant insulation capacity as well as good elasticity while eliminating the necessity of a gas absorption source.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、絶縁電線に関し、特に高真空機器や高温使
用機器等の高真空の環境下、または高温度の環境下にお
いて用いられる配線用電線や巻線用電線等の絶縁電線に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to insulated wires, and particularly to wiring wires used in high vacuum environments such as high vacuum equipment and high temperature equipment, or in high temperature environments. This relates to insulated wires such as winding wires and winding wires.

[従来の技術] 絶縁電線は、加熱設備や火災報知器などの高温下におけ
る安全性が要求される設備に使用されることがある。ま
た、絶縁電線は、自動車内の高温度に加熱される環境下
においても用いられる。このような絶縁電線としては、
従来から、導体にポリイミドやフッ素系樹脂等の耐熱性
有機樹脂が被覆された絶縁電線が使用されている。
[Prior Art] Insulated wires are sometimes used in equipment that requires safety under high temperatures, such as heating equipment and fire alarms. Insulated wires are also used in environments that are heated to high temperatures inside automobiles. As such insulated wire,
2. Description of the Related Art Insulated wires in which a conductor is coated with a heat-resistant organic resin such as polyimide or fluororesin have been conventionally used.

高い耐熱性が要求される用途や、高い真空度が要求され
る環境下で使用される場合には、有機物被覆だけでは、
耐熱性やガス放出性等の点で不十分である。そこで、セ
ラミックス製のガイシ管に導体が通された形式の絶縁電
線や、酸化マグネシウムなどの金属酸化物微粒子が詰め
られた、ステンレス合金等からなる耐熱合金製の管に導
体が通された形式のM1ケーブル(Mineral  
In5ulated  Cable)などが、そのよう
な用途に使用されてきた。
When used in applications that require high heat resistance or in environments that require a high degree of vacuum, organic coating alone is insufficient.
It is insufficient in terms of heat resistance, gas release properties, etc. Therefore, we have developed insulated wires in which the conductor is passed through a ceramic insulator tube, and insulated wires in which the conductor is passed through a tube made of a heat-resistant alloy made of stainless steel or other alloy filled with fine particles of metal oxide such as magnesium oxide. M1 cable (Mineral
In5lated Cable) and the like have been used for such purposes.

また、耐熱性とともに可撓性が要求される絶縁電線とし
ては、ガラス繊維が紡織されたものを絶縁部材として使
用するガラス編組絶縁電線などが挙げられる。
Examples of insulated wires that require flexibility as well as heat resistance include glass braided insulated wires that use woven glass fibers as an insulating member.

[発明が解決しようとする課題] 上記のような耐熱性を有する有機樹脂が被覆された絶縁
電線においては、絶縁性が保たれ得る最高の温度は、た
かだか200℃程度である。そのため、200℃以上の
高い温度下において絶縁性の保証が要求される用途には
、このような有機物絶縁被覆電線を使用することはでき
なかった。
[Problems to be Solved by the Invention] In an insulated wire coated with a heat-resistant organic resin as described above, the highest temperature at which insulation can be maintained is about 200°C at most. Therefore, it has not been possible to use such organic insulated wires in applications where insulation is required to be guaranteed at high temperatures of 200° C. or higher.

また、セラミックス製の碍子管を用いて耐熱性が高めら
れた絶縁電線は、可撓性に乏しい等の欠点を有する。M
1ケーブルは耐熱性の合金管と導体とによって構成され
るため、ケーブルの外径が大きくなる。そのため、MI
ケーブルは、耐熱性の合金管内に通される導体が許容す
る電力量に対して、相対的に大きな断面を有するケーブ
ルとなる。また、M1ケーブルの外層は耐熱性合金管に
よって構成されるため、良好な可撓性を有する。
Furthermore, insulated wires whose heat resistance is improved by using ceramic insulator tubes have drawbacks such as poor flexibility. M
1. Since the cable is composed of a heat-resistant alloy tube and a conductor, the outer diameter of the cable is large. Therefore, M.I.
The cable has a relatively large cross-section compared to the amount of power that the conductor passing within the heat-resistant alloy tube can tolerate. Furthermore, since the outer layer of the M1 cable is made of a heat-resistant alloy tube, it has good flexibility.

しかしながら、ボビン等にコイル状に巻かれる巻線用電
線として用いるためには、耐熱合金製の管を所定の曲率
で曲げる必要がある。このとき、耐熱合金製の管に施さ
れる曲げ加工は困難さを伴なう。また、M■ケーブルを
コイル状に巻く場合、導体に比べて、その外層の管が太
いので、巻線密度を向上させることは困難である。
However, in order to use the tube as a winding wire that is wound into a coil around a bobbin or the like, it is necessary to bend the tube made of a heat-resistant alloy at a predetermined curvature. At this time, the bending process performed on the tube made of heat-resistant alloy is difficult. Furthermore, when winding an M* cable into a coil, the outer layer of the tube is thicker than the conductor, so it is difficult to improve the winding density.

さらに、可撓性とともに耐熱性が備えられたガラス編組
絶縁電線を用いる場合、用途に応じて所定の形状に配置
するとき、ガラス繊維からガラスの粉塵が発生するとい
う問題がある。このガラス粉塵は、ガスの吸着源となり
得る。そのため、高い真空度が要求される環境下でガラ
ス編組絶縁電線を用いると、ガラス粉塵によって提供さ
れるガス吸着源のために、高い真空度を保つことは不可
能であった。
Furthermore, when using a glass braided insulated wire that is flexible and heat resistant, there is a problem in that glass dust is generated from the glass fibers when the wire is arranged in a predetermined shape depending on the application. This glass dust can be a source of gas adsorption. Therefore, when a glass braided insulated wire is used in an environment that requires a high degree of vacuum, it has been impossible to maintain a high degree of vacuum because of the gas adsorption source provided by the glass dust.

そこで、この発明は上記の問題点を解消するためになさ
れたもので、以下の事項を備えた絶縁電線を提供するこ
とを目的とする。
Therefore, the present invention was made to solve the above problems, and an object of the present invention is to provide an insulated wire having the following features.

(a)  高温度の環境下において高い絶縁性を有する
こと。
(a) Must have high insulation properties in high temperature environments.

(b)  可撓性に優れていること。(b) Excellent flexibility.

(C)  ガス吸着源を備えていないこと。(C) Not equipped with a gas adsorption source.

[課題を解決するための手段] この発明に従った絶縁電線は、基材と、陽極酸化層と、
酸化物絶縁層とを備えている。基材は、導体を含み、少
なくともその外表面にアルミニウム層およびアルミニウ
ム合金層のうち、いずれかの表面層を有する。陽極酸化
層は、その表面層に形成されている。酸化物絶縁層は、
陽極酸化層の上にゾル−ゲル法によって形成されている
[Means for Solving the Problems] An insulated wire according to the present invention includes a base material, an anodized layer,
and an oxide insulating layer. The base material includes a conductor and has at least one of an aluminum layer and an aluminum alloy layer on its outer surface. An anodized layer is formed on the surface layer. The oxide insulating layer is
It is formed on an anodized layer by a sol-gel method.

基材の芯材は、銅を含むものであればよい。このとき、
基材はパイプ嵌合法によって作製されるのが好ましい。
The core material of the base material may contain copper. At this time,
Preferably, the base material is produced by a pipe fitting method.

酸化物絶縁層は酸化珪素または酸化アルミニウムを含む
のが好ましい。
Preferably, the oxide insulating layer contains silicon oxide or aluminum oxide.

[発明の作用効果1 この発明においては、アルミニウム層またはアルミニウ
ム合金層の上に陽極酸化被膜が形成され、その陽極酸化
被膜の上に、溶液法であるゾル−ゲル法によって絶縁性
酸化物被膜が形成されている。
[Effect 1 of the invention] In this invention, an anodic oxide film is formed on an aluminum layer or an aluminum alloy layer, and an insulating oxide film is formed on the anodic oxide film by a sol-gel method, which is a solution method. It is formed.

絶縁性酸化物被膜は、ゾル−ゲル法によって形成される
。ゾル−ゲル法とは、形成されるべき外表面に、アルコ
キシドを加水分解および脱水縮合させた溶液を塗布し、
その溶液から膜を形成する方法である。ゾル−ゲル法に
よって形成される膜は、セラミックス化された酸化物で
ある。この酸化物は、ゾル−ゲル法において酸素気流中
の雰囲気下で加熱処理されることによって形成されるの
が好ましい。このようにしてセラミックス化された酸化
物絶縁層は、500℃以上の高温下においても優れた耐
熱絶縁性を示す。
The insulating oxide film is formed by a sol-gel method. The sol-gel method involves applying a solution of hydrolyzed and dehydrated alkoxide to the outer surface to be formed.
This method forms a film from the solution. The film formed by the sol-gel method is a ceramicized oxide. This oxide is preferably formed by heat treatment in an atmosphere of oxygen flow in a sol-gel method. The oxide insulating layer made into a ceramic in this manner exhibits excellent heat-resistant insulation even at high temperatures of 500° C. or higher.

陽極酸化被膜は、アルミニウム層またはアルミニウム合
金層の上に強固に密着する。また、この陽極酸化被膜は
、絶縁物として、成る程度の絶縁性を示す。しかしなが
ら、陽極酸化被膜は、凹凸の激しい表面を有する。その
ため、陽極酸化被膜の外表面は大きな表面積を有し、ガ
スの吸着源を提供する。したがって、陽極酸化被膜のみ
が外表面に形成された導体は、高い真空度が要求される
環境下においては使用され得ない。
The anodic oxide film firmly adheres to the aluminum layer or aluminum alloy layer. Further, this anodic oxide film exhibits a certain degree of insulation as an insulator. However, the anodic oxide film has a highly uneven surface. Therefore, the outer surface of the anodic oxide film has a large surface area and provides a source of gas adsorption. Therefore, a conductor having only an anodic oxide film formed on its outer surface cannot be used in an environment where a high degree of vacuum is required.

また、陽極酸化被膜は多孔性を有し、その表面から基材
にまで貫通する孔が多量に存在している。
Further, the anodic oxide film has porosity, and there are a large number of pores that penetrate from the surface to the base material.

そのため、膜厚に比例した絶縁性が、陽極酸化被膜によ
って得ることができない場合が多い。
Therefore, it is often impossible to obtain insulation properties proportional to the thickness of the anodic oxide film.

そこで、本願発明等は、陽極酸化被膜の外表面に、ゾル
−ゲル法を用いて酸化物被膜を形成すれば、陽極酸化被
膜の孔を埋め、表面を平滑化できることを見出した。そ
れによって、膜厚に比例した高い絶縁破壊電圧を得るこ
とができるとともに、外表面積の減少を図ることにより
、ガスの吸着源を減少させることができる。
Therefore, the present invention has discovered that if an oxide film is formed on the outer surface of the anodic oxide film using a sol-gel method, the pores in the anodic oxide film can be filled and the surface can be smoothed. As a result, a high dielectric breakdown voltage proportional to the film thickness can be obtained, and by reducing the outer surface area, the number of gas adsorption sources can be reduced.

さらに、陽極酸化被膜は、少なくとも基材の外表面を構
成するアルミニウム層またはアルミニウム合金層との密
着性に優れている。そのため、導体の外表面に直接、ゾ
ル−ゲル法によって酸化物被膜を形成する場合に比べて
、酸化物被膜と基材の外表面との間の付着力が向上する
。したがって、この発明によって提供される絶縁電線は
、耐熱絶縁性を備えるとともに、良好な可撓性を有する
Furthermore, the anodic oxide film has excellent adhesion to at least the aluminum layer or aluminum alloy layer that constitutes the outer surface of the base material. Therefore, the adhesion between the oxide film and the outer surface of the base material is improved compared to the case where the oxide film is directly formed on the outer surface of the conductor by the sol-gel method. Therefore, the insulated wire provided by the present invention has heat-resistant insulation and good flexibility.

[実施例] 実施例1 (a)  陽極酸化被膜の形成 線径2mmφの純アルミニウム線を、38℃の温度に保
持された23重量%の希硫酸中に浸漬した。その後、ア
ルミニウム線に正の電圧を印加し、浴電流2.5A/d
m2の条件で20分間、純アルミニウム線の外表面を陽
極酸化した。このようにして、純アルミニウム線の外表
面に陽極酸化被膜が約20μm程度の膜厚で形成された
。得られた線材を温度500℃の酸素気流中において乾
燥した。
[Examples] Example 1 (a) Formation of anodic oxide film A pure aluminum wire with a wire diameter of 2 mmφ was immersed in 23% by weight dilute sulfuric acid maintained at a temperature of 38°C. After that, a positive voltage was applied to the aluminum wire, and the bath current was 2.5A/d.
The outer surface of the pure aluminum wire was anodized for 20 minutes under conditions of m2. In this way, an anodic oxide film with a thickness of about 20 μm was formed on the outer surface of the pure aluminum wire. The obtained wire rod was dried in an oxygen stream at a temperature of 500°C.

(b)  ゾル−ゲル法に用いられるコーティング溶液
の作成 テトラブチルオルトシレケイト:水:エタノール−8:
32:60のモル比で混合した溶液に、1.2Nの濃硝
酸をテトラブチルオルトシレケイトに対し、100分の
1モルの割合で添加した。
(b) Preparation of coating solution used in sol-gel method Tetrabutyl orthosilicate: Water: Ethanol-8:
To a solution mixed at a molar ratio of 32:60, 1.2N concentrated nitric acid was added at a ratio of 1/100 mole to tetrabutyl orthosilicate.

その後、温度70℃で2時間、この溶液を加熱撹拌した
。それにより、ゾル−ゲル法に用いられるコーティング
溶液が合成された。
Thereafter, this solution was heated and stirred at a temperature of 70° C. for 2 hours. Thereby, a coating solution used in the sol-gel method was synthesized.

(C)  コーティング (a)によって得られた線材を(b)のコーティング溶
液に浸漬した。このようにしてコーティング溶液が外表
面に塗布された線材に、温度400℃で10分間加熱す
る工程を5回施した。最後に、この線材を温度500℃
の酸素気流中で10分間加熱した。
(C) Coating The wire rod obtained by (a) was immersed in the coating solution of (b). The wire rod whose outer surface was coated with the coating solution in this way was heated five times at a temperature of 400° C. for 10 minutes. Finally, this wire is heated to a temperature of 500°C.
The mixture was heated for 10 minutes in an oxygen stream.

以上のようにして得られた絶縁被覆電線は、第1図に示
されている。第1図は、この発明に従った絶縁!!!線
の横断面を示す断面図である。第1図を参照して、アル
ミニウム線1の外表面上に陽極酸化膜2が形成されてい
る。この陽極酸化膜2の上には、ゾル−ゲル法によって
酸化物絶縁層3が形成されている。上記実施例1におい
ては、この酸化物絶縁層3は酸化硅素である。また、上
記実施例1によれば、陽極酸化膜2と酸化物絶縁層3と
によって構成される絶縁層の膜厚は40μm程度であっ
た。
The insulated wire thus obtained is shown in FIG. Figure 1 shows insulation according to the invention! ! ! It is a sectional view showing a cross section of a line. Referring to FIG. 1, an anodic oxide film 2 is formed on the outer surface of an aluminum wire 1. An oxide insulating layer 3 is formed on this anodic oxide film 2 by a sol-gel method. In the first embodiment described above, this oxide insulating layer 3 is silicon oxide. Further, according to Example 1, the thickness of the insulating layer composed of the anodic oxide film 2 and the oxide insulating layer 3 was about 40 μm.

得られた絶縁電線の絶縁性を評価するために絶縁破壊電
圧を測定した。室温下においては、その絶縁破壊電圧は
1.6kVであり、600℃の温度下においては1.2
kVであった。また、直径5cmの円筒の外周面上に、
この絶縁電線を巻付けても、絶縁層に亀裂が発生しなか
った。
In order to evaluate the insulation properties of the obtained insulated wire, the dielectric breakdown voltage was measured. At room temperature, its dielectric breakdown voltage is 1.6 kV, and at 600°C, it is 1.2 kV.
It was kV. In addition, on the outer peripheral surface of a cylinder with a diameter of 5 cm,
Even when this insulated wire was wound, no cracks occurred in the insulating layer.

実施例2 (a)陽極酸化被膜の形成 外層が肉厚100μmのアルミニウム(材質:JtS呼
称1050)層で、芯材が無酸素銅(OFC)である線
径1mmφのアルミニウム/銅クラツド線(純銅の導電
率を100とした場合の導電率84%IAC9)を、3
8℃の温度に保持され5A/dm2の条件で2分間、ア
ルミニウム層の外表面を陽極酸化した。このようにして
、アルミニウム/銅クラツド線の表面に陽極酸化被膜が
10μm程度の膜厚で形成された。得られた線材を温度
500℃の酸素気流中において乾燥した。
Example 2 (a) Formation of anodic oxide film An aluminum/copper clad wire (pure copper) with a wire diameter of 1 mm in which the outer layer is an aluminum (material: JtS designation 1050) layer with a thickness of 100 μm and the core material is oxygen-free copper (OFC). The conductivity is 84% IAC9) when the conductivity of 100 is 3
The outer surface of the aluminum layer was anodized for 2 minutes at a temperature of 8° C. and 5 A/dm 2 . In this way, an anodic oxide film with a thickness of about 10 μm was formed on the surface of the aluminum/copper clad wire. The obtained wire rod was dried in an oxygen stream at a temperature of 500°C.

(b)ゾル−ゲル法に用いられるコーティング溶液の作
成 トリブチルアルミニウム:トリエタノールアミン:水:
エタノール−3ニア:9:81のモル比で5℃程度の温
度下で混合した。その後、温度30℃で1時間、この溶
液を加熱撹拌した。それにより、ゾル−ゲル法に用いら
れるコーティング溶液が合成された。
(b) Preparation of coating solution used in sol-gel method Tributylaluminum: Triethanolamine: Water:
The mixtures were mixed at a molar ratio of ethanol-3:9:81 at a temperature of about 5°C. Thereafter, this solution was heated and stirred at a temperature of 30° C. for 1 hour. Thereby, a coating solution used in the sol-gel method was synthesized.

(c)コーティング 実施例1と同様の方法を用いて、コーティング処理を行
なった。
(c) Coating A coating treatment was performed using the same method as in Example 1.

以上のようにして得られた絶縁被覆電線は第2図に示さ
れている。第2図は、この発明に従った絶縁電線の横断
面を示す断面図である。第2図を参照して、銅芯線10
の外表面上にアルミニウム層11を有するアルミニウム
/銅クラツド線を基材として使用した。このアルミニウ
ム層11の外表面上に陽極酸化膜2が形成されている。
The insulated wire thus obtained is shown in FIG. FIG. 2 is a sectional view showing a cross section of an insulated wire according to the present invention. Referring to FIG. 2, the copper core wire 10
An aluminum/copper clad wire with an aluminum layer 11 on its outer surface was used as the substrate. An anodic oxide film 2 is formed on the outer surface of this aluminum layer 11.

この陽極酸化膜2の上には、ゾル−ゲル法により酸化物
絶縁層3が形成されている。上記実施例2においては、
この酸化物絶縁層3は酸化アルミニウムである。また、
上記実施例2によれば、陽極酸化膜2と酸化物絶縁層3
とによって構成される絶縁層の膜厚は20μm程度であ
った。
An oxide insulating layer 3 is formed on this anodic oxide film 2 by a sol-gel method. In the above Example 2,
This oxide insulating layer 3 is aluminum oxide. Also,
According to the second embodiment, the anodic oxide film 2 and the oxide insulating layer 3
The thickness of the insulating layer formed by the above was about 20 μm.

得られた絶縁電線の絶縁性を評価するために絶縁破壊電
圧を測定した。室温下においては、その絶縁破壊電圧は
1.5kVであり、500℃の温度下においてはi、o
kvであった。また、直径3cmの円筒の外周面上に、
この絶縁電線を巻き付けても、絶縁層に亀裂が発生しな
かった。
In order to evaluate the insulation properties of the obtained insulated wire, the dielectric breakdown voltage was measured. At room temperature, its dielectric breakdown voltage is 1.5 kV, and at 500°C, i, o
It was kv. In addition, on the outer peripheral surface of a cylinder with a diameter of 3 cm,
Even when this insulated wire was wound, no cracks occurred in the insulating layer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は、この発明に従った絶縁電線の横断面
を実施例1.2に対応して示す断面図である。 図において、1はアルミニウム線、2は陽極酸化膜、3
は酸化物絶縁層、10は銅芯線、11はアルミニウム層
である。
1 and 2 are sectional views showing a cross section of an insulated wire according to the present invention, corresponding to Example 1.2. In the figure, 1 is an aluminum wire, 2 is an anodic oxide film, and 3 is an aluminum wire.
10 is an oxide insulating layer, 10 is a copper core wire, and 11 is an aluminum layer.

Claims (4)

【特許請求の範囲】[Claims] (1)導体を含み、少なくともその外表面にアルミニウ
ム層およびアルミニウム合金層のうち、いずれかの表面
層を有する基材と、 前記表面層に形成された陽極酸化層と、 前記陽極酸化層の上にゾル−ゲル法によって形成された
酸化物絶縁層とを備えた絶縁電線。
(1) A base material containing a conductor and having either a surface layer of an aluminum layer or an aluminum alloy layer on at least its outer surface; an anodized layer formed on the surface layer; and a top of the anodized layer. and an oxide insulating layer formed by a sol-gel method.
(2)前記基材の芯材は、銅を含む、請求項1に記載の
絶縁電線。
(2) The insulated wire according to claim 1, wherein the core material of the base material contains copper.
(3)前記基材は、パイプ嵌合法によって作製される基
材を含む、請求項2に記載の絶縁電線。
(3) The insulated wire according to claim 2, wherein the base material includes a base material produced by a pipe fitting method.
(4)前記酸化物絶縁層は、酸化珪素および酸化アルミ
ニウムのうち、いずれかを含む、請求項1に記載の絶縁
電線。
(4) The insulated wire according to claim 1, wherein the oxide insulating layer contains either silicon oxide or aluminum oxide.
JP1034526A 1989-02-14 1989-02-14 Insulated electric wire Pending JPH02215010A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1034526A JPH02215010A (en) 1989-02-14 1989-02-14 Insulated electric wire
KR1019900702253A KR940001884B1 (en) 1989-02-14 1990-02-13 Insulated electric wire
PCT/JP1990/000177 WO1990009670A1 (en) 1989-02-14 1990-02-13 Insulated electric wire
KR1019900702253A KR910700533A (en) 1989-02-14 1990-02-13 Insulated wire
CA002027553A CA2027553C (en) 1989-02-14 1990-02-13 Insulated wire for high-temperature environment
DE69013784T DE69013784T2 (en) 1989-02-14 1990-02-13 INSULATED WIRE CORD.
EP90902832A EP0410003B1 (en) 1989-02-14 1990-02-13 Insulated electric wire
US07/598,629 US5091609A (en) 1989-02-14 1990-02-13 Insulated wire
HK96695A HK96695A (en) 1989-02-14 1995-06-15 Insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034526A JPH02215010A (en) 1989-02-14 1989-02-14 Insulated electric wire

Publications (1)

Publication Number Publication Date
JPH02215010A true JPH02215010A (en) 1990-08-28

Family

ID=12416719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034526A Pending JPH02215010A (en) 1989-02-14 1989-02-14 Insulated electric wire

Country Status (1)

Country Link
JP (1) JPH02215010A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567165U (en) * 1992-01-31 1993-09-03 株式会社前川製作所 Fully sealed electric motor
WO2016189842A1 (en) * 2015-05-28 2016-12-01 日本航空電子工業株式会社 Aluminum wire, harness and method for producing harness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165910A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered wire
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS63192895A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Coating member
JPS63237312A (en) * 1987-03-25 1988-10-03 住友電気工業株式会社 Wire for acoustic/image apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61165910A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered wire
JPS61165909A (en) * 1985-01-14 1986-07-26 レイケム・リミテツド Refractory covered article
JPS63192895A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Coating member
JPS63237312A (en) * 1987-03-25 1988-10-03 住友電気工業株式会社 Wire for acoustic/image apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0567165U (en) * 1992-01-31 1993-09-03 株式会社前川製作所 Fully sealed electric motor
WO2016189842A1 (en) * 2015-05-28 2016-12-01 日本航空電子工業株式会社 Aluminum wire, harness and method for producing harness
JP2016225074A (en) * 2015-05-28 2016-12-28 日本航空電子工業株式会社 Aluminum electric wire, harness, and method for producing harness

Similar Documents

Publication Publication Date Title
US5091609A (en) Insulated wire
US5436409A (en) Electrical conductor member such as a wire with an inorganic insulating coating
CA2058147C (en) Electrical insulated wire
CA1295890C (en) Electrical wire with refractory coating
JPH02215010A (en) Insulated electric wire
JPH02270217A (en) Insulated wire
JPH0349109A (en) Inorganic insulating conductor
KR940001884B1 (en) Insulated electric wire
JP2890631B2 (en) Insulated wire
EP0494424B1 (en) Method for the production of an electrical conductor having an inorganic insulation
JPH03226913A (en) Insulated wire
JP3336735B2 (en) Insulated wire
JPH02301909A (en) Inorganic insulated cable and its manufacture
JPH04230908A (en) Insulating member
JPH05314821A (en) Inorganic insulation coated conductor
JPH0475206A (en) Inorganic insulated wire
JPH04296405A (en) Insulating member
JPH0388215A (en) Inorganic insulator
JP3074741B2 (en) Insulated wire
JPH03122912A (en) Insulated wire
CA2142765C (en) Inorganic insulating member
JPH07282645A (en) Heat resistant insulated wire and its manufacture
JPH03202475A (en) Production of inorganic insulating material
JPH03245409A (en) Insulated wire
JPH0475208A (en) Inorganic insulated wire