WO1989008330A1 - HIGH-Tc SUPERCONDUCTOR AND PROCESS FOR PREPARING IT - Google Patents

HIGH-Tc SUPERCONDUCTOR AND PROCESS FOR PREPARING IT Download PDF

Info

Publication number
WO1989008330A1
WO1989008330A1 PCT/EP1989/000163 EP8900163W WO8908330A1 WO 1989008330 A1 WO1989008330 A1 WO 1989008330A1 EP 8900163 W EP8900163 W EP 8900163W WO 8908330 A1 WO8908330 A1 WO 8908330A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconductor
mixture
divalent
foreign
alkaline earth
Prior art date
Application number
PCT/EP1989/000163
Other languages
English (en)
French (fr)
Inventor
Joachim Maier
Albrecht Rabenau
Pandijan Murugaraj
Original Assignee
Hoechst Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Ag filed Critical Hoechst Ag
Priority to DE58909256T priority Critical patent/DE58909256D1/de
Priority to US07/573,038 priority patent/US5413980A/en
Priority to EP89902518A priority patent/EP0402371B1/de
Publication of WO1989008330A1 publication Critical patent/WO1989008330A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/85Superconducting active materials
    • H10N60/855Ceramic superconductors
    • H10N60/857Ceramic superconductors comprising copper oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4504Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • C04B35/4521Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides containing bismuth oxide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/725Process of making or treating high tc, above 30 k, superconducting shaped material, article, or device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/776Containing transition metal oxide with rare earth or alkaline earth
    • Y10S505/779Other rare earth, i.e. Sc,Y,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu and alkaline earth, i.e. Ca,Sr,Ba,Ra
    • Y10S505/78Yttrium and barium-, e.g. YBa2Cu307
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/775High tc, above 30 k, superconducting material
    • Y10S505/785Composition containing superconducting material and diverse nonsuperconducting material

Definitions

  • the present invention relates to a high-T superconductor, in particular a ceramic superconductor of a type which has at least one trivalent and one divalent element, another element, in particular one
  • Transition metal element such as copper or niobium, and contains oxygen.
  • Typical representatives of such ceramic high-T superconductors are e.g. B. by the general formulas NIE- _0, ME-R, 0 and M-.E, R_0 represent 3 2-y 2 x 2-y 3 x 2 3-y 2 x ⁇ tiert, whereby
  • M at least one trivalent element, such as a lanthanoid element
  • Bismuth, yttrium, E is at least one divalent element such as an alkaline earth element, and R is at least one transition element and x indicates the oxygen content.
  • the transition element component R preferably consists entirely or at least partially of copper.
  • 6.2 ⁇ x ⁇ 7.2 is preferably
  • the invention further relates to a method for producing ceramic
  • High-T superconductor materials It is particularly suitable for the production of high-T superconductors of the above type, but can be used in general c B. also on the system La-Si-b-0.
  • high-T superconductor is to be understood here as superconductor materials whose transition temperature T is above 30 K.
  • Types have a strongly anisotropic crystal structure and that their superconductor properties, such as the critical current density and the critical field strength, are strongly direction-dependent with respect to the crystal structure.
  • Larger volumes of these ceramic superconductor materials can, however, only be produced economically in polycrystalline form according to the current state of the art and the individual crystal lites or grains of the poLyk ⁇ ' stalline material must then be aligned crystallographically in the same way if the optimum superconductor properties should be exploited.
  • the known methods for producing structured or oriented polycrystalline ceramic high-T superconductor materials are complicated, time-consuming and not always reproducible. Single crystals from high T -
  • the present invention is accordingly based on the object of specifying a polycrystalline high-T superconductor material with grains which are largely aligned graphically and / or with relatively large single crystals, and a simple and reproducible method for producing such a superconductor material.
  • the starting materials yielding the desired superconductor material e.g. B. a compound of at least one trivalent element (typically lanthanide element, bismuth, yttrium), a compound of at least one divalent element (typically alkaline earth
  • a reaction mixture which preferably contains the divalent element, such as the alkaline earth element, in a substoichiometric amount Contains 5 to 10% if necessary up to 15% below the stoichiometric amount.
  • the foreign element compound which disappears as far as possible from the resulting superconductor material is in particular an inorganic metal compound, such as an alkali metal compound, e.g. B is an alkali metal oxide.
  • the foreign element or elements can be contained in the reaction mixture in an amount which is approximately equal to or greater than the deficit of the divalent (and possibly trivalent) element.
  • the molar amount of the foreign element e.g. B. the alkali metal, which is introduced in the form of a compound such as the oxide, can be up to ten times the molar deficit.
  • the added material largely evaporates during reaction annealing or sintering, which is carried out at normal temperatures in air or oxygen, and only traces of the foreign element remain in the order of magnitude of ppm to a few parts per thousand based on the molar proportion of divalent element in the finished superconductor material back.
  • the orientation effect could not be achieved simply by reducing the proportion of divalent and / or trivalent element in the starting material.
  • the invention is particularly suitable for superconductors with a "YBaCu” or "123" structure, such as yttrium barium cuprate, wherein if the alkaline earth metal is barium, a potassium compound, such as potassium oxide or potassium carbonate, is preferably used as the removable or volatilizable compound.
  • a potassium compound such as potassium oxide or potassium carbonate
  • the invention can also be applied to ceramic superconductor materials with a different structure, e.g. B. of the type lanthanum strontium cuprate, W smutcalcium strontium cuprate, lanthanum strontium niobate and analogous compounds. If the superconductor material contains alkaline earth elements with a smaller ion radius than Ba, compounds of alkali metals with a smaller ion radius than potassium are preferably used as volatile compounds.
  • the material obtained by reaction annealing in the manner described above is generally still somewhat porous.
  • the material obtained in the reaction annealing is comminuted, e.g. B. in a mortar or ball mill, then pressed into shape and then sintered. This additional pressing and sintering process gives a practically completely dense material that is 95% or more oriented.
  • the invention achieves some essential advantages over the prior art: Above all, moldings can be produced with grains that are largely aligned crystallographically perpendicular to the c-axis. A 100% alignment can be achieved within the accuracy of X-ray spectra.
  • the method is also suitable for the formation of thin epitaxial layers made of high-T superconductor materials on suitable substrates.
  • the process also enables relatively large single crystals to be produced, it is simple and takes relatively little time, and an aftertreatment, such as an annealing in oxygen, is not required.
  • the material obtained after the first sintering has the formula
  • the dense ceramic produced in the manner described above is also highly oriented (approx. 95%). Both the material obtained after the first sintering step and the dense ceramic are considerably more stable against environmental influences than corresponding known materials.
  • the jump temperature T determined by conductivity measurements, at 94 K, is the same as that of the corresponding known material YBa_Cu, 0, Cj _; x> 0. J ⁇ , J + X
  • a material with a slight deficiency in E and possibly M arises with unchanged penetration temperature, which is considerably more stable against external influences than corresponding known materials.
  • a post-treatment in air or oxygen flow is not necessary.
  • Example 1 The mixture is heated to 900 ° C and then immediately brought to 980 ° C-1000 ° C at 20 ° / h and held there for 24-48 h. Then the preparation is slowly cooled to 900 C (5-10 / h) and from there quickly (50 / h) to room temperature.
  • the product is a solid, dense block consisting of large crystals (typically 2x3x1.5 mm).
  • the tetragonal material becomes orthorhombic by post-oxidation (24-48 h: 600 C; 0 -, - atmosphere). It shows (also as a whole block) the M adoptednei effect in liquid nitrogen, also the suspension effect and has a transition temperature of 90 K.
  • Rastei and polarization microscopic images show that the crystalline districts are home to microdomains. The individual mosaic domains are only slightly misfit with regard to orientation.
  • the chemical analysis shows not only a Ba deficit, but also an yttrium excess: (Y n ,, Ba nr -, ) , Cu, 0, a . is a typ.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Description

Hoch-T -Supraleiter c und Verfahren zu seiner Herstellung
Die vorliegende Erfindung betrifft einen Hoch-T -Supraleiter, insbesondere einen keramischen Supraleiter eines Typs, der mindestens je ein dreiwertiges und ein zweiwertiges Element, ein weiteres Element, insbesondere ein
Übergangsmetallelement, wie Kupfer oder Niob, und Sauerstoff enthält.
Typische Vertreter solcher keramischer Hoch-T Supraleiter werden z. B. durch die allgemeinen Formeln NIE- _0 , ME- R,0 und M-.E, R_0 repräsen- 3 2-y 2 x 2-y 3 x 2 3-y 2 x ^ tiert, wobei
M mindestens ein dreiwertiges Element, wie ein Lanthanoidenelement,
Wismut, Yttrium, ist, E mindestens ein zweiwertiges Element, wie ein Erdalkalielement, ist und R mindestens ein Übergangselement ist und x den Sauerstoffanteil angibt.
Die Übergangselementkomponente R besteht vorzugsweise ganz oder mindestens zum Teil aus Kupfer. In der oben als zweites genannten Verbindung ist vorzugsweise 6,2 < x < 7,2
Die Erfindung betrifft weiterhin ein Verfahren zum Herstellen von keramischen
Hoch-T -Supraleitermaterialien. Es eignet sich besonders zur Herstellung von Hoch-T -Supraleitern des obigen Typs, läßt sich jedoch ganz allgemein c anwenden, also z. B. auch auf das System La-Si— b-0.
Unter dem Begriff "Hoch-T -Supraleiter" sollen hier Supraleiter-Materialien verstanden werden, deren Sprungtemperatur T über 30 K liegt.
Es ist bekannt, daß die keramischen Hoch-T -Supraleiter der oben erwähnten c
Typen eine stark anisotrope Kristallstruktur haben und daß ihre Supraleiter¬ eigenschaften, wie die kritische Stromdichte und die kritische Feldstärke, bezogen auf die Kristallstruktur stark richtungsabhängig sind. Man ist daher bestrebt, möglichst große Einkristalle aus den genannten Materialien herzustellen. Größere Volumina dieser keramischen Supraleitermaterialien lassen sich nach dem derzeitigen Stand der Technik jedoch nur in poly¬ kristalliner Form wirtschaftlich herstellen und die einzelnen Kristal- Lite oder Körner des poLykπ'stallinen Materials müssen dann kristallogra- phisch gleichartig ausgerichtet werden, wenn die optimalen Supraleitereigen¬ schaften ausgenutzt werden sollen.
Aus einer Veröffentlichung von Wu und Ruckenstein in MATERIALS LETTERS, Band 5, No. 11.12, Oktober 1987, S. 432-435 ist es bekannt, daß die kritische Stromdichte und die kritische Feldstärke von YBa-jCu,07 in Richtung der |001 |-Ebenen, d.h. der Cu-O-Ebenen, besonders hoch ist und daß sich diese Ebenen in polykristallinem Material durch Pressen und anschließendes Sintern senkrecht zur Preßrichtung ausrichten lassen.
Aus einer Veröffentlichung von Omori et al., JAPANESE JOURNAL OF APPLIED PHYSICS, Band 26, No. 8, August 1987, S. L1421- L1421-L1423 ist es bekannt, orientierte orthorho bische YBa_Cu,07_ -Polykristalle aus tetragonalen, plättchenartigen Kristallen durch Mahlen, Pressen und Sintern in einer Sauerstoffatmosphäre herzustellen.
Aus einer Veröffentlichung in Science Bd. 238 (1987) S. 1655 - 1656 ist es bekannt, daß orientierte Körner eines Yttrium-Barium-Kupferoxid-Supra¬ leiters durch Schmelzen bei 1300°C, kontrolliertes Abkühlen und anschließendes Tempern zum Aufoxidieren hergestellt werden können. Die kritische Stromdichte konnte dadurch um mehrere Zehnerpotenzen erhöht werden.
Aus Accounts of Chemical Research, 21, No. 1, S. 1 bis 7 ist es bekannt, die Ba-Plätze eines YBCO-Supraleiters mit Alkalimetallionen (K, Rb, Cs) zu dotieren, wobei YBa_,Cu-,0-, erhalten wurde. Beim Ersat-z des Cu durch
2 3 7-y
Ni oder Co verringerte sich die Sprungtemperatur T beträchtlich.
Hoch-T -Supraleiter mit der Formal LaBa-,Cu,0-, und RBa-.Cu_0-, c 2 3 7-x 2 3 7-x
Corthorhombi sch; R = Y, Sm, Eu, Gd, Dy, Ho, T , Yb, Lu; 0 < x < 0,2) si nd aus Nature, Bd . 329, 1 7. 9. 1 987, S . 227-229 bekannt . Die bekannten Verfahren zum Herstellen strukturierter oder orientierter polykristalliner keramischer Hoch-T -Supraleitermaterialien sind kompliziert, zeitraubend und nicht immer gut reproduzierbar. Einkristalle aus Hoch-T -
Supraleitern konnten bisher nur mit relativ kleinen Abmessungen hergestellt werden. Der vorliegenden Erfindung liegt dementsprechend die Aufgabe zugrunde, ein polykristallines Hoch-T -Supraleitermaterial mit kristallo- c graphisch weitestgehend ausgerichteten Körnern und/oder mit relativ großen Einkristallen sowie ein einfaches und reproduzierbares Verfahren zum Herstellen eines solchen Supraleitermaterials anzugeben.
Ein bevorzugtes Verfahren zum Herstellen eines keramischen Hoch-T -Supra¬ leitermaterials gemäß der Erfindung, bei welchem die das gewünschte Supra¬ leitermaterial ergebenden Ausgangsmaterialien, z. B. eine Verbindung mindestens eines dreiwertigen Elements (typischerweise Lanthanoidenelement, Wismut, Yttrium), eine Verbindung mindestens eines zweiwertigen Elements (typischerweise Erdalkalielement) und eine Verbindung eines weiteren Elements Ctypischerweise eines übergangsmetalles, wie Kupfer oder Niob), insbesondere Oxide dieser Elemente oder Verbindungen, die beim Erhitzen Oxide liefern, gemischt und gesintert werden, ist gemäß der Erfindung dadurch gekennzeichnet, daß eine Mischung verwendet wird, die zusätzlich eine Verbindung, insbesondere eine anorganische Verbindung, enthält, die bei der HerstelLungstemperatur weitestgehend aus der Reaktionsmasse verschwindet, z. B. sich verflüchtigt, vom Reaktionsgefäß aufgenommen wird u. a. m. Vorzugsweise wird der Anteil des zweiwertigen Elements und ggf. auch des dreiwertigen Elements verringert, d. h. es wird eine Reaktionsmischung verwendet, die das zweiwertige Element, wie das Erdalkali¬ element, in unterstöchio etrischer Menge, vorzugsweise 5 bis 10% ggf. bis zu 15% unter der stöchiometrischen Menge enthält. Die beim Erhitzen aus dem entstehenden Supraleitermaterial weitestgehend verschwindende Fremdelement-Verbindung ist insbesondere eine anorganische Metallverbindung, wie eine Alkalimetallverbindung, z. B ein Alkalimetalloxid. Das Fremdelement oder die Fremdelemente können in der Reaktionsmischung in einer Menge enthalten sein, welche molmäßig etwa gleich oder größer als das Defizit des zweiwertigen (und ggf. dreiwertigen) Elements ist. Die molare Menge des Fremdelements, also z. B. des Alkalimetalls, das in Form einer Verbindung, wie des Oxids, eingebracht wird, kann bis zum Zehnfachen des molaren Defizits betragen. Das zugesetzte Material verflüchtigt sich beim Reaktionsglühen oder Sintern, das bei üblichen Temperaturen in Luft oder Sauerstoff durchgeführt wird, weitestgehend und es verbleiben nur Spuren des Fremdelements in der Größen¬ ordnung von ppm bis einigen Promille bezogen auf den molaren Anteil an zweiwertigem Element im fertigen Supraleitermaterial zurück. Mit einer alleinigen Reduzierung des Anteils an zwei- und/oder dreiwertigem Element in der Ausgangsmaterial ischung konnte der Orientierungseffekt nicht erzielt werden. Die Substitution eines Teiles des Anteils an zweiwertigem Element (insbesondere Erdalkalielement) durch mindestens ein Fremdelement (insbesondere Alkaliele ent) in der Ausgangsmaterialmischung liefert die besten Ergebnisse. Vorteilhaft scheint auch zu sein, wenn der Ionenradius des Elements der entfernbaren Verbindung etwa gleich dem Ionenradius des substituierten zweiwertigen Elements ist.
Die Erfindung ist vor allem für Supraleiter mit "YBaCu"- oder "123"-Struktur, wie Yttriumbariumcuprat, geeignet, wobei, wenn das Erdalkalimetall Barium ist, als entfernbare oder verflüchtigbare Verbindung vorzugsweise eine Kaliumverbindung, wie Kaliumoxid oder Kaliumcarbonat, verwendet wird. Die Erfindung läßt sich jedoch auch bei keramischen Supraleitermaterialien mit anderer Struktur anwenden, z. B. vom Typ Lanthanstrontiumcuprat, W smutcalciumstrontiumcuprat, Lanthanstrontiumniobat und analogen Ver¬ bindungen. Wenn das Supraleitermaterial Erdalkalielemente mit kleinerem Ionenradius als Ba enthält, werden als verflüchtigbare Verbindungen vorzugs¬ weise Verbindungen von Alkalimetallen mit kleinerem Ionenradius als Kalium verwendet.
Das in der oben beschriebenen Weise durch Reaktionsglühen erhaltene Material ist im allgemeinen noch etwas porös. Um ein dichtes Material mit kristallo- graphisch ausgerichteten Körnern herzustellen, wird das beim Reaktionsglühen erhaltene Material zerkleinert, z. B. in einem Mörser oder einer Kugelmühle, dann in Form gepreßt und anschließend gesintert. Man erhält durch diesen zusätzlichen Preß- und Sintervorgang ein praktisch völlig dichtes Material, das zu 95% oder mehr orientiert ist.
Durch die Erfindung werden einige wesentliche Vorteile gegenüber dem Stand der Technik erzielt: Vor allem lassen sich Formkörper mit kristallographisch senkrecht zur c-Achse weitestgehend ausgerichteten Körnern herstellen. Im Rahmen der Genauigkeit von Röntgenspektren kann eine 100%ige Ausrichtung erreicht werden. Das Verfahren eignet sich auch zur Bildung von dünnen epitaktischen Schichten aus Hoch-T -Supraleitermaterialien auf geeigneten Substraten.
Das Verfahren ermöglicht auch die Herstellung relativ großer Einkristalle, es ist einfach und benötigt relativ wenig Zeit, eine Nachbehandlung, wie ein Glühen in Sauerstoff,- ist nicht erforderlich.
Ein weiterer wesentlicher Vorteil der vorliegenden Supraleitermaterialien besteht darin, daß sie wesentlich beständiger gegen äußere Einflüsse, wie die Atmosphäre, Feuchtigkeit und Mineralsäuren, sind als die bekannten keramischen Supraleitermaterialien.
BEISPIEL 1
Herstellung eines polykristallinen Körpers mit ausgerichteten Kristalliten
1,733 g Y203 6,059 g BaC03, 3,6685g CuO 0,1 bis 0,5 g 2C03
werden in Aceton gemischt und in einem Mörser gemahlen. Anschließend wird das Aceton abgedampft und die Mischung drei Stunden bei 400 C in einem Tiegel erhitzt, anschließend wieder im Mörser zerkleinert. Die Mischung wird dann in einem Al_0 -Tiegel 10 bis 20 Stunden bei 950 C einer Reaktionssinterung unterworfen und anschließend mit einer Geschwindig¬ keit von 50°C pro Stunde auf Raumtemperatur abgekühlt. Man erhält Blöcke in Zentimetergröße, welche aus einzelnen' hochorientierten polykristallinen Regionen mit Querabmessungen von etwa 1 bis 3 mm bestehen, wie durch Röntgenbeugung nachgewiesen wurde. Das Material ist supraleitend, was durch den Meißner-Effekt nachgewiesen wurde. Um eine dichte Keramik zu erhalten, wird das Material erneut im Mörser zerkleinert, dann gepreßt und 5 bis 50 Stunden bei 950°C in Luft erhit. anschließend abgekühlt.
Das nach dem ersten Sintern erhaltene Material hat die Formel
YBal,95Cu3°6,45 + 0,2 '
Zw schenzeitliches oder nachträgliches Sintern in Luft (10 bis 30 Stunden bei 600 C) erhöht den Sauerstoffgehalt geringfügig.
Die in der oben beschriebenen Weise hergestellte dichte Keramik ist ebenfalls hochorientiert (ca. 95%). Sowohl das nach dem ersten Sinterschritt erhaltene Material als auch die dichte Keramik sind wesentlich stabiler gegen Umgebungs¬ einflüsse als entsprechende bekannte Materialien. Die durch Leitf higkeits¬ messungen bestimmte Sprungtemperatur T ist mit 94 K die gleiche wie die des entsprechenden bekannten Materials YBa_Cu,0, Cj_ ; x > 0. J Ö,J+X
Durch erneutes Tempern bei Temperaturen in der Größenordnung von 600 C ist es möglich, größere Einkristalle mit Abmessungen von ca. 100 jm und mehr zu erhalten.
Polykristalline Hoch-T -Supraleiter der allgemeinen Formel M E CuO , J c m e x die kristallographisch weitestgehend ausgerichtete Körner aufweisen, wobei M mindestens ein dreiwertiges Element, wie ein Lanthanoidenelement, E mindestens ein zweiwertiges Element, wie ein Erdalkalielement und x kleiner oder gleich 1,5m + e + 1,5 sind, werden dadurch erhalten, daß man einen Teil des Erdalkalielementes durch ein Fremdelemeπt, vorzugsweise ein Alkalielement substituiert, das nach der Reaktionssinterung und Sinterung im Produkt bis auf Gehalte im pp - bis Promillebereich nicht mehr enthalten ist und den Orientierungseffekt bewirkt. Es entsteht ein an E und ggf. M leicht unterschüssiges Material mit unveränderter SDrungtemperatur, das gegen äußere Einflüsse wesentlich stabiler ist als entsprechende bekannte Materialien. Eine Nachbehandlung im Luft- oder Sauerstoffström ist nicht nötig. BEISPIEL 2
Herstellung größerer Einkristalle
1,733 g Y203
6,059 g BaCO,
3,6685 g CuO
0,5 g K2 03
werden wie bei Beispiel 1 gemischt und gemahlen. Die Mischung wird auf 900°C erhitzt und dann sofort mit 20°/h auf 980°C-1000°C gebracht und dort 24-48 h gehalten. Anschließend wird das Präparat langsam auf 900 C abgekühlt (5-10 /h) und von dort schnell (50 /h) auf Zimmertemperatur. Das Produkt ist ein massiver, dichter Block bestehend aus großen Kristallen (typ. 2x3x1,5 mm). Das tetragonale Material wird durch Nachoxidation (24-48 h: 600 C; 0-,-Atmosphäre) orthorhombisch. Es zeigt (auch als gesamter Block) den Meißnei—Effekt im flüssigen Stickstoff, außerdem auch den Suspensionseffekt und weist eine Sprungtemperatur von 90 K auf. Rastei— und polarisationsmikroskopische Aufnahmen zeigen, daß die kristallinen Bezirke Mikrodomänen beherbergen. Die einzelnen Mosaikdomänen weisen nur einen geringen Misfit bzgl. der Orientierung auf.
Die chemische Analyse zeigt nicht nur einen Ba-Unterschuß, sondern auch einen Yttriumüberschuß auf: (Yn , ,Ban r-,),Cu-,0, a. ist eine typ. Zusammen-
0,44 U,56 3 3 0,84
Setzung zweier Kristalle. Interessanterweise addieren sich Y- und Ba-Gehalt - auf Cu1 bezogen - gerade auf 1, was eine Fehlordnung im Y-Ba-Gitter nahelegt, wie sie wohl nur bei hohen Temperaturen auftreten kann.

Claims

PATENTANSPRÜCHE
1. Hoch-T -Supraleiter eines Typs, wie er durch die allgemeinen Formeln
ME-, R.,0 , ME-, R_0 , M-.E-. R-.0 repräsentiert wird, wobei 2-y 2 x' 2-y 3 x 23-y 2 x
M mindestens ein dreiwertiges Element E mindestens ein zweiwertiges Element, R mindestens ein Übergangselement und x der Sauerstoffanteil bedeuten, dadurch gekennzeichnet, daß 0 < y < 0,3 ist.
2. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß y > 0,1 ist.
3. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß er c
Spuren mindestens eines Fremdelements, vorzugsweise Alkalielements, enthält.
4. Hoch-T -Supraleiter nach Anspruch 3, dadurch gekennzeichnet, daß er, bezogen auf den Gehalt an zweiwertigem Element, einen Fremdelerentantei l im ppm bis Promille-Bereich enthält.
5. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß M mindestens ein Lanthanoidenelement, Yttrium und/oder Wismut ist.
6. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß E mindestens ein Erdalkalielement ist.
7. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß R Kupfer ist.
8. Hoch-T -Supraleiter nach Anspruch 1, dadurch gekennzeichnet, daß seine Zusammensetzung im wesentlichen der Formel
YBa1,95Cu3°6,45+0,25 entspricht.
9. Verfahren zum Herstellen eines keramischen Hoch-T -Supraleiters, bei welchem eine Ausgangsmischung hergestellt wird, die Verbindungen mindestens eines dreiwertigen Elements, wie mindestens eines Lanthanoidenelements und/oder Yttrium und/oder Wismut, mindestens eines zweiwertigen Elements, wie eines Erdalkalielements, und eines Übergangselements, wie Kupfer, enthält und die Mischung geglüht wird, dadurch gekennzeichnet, daß der Mischung ein beim Glühen entweichendes Fremdelement-Material zugesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß eine Mischung verwendet wird, die einen unterstöchiometrischen Anteil an zweiwertigem Element enthält.
11. Verfahren nach Anspruch 10, dadurch gekennze chnet, daß eine Mischung verwendet wird, in der der molare Anteil des Fremdelements mindestens gleich dem molaren Defizit an zweiwertigem Element ist.
12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß als Fremdelement- Material mindestens ein Alkalimetall und/oder Blei verwendet werden.
13. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als zweiwertiges Element Barium und als Fremdelement Kalium verwendet werden.
14. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die geglühte Mischung abgekühlt, zerkleinert, gepreßt und dann erneut geglüht wird.
15. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Mischung in Luft geglüht wird.
PCT/EP1989/000163 1988-02-25 1989-02-22 HIGH-Tc SUPERCONDUCTOR AND PROCESS FOR PREPARING IT WO1989008330A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE58909256T DE58909256D1 (de) 1988-02-25 1989-02-22 HOCH-Tc-SUPRALEITER UND VERFAHREN ZU SEINER HERSTELLUNG.
US07/573,038 US5413980A (en) 1988-02-25 1989-02-22 High-T superconductor and process for preparing it
EP89902518A EP0402371B1 (de) 1988-02-25 1989-02-22 HOCH-Tc-SUPRALEITER UND VERFAHREN ZU SEINER HERSTELLUNG

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3805954A DE3805954C1 (de) 1988-02-25 1988-02-25
DEP3805954.1 1988-02-25

Publications (1)

Publication Number Publication Date
WO1989008330A1 true WO1989008330A1 (en) 1989-09-08

Family

ID=6348174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1989/000163 WO1989008330A1 (en) 1988-02-25 1989-02-22 HIGH-Tc SUPERCONDUCTOR AND PROCESS FOR PREPARING IT

Country Status (5)

Country Link
US (1) US5413980A (de)
EP (1) EP0402371B1 (de)
JP (1) JP2840349B2 (de)
DE (2) DE3805954C1 (de)
WO (1) WO1989008330A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331360B1 (de) * 1988-02-26 1994-02-02 Hitachi, Ltd. Verfahren zur Herstellung eines hochtemperaturoxid supraleitenden Werkstoffs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4116094A1 (de) * 1991-05-17 1992-11-19 Abb Patent Gmbh Verfahren zur herstellung eines keramischen supraleitermaterials mit feinstverteilten fremdphasen
US11130712B2 (en) 2018-09-24 2021-09-28 Imam Abdulrahman Bin Faisal University Method of producing polycrystalline Y-358 superconductor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277749A2 (de) * 1987-01-30 1988-08-10 Hitachi, Ltd. Supraleitendes Oxid
EP0287325A2 (de) * 1987-04-13 1988-10-19 Hitachi, Ltd. Supraleitendes Material und Verfahren zu dessen Herstellung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256564A (ja) * 1987-04-14 1988-10-24 Kanegafuchi Chem Ind Co Ltd 鱗片状酸化物超伝導性セラミツクス及びその製造方法
JP2563352B2 (ja) * 1987-07-01 1996-12-11 株式会社東芝 複合超電導体の製造方法
US4942151A (en) * 1987-09-28 1990-07-17 Arch Development Corporation Magnetic preferential orientation of metal oxide superconducting materials
US4973575A (en) * 1987-09-28 1990-11-27 Arch Development Corporation Preferential orientation of metal oxide superconducting materials by mechanical means
US4880771A (en) * 1988-02-12 1989-11-14 American Telephone And Telegraph Company, At&T Bell Laboratories Bismuth-lead-strontium-calcium-cuprate superconductors
US4839339A (en) * 1988-02-25 1989-06-13 The United States Of America As Represented By The United States Department Of Energy Superconductor precursor mixtures made by precipitation method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0277749A2 (de) * 1987-01-30 1988-08-10 Hitachi, Ltd. Supraleitendes Oxid
EP0287325A2 (de) * 1987-04-13 1988-10-19 Hitachi, Ltd. Supraleitendes Material und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Physical Review Letters, Band 58, Nr. 9, Mäarz 1987 (New York, US) M.K. Wu Et al.: "Superconductivity at 93K in a new mixid phase Y-Ba-Cu-O comound system at ambient pressure ", Seiten 908-910 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331360B1 (de) * 1988-02-26 1994-02-02 Hitachi, Ltd. Verfahren zur Herstellung eines hochtemperaturoxid supraleitenden Werkstoffs

Also Published As

Publication number Publication date
JP2840349B2 (ja) 1998-12-24
EP0402371B1 (de) 1995-05-24
US5413980A (en) 1995-05-09
EP0402371A1 (de) 1990-12-19
DE58909256D1 (de) 1995-06-29
DE3805954C1 (de) 1989-09-28
JPH03505569A (ja) 1991-12-05

Similar Documents

Publication Publication Date Title
EP0362492B1 (de) Verfahren zur Herstellung eines Hochtemperatursupraleiters sowie daraus bestehende Formkörper
DE69024484T2 (de) Yttrium-barium-kupfer-sauerstoff-supraleiter mit gerichteten kristalliten und hoher kritischer stromdichte sowie verfahren zur ihrer herstellung
DE3855287T2 (de) Supraleitender Draht
DE3854358T2 (de) Supraleitendes Oxid.
DE69209856T2 (de) Supraleitendes Oxidmaterial und Verfahren zu seiner Herstellung
DE69309819T3 (de) Verfahren zur Herstellung eines supraleitenden Materialgemisches, das seltene Erdelemente enthält
DE60224418T2 (de) Methode zum verbinden von supraleitern und ein verbundsupraleiter
DE69118670T2 (de) Auf seltenem Erdmetall basierendes oxidisches Material und Verfahren zu seiner Herstellung
EP1157429B1 (de) Supraleitende körper aus zinkdotiertem kupferoxidmaterial
DE68927895T2 (de) Verfahren zum Herstellen eines einkristallinen oxidischen Supraleitermaterials
DE68921382T2 (de) Verfahren zur Herstellung von oxidischen Supraleitern des Typs Wismut.
DE69031586T2 (de) Supraleitende 247-Metalloxidzusammensetzungen
WO1989008330A1 (en) HIGH-Tc SUPERCONDUCTOR AND PROCESS FOR PREPARING IT
DE68904260T2 (de) Verfahren zur herstellung eines pulvers aus supraleitfaehigem oxid auf der basis von wismut, das blei enthaelt, und verfahren zur herstellung eines sinterkoerpers daraus.
DE68917241T2 (de) Metall-Thallium-Strontium-Calcium-Kupfer-Sauerstoff-Supraleiter und Verfahren zu ihrer Herstellung.
DE68928684T2 (de) Supraleiter und Verfahren zu deren Herstellung
DE19623050C2 (de) Verfahren zur Herstellung hochtemperatursupraleitender, schmelztexturierter massiver Materialien
DE69410577T2 (de) Verfahren zur Herstellung eines Oxid-Supraleiters
DE19708711C1 (de) Verfahren zur Züchtung von Einkristallen von Hochtemperatursupraleitern aus Seltenerd-Kupraten der Form SE¶1¶¶+¶¶x¶Ba¶2¶¶-¶¶x¶Cu¶3¶0¶7¶¶-¶¶delta¶ und nach dem Verfahren hergestellte Kristalle
DE3932423C2 (de)
DE69934867T2 (de) Oxidisches supraleitendes Material und Verfahren zu seiner Herstellung
DE3803530C2 (de) Oxidischer Supraleiter und Verfahren zu seiner Herstellung
DE60032404T2 (de) Verfahren zur Herstellung eines Oxid-Supraleiters
EP0482221A1 (de) Verfahren zur Herstellung eines Hochtemperatur-Supraleiters vom Bi-Sr-Ca-Cu-O Typ
DE3803680C2 (de)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989902518

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989902518

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989902518

Country of ref document: EP