JP2939343B2 - Method of forming ceramic film - Google Patents

Method of forming ceramic film

Info

Publication number
JP2939343B2
JP2939343B2 JP40324190A JP40324190A JP2939343B2 JP 2939343 B2 JP2939343 B2 JP 2939343B2 JP 40324190 A JP40324190 A JP 40324190A JP 40324190 A JP40324190 A JP 40324190A JP 2939343 B2 JP2939343 B2 JP 2939343B2
Authority
JP
Japan
Prior art keywords
film
ceramic
spark discharge
electrolysis
metal substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP40324190A
Other languages
Japanese (ja)
Other versions
JPH0586485A (en
Inventor
晴雄 花形
吏 鈴木
和夫 柳田
英郷 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deitsupusooru Kk
Original Assignee
Deitsupusooru Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deitsupusooru Kk filed Critical Deitsupusooru Kk
Priority to JP40324190A priority Critical patent/JP2939343B2/en
Publication of JPH0586485A publication Critical patent/JPH0586485A/en
Application granted granted Critical
Publication of JP2939343B2 publication Critical patent/JP2939343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、金属基体表面に多層
セラミックス皮膜を形成させる方法に関し、特に、耐熱
性、耐火性、耐食性を要する、超高真空、放射線被爆環
境でも使用可能な配線用、巻線用の電線やその他セラミ
ックス被覆金属材料を形成する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a multilayer ceramic film on a surface of a metal substrate, and more particularly to a wiring method which requires heat resistance, fire resistance and corrosion resistance, and which can be used in an ultra-high vacuum and radiation exposure environment. The present invention relates to a method for forming electric wires for winding and other ceramic-coated metal materials.

【0002】[0002]

【従来の技術】耐熱性、耐食性が要求される電線とし
て、従来から導体に有機物被覆を施した被覆電線が用い
られている。しかし、有機物被覆では、耐熱性、耐放射
線性、真空中での脱ガス特性等は充分でなかった。そこ
で、耐熱性、耐火性、耐放射線性、真空中での脱ガス特
性等付与するために、導体にセラミックス被覆を施した
電線が検討されてきた。セラミックスを形成する方法と
しては、気相では、CVD(化学蒸着法)、PVD(物
理蒸着法)、溶射等により皮膜を形成する方法、液相で
は、アルコキシドの溶液に浸漬、乾燥後加熱硬化させる
方法や電解によりセラミックスを形成する方法が知られ
ている。さらに、固相法としては、原料セラミックス粉
体を溶融助剤とともにスラーリーとし、塗付後、乾燥加
熱焼結させる方法が知られている。
2. Description of the Related Art As a wire requiring heat resistance and corrosion resistance, a covered wire in which a conductor is coated with an organic substance is conventionally used. However, the organic coating did not have sufficient heat resistance, radiation resistance, and degassing properties in vacuum. Therefore, in order to impart heat resistance, fire resistance, radiation resistance, degassing properties in a vacuum, and the like, electric wires having a conductor coated with ceramics have been studied. As a method of forming ceramics, in the gas phase, a method of forming a film by CVD (chemical vapor deposition), PVD (physical vapor deposition), or thermal spraying, and in the liquid phase, immersion in an alkoxide solution, drying, and heat curing. Methods and methods for forming ceramics by electrolysis are known. Further, as a solid phase method, there is known a method in which a raw ceramic powder is made into a slurry with a melting aid, dried, heated and sintered after application.

【0003】特に電解法では、均一な皮膜が得られやす
い特徴があり、酸性溶液中で、アルミニウム上に陽極電
解によりAl2O3 膜を形成するアルマイトが従来から知ら
れている。しかし、導体の被覆にアルマイトを用いたア
ルマイト被覆電線は、耐熱性には優れるものの、可ぎょ
う性、真空中での脱ガス特性に劣るため次第に用いられ
なくなっている。それに代わって、陽極火花放電法によ
りセラミックス被覆を形成した電線は、耐熱性に優れる
ばかりでなく、可ぎょう性、真空中での脱ガス特性、耐
食性にも優れるため注目を集めている。
[0003] In particular electrolytic process, there is uniform film is easily obtained, wherein, in an acidic solution, anodized to form an Al 2 O 3 film has been known by anodic electrolysis on aluminum. However, although alumite-coated electric wires using alumite for covering the conductor are excellent in heat resistance, they are gradually not used because of poor flexibility and degassing properties in vacuum. Instead, electric wires coated with a ceramic coating by the anodic spark discharge method have attracted attention because they are not only excellent in heat resistance but also excellent in porosity, degassing properties in vacuum, and corrosion resistance.

【0004】しかしながら、陽極火花放電法によりセラ
ミックス被覆を形成した電線は、被覆の表面硬度が低い
ため、打こんや擦過による損傷に弱く、絶縁性が低下し
やすく、コイル等の巻付時の滑り性にも問題があった。
さらに、絶縁破壊電圧の上昇やコイル等への巻き付け時
の絶縁性の向上も望まれている。
[0004] However, electric wires coated with a ceramic coating by the anodic spark discharge method have low surface hardness of the coating, so that they are susceptible to damage due to nicking and abrasion, easily deteriorate in insulation, and have slipperiness when winding a coil or the like. There was also a problem.
Further, there is a demand for an increase in dielectric breakdown voltage and an improvement in insulation properties when wound around a coil or the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、絶縁破壊電
圧が高く、かつコイル等への巻き付け時の絶縁性にも優
れたセラミックス皮膜を金属基体上に形成させる方法を
提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a ceramic film on a metal substrate having a high dielectric breakdown voltage and an excellent insulating property when wound around a coil or the like. I do.

【0006】[0006]

【課題を解決するための手段】本発明は、密着性、可撓
性に優れる第1の皮膜を火花放電により金属基体上に形
成した後、その上に絶縁破壊電圧、硬度、耐摩耗性等に
優れる第2の皮膜を形成することにより、上記課題を効
率よく解決できるとの知見に基づいてなされたのであ
る。
According to the present invention, a first film having excellent adhesion and flexibility is formed on a metal substrate by spark discharge, and then a dielectric breakdown voltage, hardness, abrasion resistance and the like are formed thereon. It has been made based on the finding that the above problem can be efficiently solved by forming a second film having excellent resistance.

【0007】すなわち、本発明は、電解浴中で金属基体
を陽極として通電し、火花放電により該金属基体上に2
層のセラミックス皮膜を形成させる方法であって、ケイ
酸塩及び/又は酸素酸塩を含有する第1の電解浴で火花
放電により第1の皮膜を形成させた後、セラミックス微
粒子を懸濁状態で含有する第2の電解浴で火花放電によ
り第2の皮膜を形成することを特徴とする、金属基体表
面に多層セラミックス皮膜を形成させる方法を提供す
る。
That is, according to the present invention, an electric current is supplied to a metal substrate in an electrolytic bath by using the metal substrate as an anode.
Forming a first film by spark discharge in a first electrolytic bath containing a silicate and / or an oxyacid salt, and then suspending the ceramic fine particles in a suspended state. A method for forming a multilayer ceramic film on a surface of a metal substrate, comprising forming a second film by spark discharge in a contained second electrolytic bath.

【0008】本発明で用いる第1段目の電解浴として
は、水溶性若しくはコロイド状ケイ酸塩及び/又はタン
グステン酸、錫酸塩、モリブデン酸、ホウ酸塩、アルミ
ン酸塩、リン酸塩等の酸素酸塩を1種ないし2種以上添
加した水溶液を使用する。ここで、ケイ酸塩としては、
一般式 M2O・nSiO2 (Mはアルカリ金属を示し、nは0.
5乃至100の正数を示す)で表わされる種々の水溶性
のもの、例えば、ケイ酸ナトリウム、ケイ酸カリウム、
ケイ酸リチウムと、水分散性のものとしてはコロイダル
シリカ等を挙げることができる。これらのケイ酸塩は単
独で、若しくは2種以上の混合物として用いることがで
きる。さらに、Ni、Co、Zn、Ca、Ba、Mg、Pb、Cr等の金
属イオンを可溶性の塩の形で、1種ないし2種以上添加
することができる。
The first-stage electrolytic bath used in the present invention includes water-soluble or colloidal silicate and / or tungstic acid, stannate, molybdic acid, borate, aluminate, phosphate and the like. An aqueous solution to which one or more oxyacid salts are added is used. Here, as the silicate,
General formula M 2 O · nSiO 2 (M represents an alkali metal, and n represents 0.
Various water-soluble compounds such as sodium silicate, potassium silicate,
Colloidal silica and the like can be mentioned as lithium silicate and water-dispersible ones. These silicates can be used alone or as a mixture of two or more. Further, one or more kinds of metal ions such as Ni, Co, Zn, Ca, Ba, Mg, Pb, and Cr can be added in the form of a soluble salt.

【0009】電解浴に用いる水溶液中のケイ酸塩及び/
又は酸素酸塩の濃度は5g/l以上が好ましく、25〜
200g/lが好適である。特に酸素酸塩では、飽和に
近い濃度とすると皮膜形成速度が最も上昇するが、濃度
上昇とともに形成された皮膜が不均一となる現象も発生
しやすくなるので上記濃度とするのがよい。尚、水溶液
のpHは任意であるが、3〜13.5とするのがよい。
The silicate and / or the aqueous solution used for the electrolytic bath
Alternatively, the concentration of the oxyacid salt is preferably 5 g / l or more,
200 g / l is preferred. In particular, in the case of oxyacid salts, the film formation rate increases most when the concentration is close to saturation. However, a phenomenon in which the formed film becomes non-uniform as the concentration increases easily occurs. The pH of the aqueous solution is arbitrary, but is preferably 3 to 13.5.

【0010】本発明の第2の電解浴には、コロイド状ケ
イ酸塩及び/又はタングステン酸、錫酸塩、モリブデン
酸、ホウ酸塩、アルミン酸塩、リン酸塩等の酸素酸塩を
1種ないし2種以上添加した水溶液に、セラミックス微
粉体を分散させたものを用いる(特願平1−22863
9号)。さらに、Ni、Co、Zn、Ca、Ba、Mg、Pb、Cr等の
金属イオンを可溶性の塩の形で、1種ないし2種以上添
加することが出来る。
In the second electrolytic bath of the present invention, a colloidal silicate and / or an oxyacid salt such as tungstic acid, stannate, molybdic acid, borate, aluminate or phosphate is used. A solution in which ceramic fine powder is dispersed in an aqueous solution containing at least two or more species is used (Japanese Patent Application No. 1-22863).
No. 9). Further, one or more kinds of metal ions such as Ni, Co, Zn, Ca, Ba, Mg, Pb, and Cr can be added in the form of a soluble salt.

【0011】電解浴に用いる水溶液中のケイ酸塩及び/
又は酸素酸塩の濃度、ケイ酸塩の種類等は、上記第1の
電解浴のところで述べたのと同様である。
The silicate and / or the aqueous solution used for the electrolytic bath
Alternatively, the concentration of the oxyacid salt, the type of the silicate, and the like are the same as those described for the first electrolytic bath.

【0012】上記水溶液に加えるセラミックス微粒子と
しては水溶液に不溶性で分散可能な種々の微粒子を用い
ることができる。例えばAl2O3 、Al(OH)3 、SiO2 、3Al
2O3 ・2SiO2、TiO2、Cr2O3 、ZnO2、部分安定したジルコ
ニア、安定化ジルコニア等の酸化物系セラミックスや S
iC、 SiN 、 ZnSi2 、 TiSi2 、 MoSi2 、WSi2、BN等の非酸
化物系のセラミックスなどを添加混合して用いることが
出来る。尚、これらは単独で、又は2種以上の混合物を
用いることができる。
As the ceramic fine particles to be added to the aqueous solution, various fine particles which are insoluble and dispersible in the aqueous solution can be used. For example, Al 2 O 3 , Al (OH) 3 , SiO 2 , 3Al
2 O 3 · 2SiO 2, TiO 2, Cr 2 O 3, ZnO 2, partially stabilized zirconia, oxides such as stabilized zirconia-based ceramics or S
Non-oxide ceramics such as iC, SiN, ZnSi 2 , TiSi 2 , MoSi 2 , WSi 2 and BN can be added and mixed. These can be used alone or as a mixture of two or more.

【0013】セラミックス微粒子の粒子径は、0.03μ
m〜100μmの粒子径のものが良く、特に0.03μm
〜20μmが好ましい。つまり粒子径が大きくなるに従
い共析しにくくなり、共析した場合も皮膜が不均一とな
るからである。セラミックス微粒子の添加量は、微粒子
を懸濁させる電解液の種類や析出させようとする微粒子
の量により任意に決定できるが、通常200g/lまで
で良く、5〜100g/lの範囲が析出効率から考えて
最も好ましい。
The particle diameter of the ceramic fine particles is 0.03 μm.
A particle size of m to 100 μm is good, especially 0.03 μm
~ 20 µm is preferred. That is, as the particle diameter increases, the eutectoid becomes more difficult, and even when eutectoid, the coating becomes non-uniform. The amount of the ceramic fine particles to be added can be arbitrarily determined depending on the type of the electrolytic solution in which the fine particles are suspended and the amount of the fine particles to be precipitated. This is the most preferable in view of the above.

【0014】本発明では、上記セラミックス微粒子に加
えて、自己潤滑性を有する微粒子を添加してもよい。自
己潤滑性を有する微粒子としては、上述した通りであ
る。さらに、溶液分散性の悪い微粒子では、カチオン
系、ノニオン系、非イオン系、アニオン系等の界面活性
剤を加えて分散させるのがよい。
In the present invention, in addition to the above ceramic fine particles, fine particles having self-lubricating properties may be added. The fine particles having self-lubricating properties are as described above. Further, in the case of fine particles having poor solution dispersibility, it is preferable to add and disperse a cationic, nonionic, nonionic or anionic surfactant.

【0015】本発明により一段目の電解において、火花
放電により皮膜を形成できる金属基材としては、アルミ
ニウム及びその合金、ジルコニウム、チタン、ニオブ、
マグネシウム及びその合金等があげられる。従って、そ
れら金属自体またはこの金属を鉄鋼、ステンレス等にク
ラッドした、板、箔、線材やメッキしたものを金属基体
として使用することができる。メッキ方法としては、気
相による、蒸着、イオンプレーティング、CVD法や、
非水溶媒からの電解メッキ法等をあげることができる。
尚、金属基体の形状は任意でよく、平板上、線上、直方
体上、球上などがあげられる。
In the first-stage electrolysis according to the present invention, the metal substrate on which a film can be formed by spark discharge includes aluminum and its alloys, zirconium, titanium, niobium, and the like.
Magnesium and its alloys; Therefore, these metals themselves or plates, foils, wires or plated materials obtained by cladding this metal on steel, stainless steel or the like can be used as the metal substrate. As the plating method, vapor deposition, ion plating, CVD method,
Electroplating from a non-aqueous solvent may be used.
The shape of the metal substrate may be arbitrary, and examples thereof include a flat plate, a line, a rectangular parallelepiped, and a sphere.

【0016】通常これらの金属基材に火花放電により複
合皮膜を形成する場合、特に前処理を行なわなくともよ
いが、脱脂、エッチング、酸洗等により充分に清浄化し
ておくのが望ましい。本発明の陽極火花放電を行うにあ
たり、セラミックス皮膜を形成しようとする金属基体を
陽極とし、陰極に、鉄、ステンレス、ニッケル等不溶性
電極を用いて電解浴中で電解を行う。一段目の火花放電
皮膜の膜厚は、0.1μm〜20μmとするのがよく、よ
り好ましくは、1μm〜5μmである。電解時におけ
る、電流密度、電解時間は、上記膜厚を形成できる条件
とするが、電流密度は通常0.2A/dm2 〜10A/dm2 とす
るのが良く、電解時間は、30秒以上とするのがよい。
又、この場合、皮膜形成時の電圧が100V以上となる
ようにする。この電解時の浴温は5〜90℃、好ましく
は15〜60℃とするのがよい。
Usually, when a composite film is formed on such a metal substrate by spark discharge, it is not particularly necessary to perform a pretreatment, but it is preferable to sufficiently clean the metal substrate by degreasing, etching, pickling or the like. In performing the anodic spark discharge of the present invention, a metal substrate on which a ceramic film is to be formed is used as an anode, and electrolysis is performed in an electrolytic bath using an insoluble electrode such as iron, stainless steel or nickel as a cathode. The thickness of the first-stage spark discharge film is preferably 0.1 μm to 20 μm, and more preferably 1 μm to 5 μm. At the time of electrolysis, the current density and the electrolysis time are conditions under which the above film thickness can be formed, and the current density is usually preferably 0.2 A / dm 2 to 10 A / dm 2, and the electrolysis time is 30 seconds or more. It is good to do.
In this case, the voltage at the time of film formation is set to 100 V or more. The bath temperature during this electrolysis is 5 to 90 ° C, preferably 15 to 60 ° C.

【0017】本発明では一段目の電解に続いて、一段目
の電解により火花放電皮膜を形成した金属基材を陽極と
して二段目の電解を行なう。陰極には、鉄、ステンレ
ス、ニッケル等不溶性電極を用いる。二段目の火花放電
による皮膜の膜厚は、1μm以上とするのがよく、より
好ましくは、5μm〜30μmである。
In the present invention, subsequent to the first-stage electrolysis, the second-stage electrolysis is performed using the metal substrate on which the spark discharge film is formed by the first-stage electrolysis as an anode. As the cathode, an insoluble electrode such as iron, stainless steel, and nickel is used. The thickness of the film formed by the second spark discharge is preferably 1 μm or more, and more preferably 5 μm to 30 μm.

【0018】一段目と二段目の火花放電皮膜の膜厚の合
計が、1μm〜50μmとなるよう形成するのがよい。
又、一段目と二段目の火花放電皮膜の膜厚の比率を任意
に決定できるが、好ましくは1/2〜1/20となるよ
うにするのがよい。電解時における、電流密度、電解時
間は、上記膜厚を形成出来る条件とするが、電流密度は
通常0.2A/dm2 〜10A/dm2 で良く、電解時間は、通常
5分以上となる。電解時の浴温は5〜90℃、好ましく
は15〜60℃が良い。二段目の電解浴においてセラミ
ックス微粒子の懸濁状態を維持しながら火花放電を行
う。セラミックス微粒子はその自重により沈降するので
常法により均一な懸濁状態を維持しながら行うことが重
要である。例えば、撹拌や液の循環により行うことがで
きる。
It is preferable that the total thickness of the first and second spark discharge films is 1 μm to 50 μm.
Further, the ratio of the thickness of the first and second spark discharge films can be arbitrarily determined, but is preferably set to 1/2 to 1/20. At the time of electrolysis, the current density and the electrolysis time are conditions under which the above film thickness can be formed. The current density may be usually 0.2 A / dm 2 to 10 A / dm 2 , and the electrolysis time is usually 5 minutes or more. . The bath temperature during the electrolysis is 5 to 90C, preferably 15 to 60C. Spark discharge is performed while maintaining the suspended state of the ceramic fine particles in the second-stage electrolytic bath. Since the ceramic fine particles settle by their own weight, it is important to carry out the operation while maintaining a uniform suspension state by a conventional method. For example, it can be performed by stirring or circulation of the liquid.

【0019】本発明における陽極火花放電を行う際の一
段目及び二段目の電解に用いる電源の出力は任意の波形
の直流で良いが、パルス波形(矩形波波形)、ノコギリ
波形又は単相半波波形が好ましい。
The output of the power source used for the first and second electrolysis steps in performing the anode spark discharge in the present invention may be a DC having an arbitrary waveform, but may be a pulse waveform (rectangular waveform), a sawtooth waveform, or a single-phase half-wave. A wave shape is preferred.

【0020】[0020]

【発明の効果】本発明によれば、金属基体表面に耐熱
性、耐火性、耐食性を有し、かつ絶縁破壊電圧が高く、
コイル等への巻き付け時の絶縁性にも優れた多層セラミ
ックス皮膜を形成させることができる。従って、本発明
の方法によりアルミニウム電線あるいはアルミニウムク
ラッド電線に多層セラミックス皮膜を施せば、可撓性に
加わえて絶縁破壊電圧がさらに高く、痕等により皮膜が
やぶれにくいセラミックス被覆電線とすることができ
る。
According to the present invention, the surface of a metal substrate has heat resistance, fire resistance and corrosion resistance, a high dielectric breakdown voltage,
It is possible to form a multilayer ceramic film having excellent insulating properties when wound around a coil or the like. Therefore, when a multilayer ceramic film is applied to an aluminum electric wire or an aluminum clad electric wire according to the method of the present invention, it is possible to obtain a ceramic-coated electric wire in which the dielectric breakdown voltage is further increased in addition to flexibility, and the film is hardly broken by marks or the like.

【0021】さらに、このようにして得られたセラミッ
クス被覆電線をコイルに巻けば、巻き付け時の絶縁抵
抗、破壊電圧が、高いため、超高真空中でも使用できる
モーター、リレー等のコイルとすることができる。又、
アルミニウムの薄板上に多層セラミックス皮膜を形成す
ると、絶縁性のセラミックス薄板となるため、絶縁箔と
しての用途はもとより、アルミニウムの高熱伝導性を生
かした電子回路用フレキシブル基板にも応用できる。
又、さらに、本発明による皮膜は、絶縁抵抗、破壊電圧
が高く、密着性にもすぐれるため、通常の機械部品、電
子部品等にも使用できる。
Furthermore, if the thus obtained ceramic-coated electric wire is wound around a coil, the insulation resistance and the breakdown voltage during winding are high. it can. or,
When a multilayer ceramic film is formed on an aluminum thin plate, it becomes an insulating ceramic thin plate, so that it can be used not only as an insulating foil but also as a flexible substrate for electronic circuits utilizing the high thermal conductivity of aluminum.
Further, the film according to the present invention has a high insulation resistance and a high breakdown voltage and is excellent in adhesion, so that it can be used for ordinary mechanical parts, electronic parts and the like.

【0022】次に実施例により本発明を説明する。Next, the present invention will be described by way of examples.

【0023】[0023]

【実施例】【Example】

実施例1 直径0.8mmφのアルミ導線を脱脂、アルカリエッチン
グ、酸活性化処理して、清浄化した後、陽極として用
い、一方ステンレス板を陰極として、Na2O・nSiO2 12
0g/lの水溶液で、30℃の浴温で電解し、陽極火花
放電により膜厚3μmの第1のセラミックス皮膜を形成
した。
Example 1 An aluminum conductor having a diameter of 0.8 mmφ was cleaned by degreasing, alkali etching and acid activating treatment and then used as an anode, while a stainless steel plate was used as a cathode and Na 2 O · nSiO 2 12 was used.
Electrolysis was performed with a 0 g / l aqueous solution at a bath temperature of 30 ° C., and a first ceramic film having a thickness of 3 μm was formed by anodic spark discharge.

【0024】その後、このアルミ導線を陽極とし、ステ
ンレンス板を陰極として、Na4P2O7 ・10H2O 70g/l
に、ジルコニア微粒子(東ソー(株)製、商品名、TZ
−O、平均粒径0.4μm)を50g/l懸濁させた溶液
中で電解し、陽極火花放電により膜厚12μmの第2の
セラミックス皮膜を形成した。これにより、2層のセラ
ミックス皮膜の合計が15μmの火花放電皮膜を形成で
きた。
Then, the aluminum conductor was used as an anode and the stainless steel plate was used as a cathode, and Na 4 P 2 O 7 .10H 2 O 70 g / l
Zirconia fine particles (trade name, TZ, manufactured by Tosoh Corporation)
(O, average particle size 0.4 μm) was suspended in a solution in which 50 g / l was suspended, and a second ceramic film having a thickness of 12 μm was formed by anodic spark discharge. As a result, a spark discharge film having a total of 15 μm of the two ceramic films could be formed.

【0025】実施例2 実施例1と同様の陽極と陰極を用い、Na2B4O7 ・10H2O
100g/lの水溶液を液温50℃として、電解し、陽
極火花放電により膜厚3μmの第1のセラミックス皮膜
を形成した。その後、このアルミ導線を陽極とし、、ス
テンレス板を陰極として、Na4P2O7・10H2O 70g/l
にアルミナ微粒子(昭和電工(株)製、商品名、AL−
45)50g/lを懸濁させた溶液中で電解し、陽極火
花放電により膜厚10μmの第2のセラミックス皮膜を
形成した。これにより、2層のセラミックス皮膜の合計
が、12μmの火花放電皮膜を形成できた。
Example 2 Using the same anode and cathode as in Example 1, Na 2 B 4 O 7 .10H 2 O
A 100 g / l aqueous solution was heated to a liquid temperature of 50 ° C. and electrolyzed, and a 3 μm-thick first ceramic film was formed by anodic spark discharge. Then, using this aluminum conductor as the anode and the stainless steel plate as the cathode, Na 4 P 2 O 7 .10H 2 O 70 g / l
Alumina fine particles (manufactured by Showa Denko KK, trade name, AL-
45) Electrolysis was performed in a solution in which 50 g / l was suspended, and a second ceramic film having a thickness of 10 μm was formed by anodic spark discharge. As a result, a spark discharge film having a total of 12 μm of the two ceramic films could be formed.

【0026】実施例3 直径0.3mφのチタン導線を脱脂、酸活性化処理して清
浄化した後、陽極として用い、一方ステンレス板を陰極
として、K2O ・nSiO2 200g/lの水溶液で30℃の
液温で、電解し、陽極火花放電により膜厚5μmの第1
のセラミックス皮膜を形成した。
Example 3 A titanium wire having a diameter of 0.3 mφ was cleaned by degreasing and acid-activating treatment and then used as an anode, while a stainless steel plate was used as a cathode and an aqueous solution of 200 g / l of K 2 O.nSiO 2 was used. Electrolysis is performed at a liquid temperature of 30 ° C., and a 5 μm-thick first
Was formed.

【0027】その後、このチタン導線を陽極とし、ステ
ンレス板を陰極として、Na4P2O7 ・10H2O 70g/lに
アルミナ微粒子(昭和電工(株)製、商品名、AL−4
5)50g/lを懸濁させた溶液中で電解し、陽極火花
放電により膜厚10μmの第2のセラミックス皮膜を形
成した。これにより、2層のセラミックス皮膜の合計1
5μmの火花放電皮膜を形成した。
Then, using this titanium wire as an anode and a stainless steel plate as a cathode, Na 4 P 2 O 7 .10H 2 O 70 g / l was used to prepare alumina fine particles (AL-4, trade name, manufactured by Showa Denko KK).
5) Electrolysis was performed in a solution in which 50 g / l was suspended, and a second ceramic film having a film thickness of 10 μm was formed by anodic spark discharge. As a result, the total of two ceramic films is 1
A 5 μm spark discharge film was formed.

【0028】比較例1 実施例1と同様の陽極と陰極を用い、実施例1の二段目
と同様の電解液により、電解し、陽極火花放電により膜
厚15μmの単一のセラミックス皮膜を形成した。
Comparative Example 1 Using the same anode and cathode as in Example 1, electrolysis was performed with the same electrolytic solution as in the second stage of Example 1, and a single ceramic film having a thickness of 15 μm was formed by anode spark discharge. did.

【0029】比較例2 実施例3と同様の陽極と陰極を用い、実施例3の二段目
と同様の電解液により、電解し、陽極火花放電により膜
厚15μmの単一のセラミックス皮膜を形成した。
Comparative Example 2 Using the same anode and cathode as in Example 3, electrolysis was performed using the same electrolytic solution as in the second stage of Example 3, and a single ceramic film having a thickness of 15 μm was formed by anode spark discharge. did.

【0030】比較例3 実施例1と同様の陽極と陰極を用い、実施例1の一段目
と同様の電解液により、電解し、陽極火花放電により膜
厚15μmの単一のセラミックス皮膜を形成した。
Comparative Example 3 Using the same anode and cathode as in Example 1, electrolysis was performed using the same electrolytic solution as in the first stage of Example 1, and a single ceramic film having a thickness of 15 μm was formed by anodic spark discharge. .

【0031】このようにして得られたセラミックス皮膜
を有する電線の特性を下記の方法で測定した。結果を表
−1に示す。絶縁破壊電圧測定方法 「エナメル銅線及びエナメルアルミニウム線試験方
法」、JIS C3003 11,(2) 「2個より法」に準
じて行なった。
The characteristics of the electric wire having the ceramic film thus obtained were measured by the following methods. The results are shown in Table 1. The dielectric breakdown voltage was measured in accordance with theMethod for testing enameled copper wire and enameled aluminum wire”, and JIS C3003 11, (2) “From two pieces”.

【0032】絶縁抵抗試験方法 同一巻枠から長さ30cmの試験片5本を採り、3mm径の
表面平滑な金属シリンダの周囲に5回、試験片を静かに
巻き付け、末端に、1.96N(0.2kgf)の張力を加えな
がらこの金属シリンダと導体間の絶縁抵抗を計測した。
さらに、リーク頻度を導通した回数で示した。
Insulation resistance test method Five test pieces having a length of 30 cm were taken from the same winding frame, and the test piece was gently wound five times around a metal cylinder having a diameter of 3 mm and having a smooth surface. The insulation resistance between the metal cylinder and the conductor was measured while applying a tension of 0.2 kgf).
Further, the leak frequency is indicated by the number of times of conduction.

【0033】硬度 試験板を110°Cで1時間乾燥、放冷した後、先端を
平らに研き、角を鋭くした鉛筆をセラミックス面に対し
て45度の角度でセラミックス面に強く押しつけ均一な
速さ(3cm/秒)動かした。5回試験を繰り返し、4回
以上セラミックス面傷がつかなかった場合の鉛筆の硬さ
で硬度を示した。
After the hardness test plate was dried at 110 ° C. for 1 hour and allowed to cool, the tip was sharpened flat, and a sharpened pencil was strongly pressed against the ceramic surface at an angle of 45 ° with respect to the ceramic surface to achieve a uniform speed. (3 cm / sec). The test was repeated five times, and the hardness was indicated by the hardness of the pencil when the ceramic surface was not scratched four or more times.

【0034】[0034]

【表1】 [Table 1]

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解浴中で金属基体を陽極として通電
し、火花放電により該金属基体上に2層のセラミックス
皮膜を形成させる方法であって、ケイ酸塩及び/又は酸
素酸塩を含有する第1の電解浴で火花放電により第1の
皮膜を形成させた後、セラミックス微粉子を懸濁状態で
含有する第2の電解浴で火花放電により第2の皮膜を形
成することを特徴とする、金属基体表面に多層セラミッ
クス皮膜を形成させる方法。
1. A method for forming a two-layer ceramic film on a metal substrate by spark discharge by applying a current to the metal substrate in an electrolytic bath as an anode, comprising a silicate and / or an oxyacid salt. After forming the first film by spark discharge in the first electrolytic bath, the second film is formed by spark discharge in the second electrolytic bath containing the ceramic fine particles in a suspended state. A method of forming a multilayer ceramic film on the surface of a metal substrate.
JP40324190A 1990-12-18 1990-12-18 Method of forming ceramic film Expired - Fee Related JP2939343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40324190A JP2939343B2 (en) 1990-12-18 1990-12-18 Method of forming ceramic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40324190A JP2939343B2 (en) 1990-12-18 1990-12-18 Method of forming ceramic film

Publications (2)

Publication Number Publication Date
JPH0586485A JPH0586485A (en) 1993-04-06
JP2939343B2 true JP2939343B2 (en) 1999-08-25

Family

ID=18512990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40324190A Expired - Fee Related JP2939343B2 (en) 1990-12-18 1990-12-18 Method of forming ceramic film

Country Status (1)

Country Link
JP (1) JP2939343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015074825A (en) * 2013-10-11 2015-04-20 株式会社栗本鐵工所 Film formation method by plasma electrolytic oxidation and metal material

Also Published As

Publication number Publication date
JPH0586485A (en) 1993-04-06

Similar Documents

Publication Publication Date Title
Walsh et al. Plasma electrolytic oxidation (PEO) for production of anodised coatings on lightweight metal (Al, Mg, Ti) alloys
US5147515A (en) Method for forming ceramic films by anode-spark discharge
JP4510811B2 (en) Method for forming a ceramic coating on a conductive article
EP0243473A1 (en) Method of coating articles of magnesium and an electrolytic bath therefor
JP5937086B2 (en) Electroless metal deposition using highly alkaline plating bath
US3841986A (en) Electrophoretic deposition of ceramic coatings
US20180245231A1 (en) Electrolytic process and apparatus for the surface treatment of non-ferrous metals
JP2939343B2 (en) Method of forming ceramic film
Wang et al. Growth Mechanism of Ceramic Coating on ZK60 Magnesium Alloy Based on Two‐Step Current‐Decreasing Mode of Micro‐Arc Oxidation
JP3143225B2 (en) Surface coating method for aluminum or aluminum alloy substrate
JPS63192895A (en) Coating member
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
KR101313014B1 (en) Method for Treating the Surface of the Heat Sink for LED
JPH0475207A (en) Inorganic insulated wire
JP2888904B2 (en) Method of forming ceramic composite coating by anodic spark discharge
JP2975120B2 (en) Method of forming ceramic film
JP2574987B2 (en) Sealing method of thermal spray coating
JP2779953B2 (en) Method for forming ceramic film on aluminum substrate surface
RU2218454C2 (en) Process forming wear-resistant coats
JPH0315113A (en) Insulated power cable
JPH03277780A (en) Method for coating surface of aluminum substrate having ceramic coating film
WO2022230304A1 (en) Multilayer body production method, capacitor production method, multilayer body, capacitor, electric circuit, circuit board, and device
JP2003293196A (en) Electrode for electrolysis and production method therefor
JP2019183207A (en) Base material with multi-layer coating film
JP2001348698A (en) Anodizing solution of magnesium or its alloy

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090611

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

LAPS Cancellation because of no payment of annual fees