WO1988009840A1 - Heavy-load radial tire - Google Patents

Heavy-load radial tire Download PDF

Info

Publication number
WO1988009840A1
WO1988009840A1 PCT/JP1988/000231 JP8800231W WO8809840A1 WO 1988009840 A1 WO1988009840 A1 WO 1988009840A1 JP 8800231 W JP8800231 W JP 8800231W WO 8809840 A1 WO8809840 A1 WO 8809840A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
radial tire
filament
metal filaments
tire
Prior art date
Application number
PCT/JP1988/000231
Other languages
English (en)
French (fr)
Inventor
Kiyohito Kawasaki
Yujiro Umezawa
Toshio Sugawara
Original Assignee
Bridgestone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corporation filed Critical Bridgestone Corporation
Priority to EP88902231A priority Critical patent/EP0317636B1/en
Priority to KR1019880700647A priority patent/KR960006935B1/ko
Priority to DE3855985T priority patent/DE3855985T2/de
Publication of WO1988009840A1 publication Critical patent/WO1988009840A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/902Reinforcing or tire cords

Definitions

  • the present invention improves the metal code applied to the radial tire carcass spray, and greatly improves the durability life of the radial tire for light tires and light trucks.
  • the present invention relates to a technology for providing a radial tire for heavy loads such as a radial tire.
  • a method of lowering the contact pressure between code filaments is to use a steel cord 3 + 9 two-layer twisted structure (Japanese Unexamined Patent Publication No. 5 9 — 1 2 4 4 0 4 Publication) and 1 ⁇ 12, etc., a compact-packed twisted structure with a densely packed structure (Japanese Patent Application No. 60 — 3521 5)
  • Japanese Patent Application No. 60 — 3521 5 Japanese Patent Application No. 60 — 3521 5
  • the twistability of these cords was Examinations such as pulling out are being conducted (Japanese Patent Laid-Open No. 59-124404).
  • Japanese Patent Application Laid-Open No. 60-116504 discloses a tire using a fuel cord having a two-layer twisted structure with the above filament as a core.
  • the inventors of the present invention have made various improvements to develop a heavy duty radial tire capable of significantly improving the durability life.
  • the conventional 3 + 9 two-layer twisted structure and the 1 ⁇ 12 compact coil have been studied.
  • the rubber did not enter the cord at both ends of the carcass ply, so the stress concentration at the cord end was remarkable, and the crush resistance at both ends of the force-cass ply was not sufficient.
  • the conventional 3 + 9 two-layer twisted structure and 1 X 12 compact twisted structure are used.
  • the contact pressure between the filaments is high, and this structure is called a radial tire for truck bus (TBR)
  • TBR radial tire for truck bus
  • LSR radial tire
  • the technique described in Japanese Patent Application Laid-Open No. 60-116504 is an improvement technique for a belt layer of a large-sized radial tire for rough roads, such as a reduction in the weight of the radial tire.
  • Japanese Patent Application Laid-Open No. 57-501502 discloses that most of the filaments constituting a steel code have a carbon content of 0.75 to 0.85% by weight.
  • a pneumatic tire is disclosed in which a twisted 7 ⁇ 4 steel cord having high tensile strength and having high tensile strength is applied as a reinforcing material for a carcass ply.
  • this steel cord has a multi-twisted structure of 7x4, the fretting between the strands is very large, and the rubber penetration into the cord is also high. Because of its inferiority, it could not meet the objective technical solution of the present invention.
  • an object of the present invention is to significantly reduce tire weight, improve the above-mentioned problems of fracture resistance, corrosion fatigue resistance and fretting resistance at the end of a carker splice, and at the same time, improve
  • An object of the present invention is to provide an improved technology for a heavy duty radial tire that can greatly improve the performance of a dial tire against side trauma (corrosion resistance). Disclosure of the invention
  • substantially 90 is placed on the tire equatorial plane.
  • the carcass ply has a filament diameter It is a single-strand structure made by twisting 3 to 5 metal filaments with a diameter of 0.13 to 0.32, and the elongation at a load of 0.25 to 5 kgf / line
  • Metal cords having an average value of 0.35 to 1.0% are arranged so that the gap between the cords at the end of the force-splice is 0.25 MI or more. is there.
  • the single-burning structure of a metal cord formed by combining three to five metal filaments is specifically described as 1X3, IX4, and 1X5.
  • FIG. 1 is a graph showing the relationship between the metal filament diameter d of a 1 ⁇ 5 open-combustion structure at a load index of 100 or more and 121 or less and the tensile strength TS of the filament.
  • Fig. 2 is a graph showing the relationship between the metal filament diameter d of the 1x4 open-burning structure and the tensile strength TS of the filament at a load index of 100 or more and 121 or less.
  • FIG. 3 is a graph showing the relationship between the metal filament diameter d of a 1 ⁇ 3 open-twisted structure at a load index of 100 or more and 121 or less and the tensile strength T S of the filament.
  • Fig. 4 shows the metal filament diameter d of the 1x5 open rubbing structure in the load index 122 or higher and the filler diameter. Graph showing the relationship between the tensile strength of the
  • FIG. 5 is a graph showing the relationship between the metal filament diameter d of the 1 ⁇ 4 open-burning structure and the tensile strength T S of the filament in a load index of 122 or more.
  • FIG. 6 is a graph showing the relationship between the metal filament diameter d of the 1 ⁇ 3 open stranded structure and the tensile strength T S of the filament in the load index 122 or higher,
  • Fig. 7 is an illustration of the type setting
  • Fig. 8 is an explanatory diagram of the fretting resistance test
  • FIG. 9 is an explanatory diagram of a corrosion fatigue resistance test.
  • the present invention provides the radial tire for heavy loads, wherein the metal filament is provided when a load index (Load Index) according to ISO 4209/1 is 100 or more and 121 or less. Between the tensile strength TS (kgf / mm 2 ) and the filament diameter d ( ⁇ ) in the following 1) to 3); 1) When the number of metal filaments is 5 (A in Fig. 1)
  • the tensile strength TS (kgf / thigh 2 ) of the metal filament and the filament The relationship between the center diameter d (mm) and the following 1) to 3)
  • the tensile strength TS (kgf / thigh 2 >) of the metal filament and the filament
  • the number of metal filaments is 5 (A in Fig. 4) 52.24 (2.89 d +0.25)
  • the tensile strength TS (kgf / thigh 2 ) of the metal filament is equal to the tensile strength of the metal filament.
  • the twist pitch of the metal cord in the present invention is appropriately selected in the range of 5 to 20 s.
  • the metal cord of the present invention may be formed, for example, by molding a metal filament in advance before twisting the cord, subjecting the metal filament to plastic working, and then combing.
  • the type ratio is shown in Fig. 7 (a)
  • A is the maximum diameter in the state of a sad code
  • B is the maximum amplitude when the filaments that make up the code are passed.
  • this type ratio be 93% or more.
  • the elongation of the metal cord taken out of the tire between the load of 0.25 to 5 kgf per strand is required.
  • a so-called single-strand open structure metal cord with an averaging value of 0.35% to 1.0% is used as a reinforcing material for force cascading, but with such a structure, stress concentration at the end of the carcass ply
  • the rupture resistance of the splice end can be synergistically improved. It is due to gain.
  • Shore A hardness was used as the rubber covering the metal code. It is preferable to use a rubber composition having a thickness of 60 to 80, since the durability of the end portion of the carcass ply is further improved.
  • the coated rubber when the metal cord having the elongation within the above range is used, the coated rubber sufficiently penetrates into the metal cord, and therefore, corrosion of the metal cord due to intrusion of moisture into the cord is prevented. Not only can this be achieved, but also because the filaments of the metal code do not contact each other, the fretting resistance is also significantly improved.
  • the elongation is less than 0.35%, it becomes difficult for the coated rubber to penetrate into the cord, and if it exceeds 1.0%, the tension during the calendar work in which the metal cord is wrapped with the coated rubber. Is likely to be non-uniform, and it is easy to cause a decrease in uniformity and a decrease in carcass durability due to turbulence in the tire code, which is not preferable in any case.
  • the cord strength is small, and it is impossible to maintain the case strength that can withstand the side portion damage.
  • the cord strength is small, and it is impossible to maintain the case strength that can withstand the side portion damage.
  • the former must be thicker, but the former is difficult due to problems with tire manufacturing technology and the problem of bead durability deterioration.
  • the latter has a bending rigidity proportional to the fourth power of the filament diameter. There is a problem such as bead floating where the code deviates from the bead due to a remarkable increase or deterioration of corrosion fatigue resistance due to an increase in input.
  • the lower limit of the diameter of such a filament is related to maintaining the required case strength and lowering the durability of the end of the carcass bryer, and the upper limit is the bead floating due to the increase in bending stiffness and corrosion fatigue resistance.
  • the present invention in the case of a heavy duty radial tire having a load index of 100 or more and 121 or less, in the case of 1 ⁇ 5 fuel, In addition, it is limited to 0.13-0.25 thigh. Preferably, it should be in the range of 0.18 to 0.25 ⁇ .
  • the width is limited to 0.14 to 0.25, preferably within the range of 0.19 to 0.25.
  • 1X3 twist it is limited to 0.15 to 25 thighs, preferably within the range of 0.21 to 0.25 thighs.
  • the width is limited to 0.15 to 0.32 mm, preferably within the range of 0.21 to 0.32 thigh.
  • 1X4 twist it shall be limited to 0.16 to 0.32 thigh, preferably within the range of 0.23 to 0.32.
  • 1X3 twist it is limited to 0.17 to 0.32 IM, preferably within the range of 0.27 to 0.32 thigh.
  • the cord diameter of the metal cord can be suppressed, and the end of the carcass splice More durable Not only can it improve the strength of the case, but also can improve the breakage of the metal cord due to the cutting at the side wall.
  • the metal filaments of the present invention those having a high tensile strength have a surface reduction rate of 97.5% and use a lubricant having a good wire drawing property, and use a lubricant having a wire drawing property that is 3 to 4 times higher than that of a normal wire drawing. It can be made by performing multi-step wire drawing with increased number of times of drawing.
  • the carbon content of the metal filament is preferably from 0.72 to 0.95%, and more preferably from 0.82 to 0.95%, since higher tensile strength can be obtained. However, if it exceeds 0.95%, the metal filament becomes brittle, which is not preferable. In addition, it is preferable that the area reduction rate is 96% or more.
  • the metal filament according to the present invention is preferably a steel filament, and is usually formed of a single metal of Cu, Zn, or Co, or an alloy such as a Cu_Zn alloy (brass). Use a more coated one.
  • TBR 11R24.5 (Examples 1 to 7 and Comparative Examples 1 to 10) with a load index of 140 as an evaluation tire and LSR 750R16 (Examples 8 to 11) with a load index of 108 were used. , Comparative Examples 11 to 17) were used respectively.
  • the control tire of Comparative Example 1 has a steel coil of 3 + 9 X 0.23 recitation + 1 in the circumferential direction of the tire. At an angle of 90 ° with respect to this, arrayed at a driving density of 26 holes / ⁇ Omm, other comparison
  • the steel cords to which the respective car power splices shown in Table 1 are applied at the same angle to the circumferential direction and conform to the case strength of the control tire of Comparative Example 1. And the number of shots determined as described above.
  • the steel cord of 3 + 9 X 0.19 ⁇ + 1 was used at the angle of 90 ° with respect to the circumferential direction of the tire.
  • the steel cords to which each carcass ply was applied as shown in Table 2 were arranged at the same angle with respect to the circumferential direction and at the same angle in the comparative examples and examples. They were arranged with the number of shots respectively determined so as to conform to the case strength of the control ⁇ -filter.
  • the rubber composition used was 100 parts by weight of natural rubber having a shear hardness of 68 and 100 parts by weight of carbon black HAF.
  • this value is set to 100 as the control tire in Comparative Example 1 and in the case of LSR 750R16, the control tire is set to 100, and the smaller the amount of fretting, the larger.
  • the fretting resistance in Tables 1 and 2 is shown as an index so as to be smaller.
  • the test method was as follows. A rubber cord 3 taken out from the tire was hung on three pulleys 4 with a diameter of 40 gussets as shown in the figure, and a new one was fixed via a fixed pulley 5. A tensile load is applied to a weight 6 equivalent to 10% of the cord breaking load, and the pulley is repeatedly moved left and right by 20 cm to apply bending strain to the cord repeatedly, causing the cord to fatigue-rupture and leading to code breaking. The value obtained by calculating the number of repetitions as the average number of fractured pieces of 10 cords and setting the code of a new tire to 100 was used to determine the degree of decrease in corrosion fatigue resistance.
  • the steel cord used for the prototype tire was vertically aligned in rubber.
  • a sample with a thickness of 3 mm, a width of 50 mm and a length of 300 thighs embedded in a steel plate was subjected to a 10% pull of steel cord strong X number of shots (that is, a strong trie), and a blade weighing 20 kg
  • the mold is naturally dropped from above at right angles to the cord direction, and the cut height is compared with the side trauma resistance.
  • Tables 1 and 2 this property is shown with the control of Comparative Examples 1 and 11 as 100, and the larger the numerical value, the better the side trauma resistance.
  • the tread rubber of the prototype tire is buffed and the endurance of the carcass ply at the end of the carcass ply is evaluated under the condition that the belt layer is not damaged by the heat of the belt layer.
  • the separation at the end of the carcass ply cord, and the vibration distance increases when the drum travel distance is set as the respective travel distance, which is the same as that of the control tires of Comparative Example 1 and Comparative Example 11. It was indicated by an index. The larger the value, the better the bead durability.
  • Adhesion resistance (adhesion reduction degree)
  • Prototype Water 300 cc sealed in tires load JIS 200%, the speed 60 km / hr, if the internal pressure 7.25kg / on 2, 750IUS For 11R24.5 on the drum under the condition of inner pressure 8.0 kg / cm z Turn, stop after traveling 20,000 km, separate the four cords with rubber force at low temperature (-60'C), and reduce the amount of rubber remaining on the cord to the least In the intense part of each, using the image analyzer It was measured for each code, and indicated by an index in comparison with those of the control tires of Comparative Examples 1 and 11. The larger the value, the better the adhesion resistance.
  • Example 5 The twisted structures of Examples 1 and 5 to 7 are all 1 ⁇ 5.
  • the tensile strength is slightly deviated from the optimum range due to the relationship with the filament diameter.
  • the case strength is slightly lower than that of Example 1 due to the restrictions.
  • the side trauma resistance is slightly lower than that of Example 1, and the puncture resistance at the carcass ply end is slightly deteriorated due to the increased number of shots.
  • all the performances were significantly improved.
  • Example 6 the case strength was low due to the limitation on the driving limit, because the lower limit of the optimum range of the filament diameter was in relation to the tensile strength. For this reason, the side trauma resistance is lower than that of Example 1, and the puncture resistance at the end of the cascade bridge is somewhat deteriorated due to the large number of hits. However, in comparison with the control of Comparative Example 1, the control is sufficiently good, and all other performances are significantly improved.
  • Example 7 is an example in which the filaments have different diameters, and have two types of filament diameters. In this example, all performances are better than the control.
  • Example 4 is an example of a structure in which a spiral of 1 X ⁇ + 1 is wound, and it seems that buckling does not easily occur by winding the spiral. However, due to the spiral, no matter how loosely it is wound, the penetration of rubber into that part will not occur. Insufficient, poor rubber permeability and slightly reduced durability compared to Example 1, but no problem compared to control.
  • Examples 2 and 3 are examples of 1 ⁇ 3 and 1 ⁇ 4 twisted filaments, respectively, and the number of filaments is smaller than that of Example 1. For this reason, it is necessary to maintain the case strength at a certain level or more in order to maintain the resistance to side trauma. Therefore, in these examples, the diameter of the filament is increased, and the number of shots is increased. As a result, the corrosion fatigue resistance and the crush resistance at the end of the car power splice are slightly deteriorated as compared with Example 1, but are significantly improved as compared with the control.
  • Comparative Example 2 shows an example in which P i is too small, which results in poor rubber permeability, especially when the tread is cut, and is therefore resistant to corrosion fatigue, fretting and fretting. There is almost no improvement in adhesiveness at the same level as the control, and the adhesive resistance is rather poor.
  • Comparative Example 3 is an example in which the tensile strength is too low, the case strength is significantly reduced, and the side trauma resistance is significantly reduced. It is necessary to increase the number of shots in order to ensure the crush resistance of the car splice end.
  • Comparative Example 4 is an example in which the number of shots was increased in order to increase the side damage resistance, but the breakage resistance at the end of the carcass ply was significantly reduced.
  • Comparative Example 5 is an example in which is too large, so that the movement of the filament was intense, the adhesive resistance was deteriorated, and the factors of driving disturbance were added, and the corrosion fatigue resistance and fretting resistance were added. Gender is not much improved.
  • Comparative Example 6 is an example in which the filament diameter is too small.
  • the case strength is insufficient even when driven to the driving limit, the side damage resistance does not increase, and the carcass ply end resistance is greatly reduced. Has declined. Furthermore, when the tire side was hit by the curb, the cord was bent due to buckling.
  • Comparative Example 7 is an example in which the filament diameter is too large.
  • the corrosion fatigue resistance is lower than that of Comparative Example 1 because the filament ⁇ ⁇ is too large.
  • Comparative Examples 8 and 9 are examples of 1X2 and 1X6 polite structures, respectively.
  • 1X2 the number of filaments was too small, and the corrosion fatigue resistance was reduced. Even if the filament diameter is increased to the extent that it does not occur, the side trauma resistance may decrease. For this reason, when the number of shots was increased to near the limit of the shot, the cord spacing became narrower, and the crush resistance at the end of the carcass spray was significantly reduced compared to the control.
  • rubber permeability is low, so that the rubber cushioning effect is small, which affects the strength of the case and deteriorates the side trauma resistance.
  • Comparative Example 10 the value was too small, 0.25. In this example, the rubber permeability was not sufficient, and in particular, the trad was damaged. Corrosion fatigue in the case of ⁇ Adhesion resistance is greatly reduced and is not preferred.
  • Example 8 Fi lame down preparative size 0.21 Yuzuru in twist structure of 1 X 5, is an example of a tensile strength 380 kg Z picture 2, corrosion fatigue resistance in this example - performance comparison of such resistance is Tsuti ing properties This is much better than the control in Example 11.
  • Embodiments 9 and 10 are examples of the 1 ⁇ 3 and 1 ⁇ 4 twisted structures, respectively.
  • the need to maintain the case strength at a certain value or more increases the thickness of the filament ⁇ ⁇ or increases the number of drivings. It is.
  • various performances were slightly worse than in Example 8, but the overall performance was significantly improved as compared with the control of Comparative Example 11.
  • Embodiment 11 is a case where there is a spiral.
  • the rubber permeability to the cord tends to be inferior, and the durability is lower than that of Example 8, but is good in comparison with the control ⁇ -roll of Comparative Example 11.
  • Comparative Example 12 is an example of a 1 ⁇ 2 combustion structure.
  • the rubber cushion effect was small, and when the number of shots was increased to maintain the strength of the case, the breakage resistance at the end of the power-cast ply deteriorated. I have.
  • the strength of the cylinder case is low, so the side trauma resistance is worse than that of the control.
  • Comparative Example 13 is an example of a 1 ⁇ 6 twisted structure, but also in this example, as in Comparative Example 9 described above, one cord fell and two layers were formed. Rubber permeability is poor due to the twisted structure. In particular, the adhesive properties of some shoulders during tread cutting are poor.

Description

明 細 書 重 荷 重 用 ラ ジ ア ル タ イ ヤ 技 術 分 野
本発明は、 ラ ジアルタ イ ヤのカーカスプラ イ に適用する 金属コ ー ドを改良し、 耐久寿命を大幅に向上した ト ラ ッ ク ノ ス用ラ ジアルタ イ ヤ、 ラ イ ト ト ラ ッ ク用-ラ ジアノレタ イ ヤ 等の重荷重用ラジアルタ イ ヤを提供する技術に関する もの である。
背 景 技 術
近年、 省資源、 省エネルギー等の社会的ニーズの増大に 答えるべ く 、 ラ ジアルタ イ ヤの軽量化、 転り抵抗の低減お よび更生寿命向上による製品のロ ングラ イ フ化や、 偏平化 の要請が重荷重用ラ ジアルタイ ヤにも生じてきている。 か かる要請に沿う タ イ ヤを開発してい く 場合、 カーカ スブラ ィ材と して金属コー ドのカーカスプラ イ端部での耐破壊性 耐腐食疲労性および耐フ レ ツティ ング性の問題の解決を図 る こ とが重要なポィ ン ト となる。
そのため、 カーカスプラ イ コ 一 ドへの入力の観点に立つ て、 コー ドフ ィ ラ メ ン ト間の接触圧を下げる方法と してス チールコー ドの 3 + 9 の 2層撚り構造化 (特開昭 5 9 — 1 2 4 4 0 4 号公報) や 1 X 1 2等の最密充塡構造である コ ンパク トコ一ド撚り構造化 (特願昭 6 0 — 3 5 2 1 5号明 細書) が試みられ、 更に前記の耐腐食疲労性および耐フ レ ッティ ング性を改善するために、 これらのコー ドの撚り性 拔等の検討が行なわれている (特開昭 5 9 - 1 2 4 4 0 4 号公報) 。
—方、 悪路用大型ラ ジアルタイ ヤのベルト最外層コ一ド として、 予め型付けしたフィ ラメ ン トを撚つて得られる 1 X 4撚りまたは 1 X 5撚り の単層撚り構造または 1〜 2本 のフ ィ ラメ ン トをコアとした 2層撚り構造を有する燃り コ —ドを用いるタイ ャが特開昭 6 0 — 1 1 6 5 0 4号公報に 示されている。
本発明者らは耐久寿命を大幅に向上し得る重荷重用ラジ アルタイヤを開発するために銳意改良検討を試みたところ、 従来の 3 + 9 の 2層撚り構造や 1 X 1 2 のコ ンパク ト コ一 ド撚り構造ではカーカスプライの両端部において、 コー ド 内にゴムが侵入しないためコ一ド端の応力集中が著し く、 力一カスプライ両端部での耐破壌性が充分ではなかつた。 また前記コー ドはコ一ドを埋め込むゴムをコ一 ド内部に迄 侵入させることが難しく、 コー ド内部の空孔、 即ちスチー ルフ ィ ラメ ン トで囲まれ、 コー ド軸方向に開通するコー ド 内部の空孔が侵入ゴムによつて殆ど閉塞されないので、 ト レッ ドに生じた力 ッ トから侵入した水分がコード内部の空 孔を通って遠く迄移動するのを防止することができず、 耐 腐食疲労性の改善が充分でないことが分かつた。
またフ レツティ ング (コー ドのフ ィ ラメ ン ト同士がこす れて削り取られる現象) の発生状況については、 従来の 3 + 9 の 2層撚り構造および 1 X 1 2 のコ ンパク ト撚り構造 でばフィ ラメ ン ト間の接触圧が高く、 このためかかる構造 を ト ラ ッ クバス用ラジアルタ イ ヤ ( T B R ) 、 ラ イ ト ト ラ ッ ク用 ラ ジアルタ イ ヤ ( L S R ) 等のカーカ スプラ イ コ 一 ドに適用すると厳しい入力のためにフ レツティ ングをひき おこ し、 強力低下を誘発して重荷重用ラジアルタイ ヤのケ ース耐久性を大幅に低下させるという問題があった。
一方、 前記特開昭 6 0 — 1 1 6 5 0 4号公報記載の技術 は、 悪路用大型ラ ジアルタ イ ヤのベル ト層の改良技術に閬 するものであってラジアルタィ ャの軽量化等の近年の社会 的要請に答える ことはできず、 またかかる技術をカーカ ス プラ イ にそのま ま適用する こ と はビ一 ド耐久性やケース強 度上問題があり不可能であった。
さ らに、 特開昭 5 7 - 5 1 5 0 2号公報にはスチールコ ー ドを構成する大部分のフ ィ ラ メ ン 卜が、 炭素を 0 . 75〜 0 . 85 重量%舍有する鋼材からなり、 かつ高い抗張力を有する撚 り構造 7 X 4 なるスチールコー ドをカーカ スプラ イ の補強 材として適用した空気入りタイ ヤが開示されている。 しか しながら、 こ のスチールコ ー ドは 7 X 4 とい う複撚り構造 であるため、 ス ト ラ ン ド間でのフ レツティ ングが非常に大 き く 、 またコー ド内へのゴム浸透性も劣るため、 本発明の 目的とする技術的課題の解決とは合致し得なかった。
従って本発明の目的は、 タイ ヤ重量の大幅軽減を図り、 前記問題点であるカ ーカ スプライ端部の耐破壊性、 耐腐食 疲労性および耐フレ ツ テ ィ ング性を改善し、 同時にラ ジア ルタ イ ヤ の耐サ イ ド外傷性 (耐コ ー ド切れ性) の性能を大 幅に向上し得る重荷重用ラ ジアルタ イ ヤ の改良技術を提供 することにある。 発 明 の 開 示
上記目的を達成するために、 本発明ば、 タイ ヤ赤道面に 実質的に 90。 の角度で配列し、 ビ一 ドコアのまわり ίこ内か ら外へ卷返した少なく とも 1層の力一カスプライを備えた 重荷重用ラ ジアルダイヤにおいて、 前記カーカスプライ と して、 フィ ラメ ン ト径が 0. 13〜0. 32讓である金属フィ ラメ ン トを 3〜 5本撚り合わせてなる単撚り搆造であって、 荷 重 0. 25〜 5 kgf /本までの間における伸び が相加平均値と して 0. 35〜 1. 0 %である金属コー ドを前記力一カスプライ の端部でのコード間隙が 0. 25 MI以上であるように配列した ことを特徴とするものである。
なお、 金属フィ ラメ ン トを 3〜 5本憨り合わせてなる金 属コー ドの単燃り構造とは、 以下、 具体的に 1 X 3、 I X 4および 1 X 5 と表記する。
図面の簡単な說明
第 1図は、 ロー ド · ィ ンデックス 100以上 121以下におけ る 1 X 5 のオープン燃り構造の金属フイ ラメ ン ト径 d と該 フィ ラメ ン トの抗張力 T S との閬係を示すグラフ、
第 2図は、 ロード ♦ ィ ンデ クス 100以上 121以下におけ る 1 X 4のオープン燃り構造の金属フイ ラメ ン ト径 d と該 フィ ラメ ン トの抗張力 T Sとの閬孫を示すグラフ、
第 3図は、 ロード · イ ンデックス 100以上 121以下におけ る 1 X 3 のオープン撚り構造の金属フィ ラメ ン ト径 d と該 フ ィ ラメ ン トの抗張力 T S との関係を示すグラフ、
第 4図は、 ロー ド · ィ ンデックス 122 以上における 1 X 5 のオープン擦り構造の金属フィ ラメ ン ト径 d と該フ イ ラ メ ン トの抗張力 T S との関係を示すグラフ、
第 5図は、 ロー ド · ィ ンデックス 122 以上における 1 X 4 のオープン燃り構造の金属フ ィ ラ メ ン ト径 d と該フ イ ラ メ ン トの抗張力 T S との関係を示すグラフ、
第 6図は、 ロー ド · ィ ンデッ クス 122 以上における 1 X 3 のオープン撚り構造の金属フィ ラメ ン ト径 d と該フ ィ ラ メ ン トの抗張力 T S と'の関係を示すグラフ、
第 7図は、 型付けの説明図、
第 8図は、 耐フ レツティ ング性試験説明図、
第 9図は、 耐腐食疲労性試験説明図である。
発明を実施するための最良の形態
本発明をより詳細に説明するために、 以下添付図面を参 照してこれを説明する。
本発明は、 前記重荷重用ラ ジアルタ イ ヤにおいて、 ISO 4209/1によ る ロー ド · ィ ンデ ッ ク ス (Load Index)が 100以 上 121以下である場合に、 前記金属フ ィ ラメ ン トの抗張力 T S (kgf/ mm2)とフ ィ ラ メ ン ト径 d (删) とが以下の 1)〜 3)の閬係、 1) 金属フ ィ ラ メ ン ト数が 5本の場合 (第 1 図 の A )
37.55 (2.89 d +0.25)
T S ≥
π X d 2
(式中、 d =0.13〜0.25である。 )
) 金属フ ィ ラ メ ン ト数が 4本の場合 (第 2図の A )
46.94 (2.61 d 十 0.25)
T S ≥
π X d 2
(式中、 d =0.14〜0.25である。 ) ) 金属フイ ラメ ン ト数が 3本の場合 (第 3図の A )
62.59 (2.33 d 十 0.25)
T S
7Γ X d 2
(式中、 d =0.15〜0.25である )
を満足することが好ましい。
更に好まし く は、 前記重荷重用ラジアルタィャにおいて 前記ロー ド , ィ ンデ ックスが 100以上 121以下である場合に 前記金属フ ィ ラ メ ン ト の抗張力 T S (kgf/腿2)とフ ィ ラ メ ン ト径 d (mm) とが以下の 1)〜3)の関係、
1) 金属フ ィ ラ メ ン ト数が 5本の場合 (第 1図の B )
240.64
T S≥
π X ά
(式中、 d =0.18〜0.25である。 )
2) 金属フィ ラメ ン ト数が 4本の場合 (第 2図の B )
271.65
T S
π X d
(式中、 d =0.18〜0.25である。 )
3) 金属フイ ラメ ン ト数が 3本の場合 (第 3図の B )
342.37
T S
7Γ X d
(式中、 d -0.21〜0.25である )
を満足するようにする。
また本発明は、 前記重荷重用ラジアルタイ ヤにおいて、 前記ロー ド · ィ ンデ ックスが 122 以上である場合に、 前記 金属フ イ ラ メ ン ト の抗張力 T S (kgf/腿 2〉とフ ィ ラメ ン ト 径 d (mm) とが以下の 1)〜 3)の関係、 - 1) 金属フ ィ ラメ ン ト数が 5本の場合 (第 4図の A ) 52.24 (2.89 d +0.25)
T S
Figure imgf000009_0001
(式中、 d =0.15〜0.32である。 ) .
2) 金属フ ィ ラメ ン ト数が 4本の場合 (第 5 図の A )
65.31(2.61 d +0.25)
T S
π X d 2
(式中、 d =0.16〜0.32である。 )
3) 金属フ ィ ラメ ン ト数が 3 本の場合 (第 6図の A )
87.07 (2.33d +0.25)
T S
π X d 2
(式中、 d =0.17〜0.32である。 )
を満足する こ とが好ま しい。
更に好ま し く は、 前記重荷重用ラ ジアルタ イ ヤにおいて 前記ロー ド · ィ ンデ ッ ク スが 122 以上である場合に、 前記 金属フ ィ ラ メ ン ト の抗張力 T S (kgf /腿 2) とフ ィ ラ メ ン ト ί圣 d ( 讓 ) とが以下の 1) 〜3)の関係、
1) 金属フ ィ ラメ ン ト数が 5本の場合 (第 4 図の B )
286.88
T S
π X d
(式中、 d =0.21〜0.32である。 )
) 金属フ ィ ラメ ン ト数が 4 本の場合 (第 5 図の B )
323.85
T S
- π X d
(式中、 d =0.23〜0.32である。 )
) 金属フ ィ ラメ ン ト数が 3 本の場合 (第 6図の B ) 409.57
T s
? r X d
(式中、. d -0.27〜0.32である。 )
を満足するようにする。
一方、 本発明における金属コ一 ドの撚り ピツチは 5 〜20 讓の範囲で適宜選択する。
また、 本発明の金属コードは、 例えばコードを撚る前に 予め金属フ ィ ラメ ン トを型付けし、 塑性加工を施した後に 燃り合わせればよい。 ここで型付け率とは第 7図 (ィ ) ,
(口) に示す如く、 愁コードの状態での最大径を A、 コー ドを構成するフ イ ラメ ン トを ぐした時の最大振幅を B と
B
した時、 型付け率は X100(%) で表される。 本発明
A
においては、 この型付け率を 93%以上とすることが好ま し い。 型付け率の上限ば特にないが、 製造上 120 %までとす るのが好ま しい。
本発明においては、 重荷重用ラジアルタイ ヤの力一カス プライ端部の耐久性を向上させるために、 タイ ヤから取り 出した金属コ―ドの荷重 0.25〜 5 kgf /本の間における伸び が相加平均値として 0.35%〜1.0 %である、 いわゆる単 撚り オープン構造の金属コー ドを力一カスプラ イ の補強材 として用いるが、 こ ¾はこのような構造とすればカーカス プライ端部の応力集中を大幅に軽減することができ、 これ と共にカーカ スプライ端部でのコー ド間隙を 0.25腿以上と すれば相乗的に力一力スプライ端部の耐破壌性を改良する ことができるという知見を得たことによるものである。
ここで、 前記金属コー ドの被覆ゴムとしてショ ァ一 A硬 さが 60〜80のゴム組成物を用いれば、 カーカスプライ端部 の耐久性は更に向上するため好ま しい。
本発明において、 前記伸び が前記範囲内の金属コー ド を用いれば被覆ゴムが金属コー ド内に充分に浸透するので コ一 ド内への水分の侵入による金属コ一 ドの腐食を防止す る こ とができ るばかり でな く 、'金属コー ドのフ ィ ラメ ン ト 同士が接触しないので、 耐フ レ ツティ ング性も著し く 向上 する。 しかし、 伸び が 0 . 35 %未満であると、 被覆ゴムが コー ド内に浸透しにに く なり、 また 1 . 0 %を越えると、 金 属コー ドを被覆ゴムで包み込むカ レンダー作業時に張力が 不均一となり易 く 、 タイ ヤのコー ド乱れによるュニフォ ミ ティー低下やカーカス耐久性低下を招き易く なり、 いずれ にしても好ま し く ない。
また、 金属フ ィ ラメ ン トが 1 X 2撚りではコー ド強力が 小さ く 、 サイ ド部の外傷に耐え得るケース強度を維持する ことが不可能である。 この場合には、 サイ ド部の外傷に耐 えるケース強度を維持するために 1 X 3撚り、 1 X 4撚り および 1 X 5撚りより も打ち込み数を増加させるかフ ィ ラ メ ン ト径を太く する必要があるが、 前者はタ イ ヤの製造技 術上の問題やビー ド部耐久性低下の問題等から難し く 、 後 者はフィ ラメ ン ト径の 4乗に比例する曲げ剛性の著しい増 加により コー ドがビ一ドからはずれるビー ド浮きとかある いは入力増大による耐腐食疲労性の低下の問題がある。 一 方 1 X 6燃り以上の場合は、 フ ィ ラメ ン トの少な く とも 1 本がどう しても内部に落ち込んでしまい、 実質的に 2層構 造となるので、 前記のよう にコア構造のあるコー ドでのゴ ム侵入性の困難さの問題がある。 従って、 必要なケース強 度、 製造適正などを満たし、 かつ耐腐食疲労性および耐フ レ ツティ ング性を確保するには、 1 X 3燃り、 1 X 4撚り または 1 X 5撚りの単層撚りでな くてはならず、 好まし く は 1 X 4撚り.またば 1 X 5撚り とする。
このようなフィ ラメ ン トの径は、 下限は必要なケース強 度の保持やカーカスブラィ端部の耐久性の低下に閬係し、 上限は曲げ剛性の増加に伴う ビー ド浮きゃ耐腐食疲労性の 低下に関係するので、 本発明においてはフ イ ラメ ン ト径を 夫々、 上述の如く、 ロード . イ ンデックスが 100以上 121以 下である重荷重用ラジアルタィ ャにおいては、 1 X 5燃り の場合に、 0.13〜0.25腿と限定する。 好まし く は、 0.18〜 0.25咖の範囲内とする。 また、 1 X 4镲り の場合は、 0.14 〜0.25讓と限定し、 好ましく は 0.19〜0.25腿の範囲内とす る。 更に、 1 X 3撚りの場合は、 0.15〜 25腿と限定し、 好まし く は 0.21〜0.25腿の範囲内とする。
同様に、 ロード · ィ ンデ ックスが 122 以上である重荷重 用ラジアルタイ ヤにおいては、 1 X 5撚りの場合に、 0.15 〜 0.32mmと限定し、 好ましく ば 0.21〜0.32腿の範囲内とす る。 また、 1 X 4撚り の場合は、 0.16〜0.32腿と限定し、 好まし く は 0.23〜 0.32誦の範囲内とする。 更に 1 X 3撚り の場合は、 0.17〜0.32IMと限定し、 好まし く ば 0.27〜0.32 腿の範囲内とする。
本発明においては、 上述の抗張力(TS)とフ ィ ラ メ ン ト径 (d) との閬係を満足すれば、 金属コー ドのコー ド径を抑え ることができ、 カーカ スプライ端部の耐久性をより向上さ せることができるばかりでな く、 ケース強度向上を達成す ることができると共に、 サイ ドウオール部のカ ツ トによる 金属コー ドの破断をも改善し得る。
本発明における金属フ イ ラメ ン トのう ち高抗張力のもの は、 例えば減面率を 97.5%とし、 かつ伸線性の良好な潤滑 剤を使用して、 通常の伸線より も 3 〜 4面引抜き回数を増 した多段階伸線を行う こ とにより作るこ とができ る。 金属 フ ィ ラメ ン トの炭素含有量は 0.72〜 0.95%が好ま し く 、 0,82 〜 0.95 %であれば一層の高抗張力が得られるので、 更に好 ま しい。 しかし、 0.95%を超えると金属フ ィ ラメ ン トがも ろ く なり好ま し ぐない。 尚、 上記減面率は 96%以上である ことが好ま しい。
また、 本発明に係る前記金属フ ィ ラメ ン トはスチールフ イ ラメ ン トであることが好まし く、 通常、 Cu, Zn, また は Coの金属単体または Cu _Zn合金 (ブラス) 等の合金によ り被覆されたものを用いる。
次に本発明を実施例および比較例により具体的に説明す る。
評価用タイ ヤとしてロー ド · ィ ンデックスが 140である TBR 11R24.5 (実施例 1 〜 7 , 比較例 1 〜 10 ) およびロー ド ' イ ンデックス力く 108である LSR 750R16 (実施例 8 〜11, 比較例 11〜: 17) を夫々使用した。
力一カスプライ構造は、 11R24.5 の場合、 第 1表に示す 如く 比較例 1 のコ ン ト ロールタ イ ヤにおいては 3 + 9 X 0. 23誦+ 1 のスチールコ一 ドをタイ ャ周方向に対して 90° の 角度で、 打ち込み密度 26本/ ^Ommにて配列させ、 他の比較 例および実施例のタィ ヤにおいてば第 1表に示す各カー力 スプライ適用のスチールコ一ドを周方向に対し同じ角度で、 かつ比較例 1 のコ ン ト ロールタイ ャのケース強度に適合す るように夫々決定した打ち込み数にて配列させた。
また、 750R16の場合第 2表に示す如く比較例 11のコ ン ト 口—ルタイ ャにおいてば 3 + 9 X 0 . 19 ππη + 1 のスチールコ ードをタイ ヤ周方向に対して 90 ° の角度で、 打ち込み密度 30本ノ 50醒に配列させ、 他の比較例および実施例のタィャ においては第 2表に示す各カーカスプライ適用のスチール コー ドを周方向に対し同じ角度で、 かつ比較例 11のコン ト π—ルタィャのケース強度に適合するように夫々決定した 打ち込み数にて配列させた。
尚、 被覆ゴムとしてはいずれもシェア一 Α硬さ 68の天然 ゴム 100 重量部、 カーボンブラ ッ ク HAF 50重量部のゴム組 成物を用いた。
かかる試作タィ ャにっき以下に示す各性能評価を行った 耐フ レ ツティ ング性
試作タイ ャから (走行タィ ャも新品タィャも同じ方法) 、 一方のビー ドから他方のビー ドまでのゴム付きカーカスコ ー ド層のコー ドを引き抜き、 ク ラウ ンセンタ一部で半分に 切断する。 次にゴムを溶媒で溶解し、 フ ィ ラメ ン ト 1本ず つにほぐす。 そのほぐ した各フ ィ ラメ ン トについてク ラ ウ ンセンター側端部とビ一 ド側端部をチャ ッ クではさみ引張 試験機で強力を測定することにより得られるフ ィ ラメ ン ト の破断面を真上から見られるように顕微鏡にセ ッ ト し、 拡 大写真をとり、 拡大写真に方眼紙をかぶせフレツティ ング の生じていない部分のふちに合わせて円を描き、 第 8図に フ レ ツティ ングの生じない非摩滅部分 1 に対しフ レ ツテ ィ ングを生じた部分 2 の面積 Sを測定し、 新品スチールフ ィ ラメ ン トの断面積で割った値をスチールコー ド 10本分につ いて求め平均した値がフ レツティ ング量である。
この値を TBR 11R24.5 のタイ ヤの場合には比較例 1 を、 また LSR 750R16の場合は比較例 11を夫々 コ ン ト ロールタイ ャと して 100 とし フ レツティ ング量の少ない方が大き く なるように指数表示したのが第 1 表および第 2表の耐フ レ ッティ ング性である。
耐腐食疲労性 (低下度合)
試験方法は、 第 9図に示すようにタイ ヤから取り出した ゴム付きコ ー ド 3 を直径 40讓のプー リ ー 4 の 3個に図のよ うに掛け、 固定プー リ 一 5 を介して新品コー ド破断荷重の 10%に相当するおもり 6 に引張荷重を掛け、 3 プー リ ーを 左右繰り返し 20cm移動させコ 一 ドに繰り返し曲げ歪を与え てコー ドを疲労破断させ、 コー ド破断に至る繰り返し回数 を 10本のコー ドの平均破断画数と して求め、 新品タイ ヤの コー ドのそれを 100 として新品対比の低下度合を求めた値 が、 耐腐食疲労性低下度合である。 第 1表および第 2表に 示す耐腐食疲労性は、 前記の値を TBR 11R24.5 のタイ ヤの 場合は比較例 1 を、 また LSR 750R16の場合は比較例 11を夫 々 コ ン ト ロ ールタイ ヤとして 100 とし、 指数値で示したも のであり、 値が大きい程耐腐食疲労性が良好なことを示す。 耐サイ ド外傷性
試作タ イ ャに用いたスチールコー ドをゴム中に縦に平行 に埋め込んだ厚さ 3 mm、 幅 50赚、 長さ 300 腿の大きさの試 料にスチールコー ド強力 X打ち込み数 (すなわち ト リー ト 強力) の 1割の引張りをかけ、 重さ 20kgの刃型をコード方 向と直角に上から自然落下させて、 その切断時の高さで耐 サイ ド外傷性を比較する。 第 1表および第 2表には比較例 1 および比較例 11のコ ン ト口ールタィャのそれを 100 とし てこの性質を示し、 数値が大きい程耐サイ ド外傷性が良好 であることを示す。
カーカスプライ端部耐破壌性
試作タイ ヤの ト レッ ドゴムをバフ して、 ベル ト層の 熱 によりベルト層の故障のない状態でカーカスプライ端部耐 破壌性を評価する。 具体的には各試作タィ ャを-荷重 JIS 200 %、 速度 60km/hr 、 11R24.5 の場合は内圧 8.25kg/cm 2 、 750R16の場合ば内圧 8.0 kg/cm2 の条件下で ドラム上で面 し、 カーカスプライ コー ド先端にセパレーショ ンが発生し、 振動が大き く なった時の ドラム走行距離を夫々の走行距離 として比較例 1および比較例 11のコ ン ト ロールタイ ヤのも のと対比し指数にて表示した。 値が大きい程ビー ド耐久性 が良好なことを示す。
耐接着性 (接着低下度合)
試作タイ ヤに水 300 ccを封入し、 荷重 JIS 200 %、 速度 60km/hr 、 11R24.5 の場合は内圧 7.25kg/on 2 、 750IUSの 場合は内圧 8.0 kg/cmz の条件で ドラム上で回し、 2万 km 走行後停止して、 低温下 (― 60'C) でコー ド 4本をゴム力、 ら剝離し、 コー ド上に残っているゴム付き量を最もゴム付 き量の低下の激しい部で、 ィ メージアナライザを用いて各 コ一ド毎に測定し、 比較例 1 および比較例 11のコ ン ト ロー ルタイ ヤのものと対比して指数にて表示した。 値が大きい 程、 耐接着性が良好なことを示す。
外傷を有する ト レッ ドの効果確認
タイ ヤ内部より ト レ ッ ド中央に穴をあけ、 プライ コー ド のみ切断し、 その後水 300 ccを封入して前記と同一条件、 同一方法にて耐腐食疲労性、 耐フ レ ツティ ング性および耐 接着性を評価した。
重量軽減効果
試作タ イ ャに用いたスチールコー ドをカーカスコーティ ングゴムで埋め合わせてプライ ト リ ー ト複合体とし、 複合 体として比較例 1 のコ ン ト ロールタイ ャのプライ ト リ一ト と同一強度が得られるよう、 各試作 ト リ ー トの打ち込み本 数を変えた時の打ち込み数ダウ ンによる重量の低減効果を、 タイヤ 1 本当りに使用するスチールコー ド使用重量にて比 較例 1 および比較例 11コ ン ト π—ルタィ ャ対比指数で表示 した。 値が小さい程重量軽減効果が良好であることを示す。 伸び P,の測定法
タ イ ャから取り出したスチールコー ドサンプルのゴムを 除去した後、 チャ ック間 200 腿の長さで、 引張速度 5 mm/min. フルスケール 10kgにてィ ンス ト ロ ン型引張試験機にて荷重 一伸び試験により荷重 0.25〜 5 kg f/本の間における伸びを 算出し、 50本試験した結果を相加平均して伸び P,とした。
以上述べてきた試作タ イ ヤの性能評価結果を TBR 11R24.5 のタ イ ヤについては下記の第 1 表に、 また LSR 750R16のタ ィ ャについては下記の第 2表に夫々示す。 1 表
Figure imgf000018_0001
第 1 表 (つづき) 比較例 4 比較例 5 比較例 6 比較例 7 比較例 8 比較例 9 比較例 10 撚 り 構 造 - 1 X 5 1 X 5 1 X 5 1 X 5 1 X 2 1 X 6 1 X 5 フ ィ ラ メ ン ト径 (譲) 0.25 0.25 0.12 0.35 0.29 0.23 0.25
P , 0.6 1.5 0.65 0.7 0.40 0.25 0.25 抗張力 (kg/譲2) 250 380 370 300 380 395 380 打込み数 (本/ 50讓) 56.7 40 94 26 64 38 40 ピ ッ チ (mm) 10 10 5 14 12 10 10 コ 一 ド 径 (讓) 0.73 0.75 0.36 1.02 0.61 0.74 0.68 コード強力 (kg/本) 62 90 20.5 141 49 97 91 ケース強度 (kg/50随) 3400 3600 1935 3700 3136 3686 3640 コ 一 ド 間 隙 0.15 0.51 0.17 0.90 0.17 0.58 0.57 耐腐食疲労性 320 280 325 90 180 90 200 而 'ίフ 'ジ イング '1生 250 240 200 280 200 170 200 耐 接 着 性 102 90 102 104 102 105 100 耐サイ ド外慯性 ' 180 210 100 205 195 110 140 カ-カスプライ 端部耐破壊性 70 130 85 120 75 125 105 外傷を 耐腐食疲労性 540 450 530 150 270 110 100 する 耐フレツティング 性 450 400 415 530 250 140 150 トぃ?ド 耐 接 着 性 400 300 400 450 170 82 80 重量 減効果 90 70 54 98 58 68 70
第 2 表
Figure imgf000020_0001
第 1 表および第 2表に示す試験結果より以下のこ とが確 認された。
先ず、 第 1表に示す T B R 1 1 R 24 . 5のタィ -ャの場合について 説明する。
実施例 1 , 5 〜 7 の撚り構造はいずれも 1 X 5 であるが. 実施例 5ではフ ィ ラ メ ン ト径との閬係で抗張力が最適範囲 から少しずれているので、 打込み限界の制約よりケース強 度が実施例 1 に比し少し低く なつている。 このため、 耐サ ィ ド外傷性が実施例 1 に比し若干低く なつており、 また打 込み数も多く なつていることからカーカ スプライ端部耐破 壊性も少し悪く なつている。 しかし、 比較例 1 のコ ン ト 口 ールに比べると全ての性能が大幅に向上している。
実施例 6 は抗張力との関係でフ ィ ラメ ン ト径の最適範囲 の下限にあるため、 打込み限界制約ようケース強度が低く なっている。 こ のため、 耐サイ ド外傷性が実施例 1 に比べ 低く なつており、 また打込み数も多いためにカーカ スブラ ィ端部耐破壊性も多少悪く なつている。 しかし、 比較例 1 のコ ン ト ロール対比では十分に良好であり、 また他の性能 は全て大幅に向上している。
実施例 7 はフ ィ ラメ ン 卜が異種径の例であり、 2種類の フ ィ ラ メ ン ト径を有する。 こ の例ではコ ン ト ロール対比全 ての性能が良好である。
実施例 4 は、 1 X δ + 1 とい う スパイ ラ ルを卷いた構造 の例であり、 スパイ ラ ルを卷く こ とによ り挫屈が起りに く い方向にあると思われる。 しかし、 スパイ ラルがあるため に、 これをい く ら弛く 巻いてもその部分へのゴム の浸透が 不十分となり、 ゴム浸透性が悪く実施例 1 に比べると耐久 性が多少低下しているが、 コ ン トロールと比べると問題は ない。
実施例 2および 3 は夫々 1 X 3および 1 X 4の撚り搆造例 であり、 フ ィ ラ メ ン ト本数が実施例 1 に比べ少ない。 この ため、 耐サイ ド外傷性を保っためにケース強度をある程度 以上のレベルに保つことが必要となって く る。 そこで、 こ れら実施例ではフ イ ラメ ン ト径を大き く し、 打込み数を增 加させている。 このため、 実施例 1 に比し若干耐腐食疲労 性およびカー力スプライ端部耐破壌性が悪く なつているが, コ ン トロール対比では大幅に向上している。
一方、 比較例 2 は、 P iが小さ過ぎる値を示す例であり、 そのためゴム浸透性が悪く なり、 特に ト レッ ドにカ ツ トが 入った場合、 耐腐食疲労性、 フレツティ ング性および耐接 着性ともコ ン ト ロールと同等レベルでほとんど改良効果が 見られず、 耐接着性はむしろ悪ぐなつている。
比較例 3 は抗張力が低過ぎる例であり、 ケース強度が大 幅に低下し耐サイ ド外傷性が大幅に低下している。 カー力 スプライ端部耐破壞性を確保するためには打込み数を増す 必要がある。
比較例 4 は耐サイ ド外傷性を高めるために打込み数を増 加した例であるが、 逆にカーカスプライ端部耐破壌性が大 幅に低下してしまっている。
比較例 5 は が大き過ぎる例であり、 このためフ ィ ラメ ン トの動きが激し く、 耐接着性が悪く なり、 また打込み乱 れの要因も加わり、 耐腐食疲労性および耐フレツティ ング 性もそれほど改良されていない。
比較例 6 はフ イ ラメ ン ト径が小さ過ぎる例であり、 この 例では打込み限界まで打ち込んでもケース強度が不足し、 耐サイ ド外傷性も上がらず、 耐カーカスプライ端部耐破壊 性は大幅に低下している。 更に、 タ イ ヤサイ ドを縁石に衝 突された時には挫屈によるコ一ド曲がり も生じている。
比較例 7 はフ ィ ラ メ ン ト径が大き過ぎる例であり、 こ の 例ではフ イ ラメ ン ト柽が大き過ぎるために耐腐食疲労性が 比較例 1 対比低下している。
比較例 8および比較例 9 は夫々 1 X 2 および 1 X 6 の慇 り構造例であり、 1 X 2 の場合にはフ ィ ラ メ ン ト本数が少 な過ぎるために耐腐食疲労性を低下しない程度にフ ィ ラメ ン ト径を太 く しても、 耐サイ ド外傷性が低下する可能性が ある。 こ のため、 打込み限界近く まで打込み数を増加させ たところ、 コー ド間隔が狭く なり、 カーカ スプラ イ端部耐 破壌性がコ ン ト ロール対比大幅に低下している。 また、 ゴ ム浸透性が低いため、 ゴムのク ッ シ ョ ン効果が少な く 、 こ れがケース強度の低下に影響し、 耐サイ ド外傷性も悪化し ている。
一方、 1 X 6 の場合は愍り構造が不安定のため、 フ イ ラ メ ン ト 1 本が落ち込み、 ゴム浸透性を悪 く しており、 特に フ ィ ラ メ ン 卜 の 1 本がからみ合っている ためにコ ン ト ロー ル対比耐腐食疲労性が悪 く 、 また ト レ 'ン ド力 ッ ト時の耐接 着性も悪 く なつている。
また比較例 10は が 0 . 25と小さ過ぎる例であり、 この例 ではゴム浸透性が充分でな く、 特に ト レ ッ ドに外傷が入つ た場合の腐食疲労性ゃ耐接着性が大幅に低下し、 好まし く ない。
次に、 第 2表に示す LSR750R16 のタイ ヤの場合について 説明する。
実施例 8 は 1 X 5 の撚り構造でフィ ラメ ン ト径 0. 21讓、 抗張力 380kg Z画 2の例であるが、 この例では耐腐食疲労性- 耐ラレ ツティ ング性等の性能が比較例 11のコ ン ト ロール対 比大幅に良く なつている。
実施例 9および 10は夫々 1 X 3および 1 X 4 の撚り構造 の例であり、 ケース強度をある値以上に保つ必要性からフ イ ラメ ン ト ί圣を太く したり、 打込み数を増加させたり して ある。 これらの例では諸性能が実施例 8 に比し若干悪く な つているが、 比較例 11のコ ン トロール対比では大幅に全性 能が向上している。
実施例 11はスパイ ラルがある場合である。 スパイ ラルが あるとコ ー ドへのゴム浸透性が劣る傾向があり、 実施例 8 に比し耐久性は低下しているが比較例 11のコ ン ト π—ル対 比では良好である。
比較例 12は 1 X 2の燃り構造の例である。 この場合、 前 記比較例 8 と同様にゴムのク ッ ショ ン効果が少な く、 また ケース強度を保っために打込み数を増加させたところ、 力 一カスプライ端部耐破壌性が悪化している。 更に、 かかる 措置を採っても筒ケース強度が低いために耐サイ ド外傷性 がコ ン ト ロール対比悪く なっている。
比較例 13は 1 X 6 の撚り構造の例であるが、 この例も前 記比較例 9 と同様に 1本コー ドが落ち込んでしまい、 2層 撚り構造的になってしま っているためにゴム浸透性が悪く なっている。 特に ト レ ッ ドカ ツ ト時のショ ルダ一部におけ る接着性が悪く なっている。
産業上の利用可能性
上記第 1 表および第 2表に示すタィ ャ性能評価結果より 明らかな如く 、 本発明の試作タ イ ヤでは全ての性能が大幅 に改善されており、 この結果、 本発明は ト ラ ッ ク ' バス用 ラ ジアルタ イ ヤ、 ラ イ ト ト ラ ッ ク用ラ ジアルタ イ ヤ等の重 荷重用ラ ジアルタ イ ヤの耐久寿命を大幅に向上させること ができる。

Claims

請 求 の 範 囲
1. タイ ヤ赤道面に実質的に 90° の角度で配列し、 ビード コアのまわりに内から外へ卷返した少な く とも 1 層の力 一カスプライを備えた重荷重用ラジアルタイ ヤにおいて. 前記力一カ スプラ イ と して、 フ ィ ラ メ ン ト径が 0.13〜 0.32讓である金属フィ ラメ ン トを 3〜 5本撚り合わせて なる単撚り構造であって、 荷重 0.25〜 5 kg f Z本までの 簡における伸び Pt が相加平均値として 0.35〜1.0%であ る金属コー ドを前記カーカスプライ の端部でのコー ド間 隙が 0.25mm以上であるように配列したことを特徴とする 重荷重用ラジアルタイ ヤ。
2. ISO 4209/1によるロー ド · イ ンデックス力 U00以上 121 以下である前記重荷重用ラジアルタイ ヤにおいて、
前記金属フィ ラメ ン トの抗張力 TS( kgf/腿 2)とフイ ラ メ ン ト径 d(mm) とが以下の 1)〜3)の閬係、
1)金属フ ィ ラ メ ン ト数が 5本の場合
37.55(2.89d+0.25)
TS
π X d2
(式中、 d =0.13〜0.25である)
2)金属フ ィ ラ メ ン ト数が 4本の場合
46.94(2.61d+0.25)
TS
7Γ X d2
(式中、 d =0.14〜0.25である)
3)金属フ イ ラメ ン ト数が 3本の場合
62.59(2.33d+0.25)
TS≥
π X d2
(式中、 d =0.15〜0.25である )
を満足する こ とを特徴とする請求の範囲第 1 項記載の重 荷重用ラ ジアルタ イ ヤ。
3. ISO 4209/1による ロー ド · イ ンデ ッ ク スが 100以上 121 以下である前記重荷重用ラ ジアルタ イ ヤにおいて、 前記金属フ ィ ラ メ ン ト の抗張力 TS( kgf/mrn2) と フ ィ ラ メ ン ト径 d(nrai) とが以下の 1〉〜3)の関係、
1)金属フ ィ ラメ ン ト数が 5 本の場合
240.64
TS≥
JT X d
(式中、 d =0.18〜0.25である)
2)金属フ ィ ラメ ン ト数が 4 本の場合
271.65
TS≥
π X d
(式中、 d =0.19〜0.25である)
3)金属フ ィ ラメ ン ト数が 3本の場合
342.37
TS≥
π X d
(式中、 d =0.21〜0.25である )
を満足する こ とを特徵とする請求の範囲第 1 項記載の重 荷重用ラ ジアルタ イ ヤ。
4. ISO 4209/1によ る ロー ド · イ ンデ ッ ク スが 122 以上で ある前記重荷重用ラジアルタ イ ヤにおいて、
前記金属フイ ラメ ン トの抗張力 TS( kgf/Mi2)とフイ ラ メ ン ト径 d (誦) とが以下の 1)〜3)の関係、
1)金属フイ ラメ ン ト数が 5本の場合
52.24(2.89d+0.25)
TS
' π X d2
(式中、 d -0.15〜0.32である)
2)金属フ ィ ラ メ ン ト数が 4本の場合
65.31(2.61d+0.25)
π X dz
(式中、 d =0.16〜0.32である)
3)金属フイ ラメ ン ト数が 3本の場合
87.07(2.33d+0,25)
TS
π X d2
(式中、 d =0.17〜 32である)
を潢足することを特徴とする請求の範囲第 1 項記載の重 荷重用ラ ジアルタ イ ヤ。
ISO 4209/1によるロー ド , ィ ンデックスが 122 以上で ある前記重荷重用ラ ジアルタ イ ヤにおいて、
前記金属フ ィ ラ メ ン トの抗張力 TS( kgf/im2 とフ イ ラ メ ン ト径 d (讓) とが以下の 1)〜3)の関係、
1)金属フ ィ ラ メ ン ト数が 5本の場合
286.88
TS
7E X d
(式中、 d =0.21〜 32である) 40
27
2)金属フ ィ ラ メ ン ト数が 4本の場合
323.85
π X d
(式中、 d =0.23〜0.32である)
3)金属フ ィ ラメ ン ト数が 3本の場合
409.57
TS
π X d
(式中、 d =0.27〜0.32である)
を満足することを特徴とする請求の範囲第 1 項記載の重 荷重用ラ ジアルタ イ ヤ。
PCT/JP1988/000231 1987-06-08 1988-03-01 Heavy-load radial tire WO1988009840A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP88902231A EP0317636B1 (en) 1987-06-08 1988-03-01 Heavy-load radial tire
KR1019880700647A KR960006935B1 (ko) 1987-06-08 1988-03-01 중하중용 레이디얼 타이어
DE3855985T DE3855985T2 (de) 1987-06-08 1988-03-01 Radialreifen für schwerlasten

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP62/141598 1987-06-08
JP14159887 1987-06-08

Publications (1)

Publication Number Publication Date
WO1988009840A1 true WO1988009840A1 (en) 1988-12-15

Family

ID=15295733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/000231 WO1988009840A1 (en) 1987-06-08 1988-03-01 Heavy-load radial tire

Country Status (6)

Country Link
US (1) US4966216A (ja)
EP (1) EP0317636B1 (ja)
KR (1) KR960006935B1 (ja)
AU (1) AU596281B2 (ja)
DE (1) DE3855985T2 (ja)
WO (1) WO1988009840A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02242988A (ja) * 1989-03-15 1990-09-27 Sumitomo Electric Ind Ltd ゴム補強用スチールコード
JPH02269884A (ja) * 1989-04-08 1990-11-05 Sumitomo Electric Ind Ltd ゴム補強用スチールコード
JP2892048B2 (ja) * 1989-08-17 1999-05-17 株式会社ブリヂストン ラジアルタイヤ
US5201970A (en) * 1989-08-24 1993-04-13 Jefferson Robert E Pneumatic tires including a corrugated belt structure
USH1333H (en) * 1990-03-21 1994-07-05 Helfer Farrel B High strength reinforcement
US6146760A (en) * 1989-10-02 2000-11-14 The Goodyear Tire & Rubber Company High strength cord
US6293326B1 (en) 1992-10-13 2001-09-25 The Goodyear Tire & Rubber Company Load range C and D tires including metallic cords of 2X or 3X construction
JPH05505652A (ja) * 1990-03-21 1993-08-19 ザ グッドイヤー タイヤ アンド ラバー カンパニー 高張力コード
US5318643A (en) * 1990-03-21 1994-06-07 The Goodyear Tire & Rubber Company Vehicle tires including plies with high strength reinforcement
WO1991017063A1 (en) * 1990-05-01 1991-11-14 Bridgestone Corporation Pneumatic radial tire
JP3038049B2 (ja) * 1991-05-22 2000-05-08 住友ゴム工業株式会社 空気入りタイヤ
KR940006811A (ko) * 1992-09-18 1994-04-25 카알 에이취. 크루코우 카아커스플라이에 강으로된 모노필라멘트를 갖는 래디얼 타이어
US6273160B1 (en) 1992-10-13 2001-08-14 The Goodyear Tire & Rubber Company Tires with high strength reinforcement
US5603208A (en) * 1992-12-10 1997-02-18 Bridgestone Bekaert Steel Cord Co., Ltd. Composite rubber bodies using steel cords for the reinforcement of rubber articles
US5609013A (en) * 1992-12-10 1997-03-11 Bridgestone Bekaert Steel Cord Co., Ltd. Steel cords for the reinforcement of rubber articles
ATE174081T1 (de) * 1993-06-02 1998-12-15 Bekaert Sa Nv Kompaktes stahlseil ohne umhüllungselement
AT401367B (de) * 1993-11-08 1996-08-26 Semperit Ag Radialluftreifen für pkw
AT401368B (de) * 1993-11-08 1996-08-26 Semperit Ag Radialluftreifen für pkw
US6247514B1 (en) * 1994-12-20 2001-06-19 The Goodyear Tire & Rubber Company Tires with high strength reinforcement
US5779829A (en) * 1995-08-24 1998-07-14 The Goodyear Tire & Rubber Company Pneumatic tire having a single carcass ply reinforced with metallic cords, a high ending ply, turnup and locked bead construction
US5709760A (en) * 1995-10-18 1998-01-20 The Goodyear Tire & Rubber Company Thin gauge, fine diameter steel cord reinforced tire ply fabric which is lap spliced
EP0953462B1 (en) * 1998-04-30 2004-11-03 Bridgestone Corporation Rubber-steel cord composite and pneumatic tire for passenger cars
DE10152165A1 (de) * 2001-10-23 2003-05-15 Continental Ag Fahrzeugluftreifen
JP4934178B2 (ja) * 2009-09-04 2012-05-16 住友ゴム工業株式会社 重荷重用空気入りタイヤ
IT1403442B1 (it) * 2011-01-17 2013-10-17 Bridgestone Corp Pneumatico e metodo per la costruzione di un pneumatico
US20180117969A1 (en) * 2016-11-02 2018-05-03 Qingdao Doublestar Tire Industrial Co., Ltd. Passenger all-steel tire and turn up process in building process thereof
IT201900010449A1 (it) * 2019-06-28 2020-12-28 Bridgestone Europe Nv Sa Strato di body ply skim

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3881974A (en) * 1971-04-28 1975-05-06 Establissments Michelin Raison Tire having two-ply carcass merging into one ply
IT1099869B (it) * 1978-10-31 1985-09-28 Pirelli Cordicella metallica
JPS5643008A (en) * 1979-09-13 1981-04-21 Bridgestone Corp Pneumatic radial tire
FR2473080A1 (fr) * 1979-12-21 1981-07-10 Kanai Hiroyuki Cable d'acier
JPS6049421B2 (ja) * 1980-08-11 1985-11-01 株式会社ブリヂストン 金属コ−ドとゴムの複合体
JPS58128902A (ja) * 1982-01-28 1983-08-01 Toyo Tire & Rubber Co Ltd 空気タイヤ
JPS59125996U (ja) * 1983-02-10 1984-08-24 トクセン工業株式会社 スチ−ルコ−ド
JPH0657482B2 (ja) * 1983-11-28 1994-08-03 株式会社ブリヂストン 悪路用大型ラジアルタイヤ
US4586324A (en) * 1984-12-31 1986-05-06 Tokyo Rope Mfg. Co., Ltd. Metal cord for reinforcing rubber products
JP2538868B2 (ja) * 1985-12-10 1996-10-02 株式会社ブリヂストン 運動性能及び耐久性に優れた乗用車用ラジアルタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0317636A4 *

Also Published As

Publication number Publication date
KR890700485A (ko) 1989-04-25
AU596281B2 (en) 1990-04-26
EP0317636A4 (en) 1990-01-11
EP0317636A1 (en) 1989-05-31
DE3855985T2 (de) 1998-01-02
EP0317636B1 (en) 1997-08-06
KR960006935B1 (ko) 1996-05-25
US4966216A (en) 1990-10-30
DE3855985D1 (de) 1997-09-11
AU1367488A (en) 1989-01-04

Similar Documents

Publication Publication Date Title
WO1988009840A1 (en) Heavy-load radial tire
JP4705302B2 (ja) タイヤカーカス用多層スチールケーブル
EP2374928B1 (en) Steel cord for reinforcement of rubber material and pneumatic tire
JP4686086B2 (ja) タイヤカーカス用多層スチールケーブル
JP5723441B2 (ja) 高透過度弾性マルチストランド金属ケーブル
EP2390407B1 (en) Steel cord for reinforcing a tire, and pneumatic tire
JP2011530013A (ja) タイヤのカーカス補強材のための現場ゴム引き層状ケーブル
JPH0331601B2 (ja)
JP2004527666A (ja) タイヤのクラウン補強体の多層スチールケーブル
JP2004523406A (ja) タイヤのクラウン補強体の多層スチールケーブル
WO2018025753A1 (ja) タイヤ用スチールコードおよびこれを用いた空気入りタイヤ
JP3204579B2 (ja) スチールコードおよび空気入りラジアルタイヤ
JPH044162B2 (ja)
JP2702495B2 (ja) 重荷重用ラジアルタイヤ
JPH08176978A (ja) ゴム物品補強用スチールコード及び空気入りラジアルタイヤ
JP4351114B2 (ja) スチールコード及び空気入りラジアルタイヤ
JP3678871B2 (ja) ゴム補強用スチールコードおよびそれを使用した重荷重用ラジアルタイヤ
JP2531771B2 (ja) 重荷重用ラジアルタイヤ
JP3789174B2 (ja) 小型トラックタイヤ補強用スチールコード
JPH09209281A (ja) ゴム補強用スチールコード及びそれを使用したラジアルタイヤ
KR101904621B1 (ko) 공기입 타이어용 케이블 비드 및 이를 구비한 공기입 타이어
JPH11314503A (ja) ラジアルタイヤ
JPH0578990A (ja) ゴム製品補強用スチールコード
JPH0885305A (ja) 重荷重用空気入りラジアルタイヤ
JPH08176977A (ja) ゴム補強用スチールコード及びそれを使用したラジアルタイヤ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1988902231

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWP Wipo information: published in national office

Ref document number: 1988902231

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988902231

Country of ref document: EP