WO1988003674A1 - Composite method and apparatus for guiding vehicles - Google Patents

Composite method and apparatus for guiding vehicles Download PDF

Info

Publication number
WO1988003674A1
WO1988003674A1 PCT/JP1986/000567 JP8600567W WO8803674A1 WO 1988003674 A1 WO1988003674 A1 WO 1988003674A1 JP 8600567 W JP8600567 W JP 8600567W WO 8803674 A1 WO8803674 A1 WO 8803674A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
guidance
steering command
line
route
Prior art date
Application number
PCT/JP1986/000567
Other languages
English (en)
French (fr)
Inventor
Haruo Hashimoto
Toyoichi Ono
Original Assignee
Kabushiki Kaisha Komatsu Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Komatsu Seisakusho filed Critical Kabushiki Kaisha Komatsu Seisakusho
Priority to DE19863690742 priority Critical patent/DE3690742T1/de
Priority to US07/143,999 priority patent/US4955447A/en
Priority to PCT/JP1986/000567 priority patent/WO1988003674A1/ja
Publication of WO1988003674A1 publication Critical patent/WO1988003674A1/ja

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Definitions

  • the present invention relates to a combined guidance method and device for automatically guiding a vehicle.
  • methods for automatically guiding a moving body to travel include: 1) a guidance method using a guide line, 2) a guidance method using dead reckoning navigation, and 3) a guidance method using radio surveying. .
  • the characteristics of these guidance methods are shown in the table below.
  • method (3) which is used for ships, can sufficiently cope with changes in the work area, but the guidance accuracy is significantly lower than method (2).
  • the present invention focuses on the fact that the guidance method using a guide line has excellent guidance accuracy and the guidance method based on radio wave surveying has excellent flexibility in changing a route, and when guiding a vehicle in a certain special work area, It is an object of the present invention to provide a combined guidance method and device capable of effectively exhibiting these advantages.
  • the vehicle when a vehicle is guided and travels in a work area having a target route fixed area requiring high guidance accuracy and a target route variable area requiring route change, In the target route fixed area, the vehicle is caused to travel by a guidance method using a guidance line, and in the target path variable area, guidance from the exit of the guidance line to the return to the guidance line by radio wave surveying.
  • the above-mentioned vehicle is driven by a method.
  • the guidance device is provided with a predetermined positional relationship with a guidance device laid in a target route fixing area requiring high guidance accuracy and generating a guidance magnetic field, and each of the guidance devices is provided with a power supply.
  • First steering command generating means for generating a steering command for the vehicle based on the output of the vehicle
  • Vehicle position detection means for detecting the position of the vehicle based on the reception time difference of each radio wave received by the vehicle, and at least one or more traveling routes from exiting the guide line to returning to the guide line are stored.
  • the first steering command generating means Selecting means for selecting one of the steering command and the steering command from the second steering command generating means, and steering means for steering the vehicle based on the steering command selected by the selecting means.
  • FIG. 1 is a schematic diagram showing an example of a work site to which the present invention is applied
  • Fig. 2 is a block diagram showing an embodiment of a guidance device according to the present invention
  • Figure 5 is a figure used to describe the guidance method using radio wave surveying
  • Figure 6 is an enlarged view of the transfer part shown in Figure 1.
  • FIG. 7 is a view showing another embodiment of the guide line and the preset traveling path. is there.
  • FIG. 1 is a schematic diagram showing an example of a work site to which the present invention is applied.
  • This work site is divided into a hopper section 2, a traveling section 3 and a face section 4.
  • the vehicle 1 starts from the hopper 2 for unloading the cargo and travels through the traveling unit 3 to the face 4 where the cargo is to be loaded. After the loading of the load, such as debris, by the loading vehicle at the face 4, the work returns to the hopper 2 again, where the load is unloaded.
  • the part 2 is a target route fixing area where high guidance accuracy is required for the vehicle 1, and a guiding wire 5 is laid here.
  • the traveling route of the traveling section 3 and the face section 4 is changed to, for example, a solid line 6, a dashed-dotted line 7, and a two-dotted chained 8 by changing the loading point on the vehicle 1.
  • This is a target route variable area.
  • FIG. 2 is a block diagram showing an embodiment of the guidance device according to the present invention.
  • four big-up components 20a, 20b, 20c and 20d are arranged in the positional relationship shown in FIG. .
  • These pick-up coils are connected as shown in Fig. 4.
  • the magnetic field generated by the guide wire 5 is detected (see Fig. 4), and a signal corresponding to the magnetic field strength is applied to the steering command generator 21 to generate a signal.
  • the steering command generator 21 detects the difference between the detection outputs of the pickup coils 20a and 20b and the difference between the detection outputs of the pickup coils 20c and 20d. Koh for induction conductor 5 of the vehicle 1 on the basis of - detecting the scan shift amount and the posture angle, to generate a steering command s a Contact and indicating the courses shift amount and the posture angle.
  • the on-vehicle station 31 receives radio waves for radio surveying transmitted from the master station 10 and the slave stations 11 and 12. Then, the time difference ⁇ between the radio waves arriving at the vehicle-mounted station 31 from the master station 10 and the slave station 11, and the time difference ⁇ ⁇ 2 between the radio waves arriving at the vehicle-mounted station 31 from the master station 10 and the slave station 12. These are added to the vehicle position detection device 32.
  • the vehicle position detecting device 32 calculates the position of the vehicle 1 based on the time differences ⁇ t 1 and ⁇ t 2.
  • the above time difference ⁇ t! , ⁇ t 2 are, for example, from the master station 10 and the slave stations 11, 12. It is measured by transmitting the pulse signal simultaneously.
  • the signal waves of the same phase are continuously transmitted from each station 10, 11, and 12, and based on the phase difference between those signal waves received by the on-board station 31. It is also possible to measure the time differences ⁇ ti, ⁇ t 2 .
  • Main station 1 0 and slave station 1 1 r 1 2 is known position, if example embodiment the position of the main station 1 0 (0, 0), the position of the slave station 1 1
  • the slave station 1 2 of the position is with the Ru Oh in (a 2, ba), and the position of the in-vehicle station 3 1 (X, ⁇ ), the main station 1 0, car ⁇ The difference ⁇ L i between the distance L i between 3 1 and the distance L 2 between the on-vehicle station 3 1 and the slave station 1 1 and the distance L 3 between the distance L i and the vehicle station 3 1 and the distance L 3 between the slave station 1 2
  • the difference ⁇ L 2 is given by
  • the vehicle position detector 32 obtains the current position (X, y) of the vehicle 1 as described above, and adds a signal indicating the position to the steering command generator 33.
  • the travel route storage device 3 stores a plurality of travel routes in advance, for example, the traveling route such as the solid line 6, the one-dot chain line 7, and the two-dot chain line 8 in Fig. 1 is stored. It should be noted that these traveling routes are routes that at least exit the guide line 5 and return to the guide line 5 via an appropriate loading position.
  • the traveling route storage device 34 adds to the steering command generator 33 a signal indicating one of the traveling routes selected from the plurality of traveling routes by appropriate means.
  • the steering command generator 33 detects the course deviation amount and the attitude angle of the vehicle 1 with respect to the stored traveling route based on signals applied from the vehicle position detecting device 32 and the traveling route storage device 34. Then, the steering commands s b and b indicating the course deviation amount and the attitude angle are generated. Note that the attitude angle of the vehicle 1 with respect to the previously stored traveling route is obtained, for example, by calculating the traveling direction of the vehicle based on the current vehicle position and the position of the vehicle immediately before it, and forming the traveling direction with the previously stored traveling route. Find by angle.
  • Select circuit 2 2 steering command s a applied to the steering command generator 2 1 or et input pin, steering command s b applied to the steering command generation equipment 3 three ⁇ et input terminal T 2 and a, the theta b
  • the steering command added to one of the inputs is selected and output to the steering device 23.
  • the steering command on the input terminal T side is selectively output. and, in the case of induction I by the Telecommunications surveying selectively outputs a steering command input terminal T 2 side.
  • the regular route based on the guide line 5 and the preliminary route are established.
  • the transfer between the traveling routes stored in the storage device 34 is performed.
  • FIG. 6 is an enlarged view of a portion where the pre-stored traveling routes 6, 7, and 8 shown in FIG.
  • the detection error of the course deviation amount by radio surveying is ⁇ e
  • the approach angle at which the steering to guide line 5 can be steered is soil ⁇ .
  • the distance between the tips is 2 e.
  • the traveling route stored in advance is set so that the angle 2 is divided into two equal parts as shown by the broken line.
  • the selection circuit 22 is used when the course deviation detected by the steering command generator 2 ⁇ 1 is within the detection error of the course deviation by radio wave measurement within the soil e or the radio wave measurement.
  • the guidance from radio wave surveying Switch to the guidance That is, the input terminal T 2 is switched to the input terminal ⁇ 1, and the steering command is sent to the steering device 23.
  • the steering device 23 sets the steering amount of the vehicle 1 so that the course deviation amount and the posture angle are both zero based on the steering command indicating the course deviation amount and the posture angle applied from the selection circuit 22. Control.
  • vehicle 1 After switching from guidance by radio surveying to guidance by guidance line 5, vehicle 1 moves along guidance line 5 to point ⁇ as shown in Fig. From A power line, go straight back to point B just before the stop 9, unload the cargo here and go straight again.From point A, switch to guidance by radio surveying.
  • the command to the vehicle 1 at the point can be given by known appropriate means, for example, a singular point provided on a guide line, or a signboard.
  • Power Yes.
  • the preset traveling route for radiogrammetry from the exit of the guide line 5 to the return to the guide line 5 is not limited to the above-described embodiment, and is, for example, as shown in FIG.
  • a route consisting of a plurality of guidance lines (solid line portions) may be provided, and a traveling route (dashed line portion) based on radio wave measurement may be provided to connect these guidance lines. it can.
  • vehicles are not limited to transport vehicles.
  • the vehicle position detecting device 32 by radiogrammetry and the traveling route storage device are provided on the vehicle side.
  • the present invention is not limited to this.
  • the portion 30 surrounded by a dashed line 3 is simply replaced with the vehicle-mounted station 31 and the communication control device.
  • the office may be provided with means for communicating with the vehicle station, detecting the vehicle position, and wirelessly giving a steering command so that the vehicle travels on an appropriate traveling route. This makes it possible to change the traveling route and traveling schedule in real time during traveling, and promptly responds to requests for traveling condition changes due to changes in the work environment such as the appearance of obstacles. Possible Industrial applicability
  • the present invention high practicality combining high guidance accuracy, which is an advantage of a guidance method using a guide line, and flexibility of a traveling route, which is an advantage of a guidance method by radio wave measurement, is achieved.
  • the vehicle can be guided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

明 細 書
車両の複合型誘導方法および装置 技術分野
本発明は、 車両を 自動的に誘導走行させるための複 合型誘導方法および装置に関する。 背景技術 従来、 移動体を 自動的に誘導走行させる誘導方法と しては、 ①誘導線によ る 誘導方法、 ②推測航法によ る 誘導方法、 ③電波測量によ る誘導方法等があ る。 これ らの誘導方法の特徵は下表の通り である。
誘導方法 長 所 短 所 適用例
(1)位置、 方向の計 (1)誘導線を埋設す 無人搬送 測精度は 3方式 る必要があるの
の中で一番高い。 で、 作業ェリァ
の変更に対処す
るのが困難
②推測航法 (1J外部基準を設け ω累積誤差、 加速 飛行機
る必要なく装置 船舶
コンノヽ0ク 卜 輛への適用は困
(2作業ェリァの変
更に容易に対処
できる。
③電波測量 ω測定距離によら ω地上に発振器を 船舶
ず精度一定 直く '必要力ある
加速度の影響を (但し作業ェリ
受けないで車輛 ァ外)
への適用が容易 見通し距離内で
(3)作業ェリァの変 し力使 ない。
更に対処できる。 車両の誘導については、 方法①が有力であ るが、 こ の方法は作業領域を変更する場合に誘導線を再敷設 し なければな らず、 したがって作業領域を徐々 に変更す る場合の適用が困難であ る。
一方、 船舶に利用される方法③は、 作業領域の変更 に充分対処できる半面、 誘導精度が方法①に比ベてか なり 落ち る。
本発明は、 誘導線による誘導方法が誘導精度に優れ 電波測量による誘導方法が経路変更の融通性に優れて いる点に着目 し、 或る特殊な作業領域にお て車両を 誘導する場合に、 それ らの利点を有効に発揮させる こ とができ る複合型誘導方法および装置を提供する こ と を 目 的 とする。
発明の開示
本発明に係る誘導方法によれば、 高い誘導精度を必 要とする 目標経路固定領域と、 経路変更を必要とする 目標経路可変領域とを有 した作業領域で、 車両を誘導 走行させる場合において、 前記目標経路固定領域では 前記車両を誘導線によ る誘導方法によ つて走行させ、 前記目 標経路可変領域では前記誘導線を出てか ら該誘 導線に戻る までを電波測量によ る誘導方法によ って前 記車両を走行させるよ うに している。
また本発明に係る誘導装置には、 高い誘導精度を必 要とする 目標経路固定領域に敷設され誘導磁界を発生 する誘導鎳 と、 所定の位置関係で配設されそれぞれ電 波測量用の電波を送信する主局および 2 つの従局 と、 車両に配設され前記誘導線か らの誘導磁界を検出する ピ ッ ク ア ッ プコ ィ ノレ と 、 該 ピ ッ ク ア ッ プコ イ ル の 出力 に基づいて車両の操舵指令を発生する第 1 の操舵指令 発生手段と、 前記車両に配設され前記主局および 2 つ の従局か らの電波を受信する受信手段 と、 該受信手段 が受信 した各電波の受信時間差に基づいて車両の位置 を検出する車両位置検出手段と、 少な く と も前記誘導 線を 出てか ら誘導線に戻る までの 1 乃至複数の走行経 路を記憶する記憶'手段と、 前記車両位置検出手段で検 出される前記車両の位置 と前記記憶手段か ら読み出さ れる走行経路とに基づいて車両の操舵指令を発生する' 第 2 の操舵指令発生手段 と、 前記第 1 の操舵指令発生 手段か らの操舵指令 と前記第 2 の操舵指令発生手段か らの操舵指令のいずれかを選択する選択手段と、 該選 択手段で選択された操舵指令によ つて前記車両を操舵 する操舵手段とが具備されている。
図面の簡単な説明
第 1 図は本発明が適用される 作業現場の一例を示す 概略図、 第 2 図は本発明に係る 誘導装置の一実施例を 示すブ π ッ ク 図、 第 3 図および第 4 図はそれぞれ誘導 線によ る誘導方法を説明するために用いた図、 第 5 図 は電波測量によ る 誘導方法を説明するために用いた図、 第 6 図は第 1 図に示す乗り換え部分の拡大図、 第 7 図 は誘導線および予設定走行路の他の実施例を示す図で ある。
発明を実施するための最良の形態 第 1 図は、 本発明が適用される作業現場の一例を示 す概略図である。 この作業現場は、 ホ ッ パ部 2 と、 走 行部 3 と切羽部 4 とに分け られている。 車両 1 は積荷 を降ろすホ ッパ部 2 を始点と し、 走行部 3 を通過 して 積荷作業を行な う切羽部 4 まで走行する。 そ してこの 切羽部 4 で積込車両によ って土石等の積荷が積み込ま れた後、 再びホ ッパ部 2 へ戻って こ こで積荷を,降ろす という作業を実行する。
こ こで、 ホ ッ ノ、。部 2 は車両 1 に対して高 誘導精度 が要求される 目標経路固定領域であ って、 こ こには誘 導線 5 が敷設されている。 また、 走行部 3 および切羽 部 4 は、 車両 1 への積込点の変更によ ってその走行経 路が、 例えば実線 6 、 一点鎖線 7 、 二点鎖隸 8 のよ う に変更される 目標経路可変領域である。
上記目標経路固定領域および目標経路可変領域の う ちの車両 1 が走行する領域外で、 車両 1 を見通せる適 宜の位置には後述する電波測量用の固定局 ( 主局 1 0 従局 1 1 および従局 1 2 ) が設置されている。
第 2 図は本発明による誘導装置の一実施例を示すブ ロ ッ ク 図であ る。 同図において、 4 つのビ ッ ク ア ツプ コ ィ ノレ 2 0 a , 2 0 b , 2 0 c および 2 0 d は、 車両 1 に対して第 3 図に示す位置関係に配設されている。 こ らの ピ ッ ク ア ッ プコ イ ルは、 第 4 図に示すよ う に 誘導線 5 の発生磁界を検出 し ( 第 4 図参照 ) 、 その磁 界強度に対応する 信号を操舵指令発生装置 2 1 に加え 0
操舵指令発生装置 2 1 は、 ピ ッ ク ア ッ プコ イ ル 2 0 a と 2 0 b の検出 出力の差、 およびピ ッ ク ア ッ プコ ィ ノレ 2 0 c と 2 0 d の検出 出力の差に基づいて車両 1 の誘 導線 5 に対する コ ― スずれ量および姿勢角を検出 し、 上記コ ー スずれ量および姿勢角 を示す操舵指令 s a お よび を発生する。
—方、 車載局 3 1 は主局 1 0 、 従局 1 1 および 1 2 か ら送信される電波測量用の電波を受信する。 そ して 主局 1 0 と従局 1 1 よ り 車載局 3 1 に到来する電波の 時間差△ と、 主局 1 0 と従局 1 2 よ り車載局 3 1 に到来する電波の時間差 Δ ί 2 と を求め、 .これ ら を車 両位置検出装置 3 2 に加える。 車両位置検出装置 3 2 は、 これ らの時間差△ t 1 , Δ t 2 に基づいて車両 1 の位置を算出する。
なお、 上記時間差 Δ t ! , Δ t 2 は、 例えば主局 1 0 と従局 1 1 , 1 2 よ り 、。ル ス信号を同時に送信する こ とによ り 計測される。 も ちろん各局 1 0 , 1 1 およ び 1 2 よ り 同一位相の信号電波を連続的に送信 し、 車 載局 3 1 側で受信される それ らの信号電波の位相差に 基づいて上記時間差 Δ t i , Δ t 2 を計測する こ と も 可能である。
こ こ で、 上記 ¾波測 JSの原理を III 5 図に基づいて説 明する。 主局 1 0 と従局 1 1 r 1 2 が既知の位置、 例 えば主局 1 0 の位置が ( 0 , 0 ) 、 従局 1 1 の位置が
( a ! , b ! ) 、 従局 1 2 の位置が ( a 2 , b a ) で あ る と し、 車載局 3 1 の位置を ( X , γ ) とする と、 主局 1 0 、 車载局 3 1 間の距離 L i と車載局 3 1 、 従 局 1 1 間の距離 L 2 との差 Δ L i および上記距離 L i と車载局 3 1 、 従局 1 2 間の距離 L 3 との差 Δ L 2 は 次式、 ·
Figure imgf000008_0001
によ って表わすこ とができる 。 なお、 上記時間差 A t と Δ t 2 はそれぞれ第(1)式の Δ L! と Δ L 2 に対応す る こ とはも ち論である。
そ して、 △ L 1 が一定となる位置を各 Δ L i 毎に示 すと第 5 図の実線のよ う になる。 同様に△ L 2 が一定 となる位置を各 Δ 2 毎に示すと第 5 図の破線のよ う になる。 した力 Sつて、 Δ L と Δ L 2 が求まれば、 そ の A L i に対応する実線の曲線 と Δ L 2 に対応する破 線の曲線との交点か ら車両 1 の位置を検出する こ とが でき る。
車両位置検出装置 3 2 は上記のよ う に して車両 1 の 現在位置 ( X , y ) を求め、 その位置を示す信号を操 舵指令発生装置 3 3 に加える
走行経路記憶装置 3 は予め複数の走行経路、 例え ば第 1 図の実線 6 、 一点鎖線 7 、 二点鎖線 8 等の走行 経路を記憶 している。 なお、 これ らの走行経路は、 少 な く と も 誘導線 5 を 出てか ら適宜の積込位置を経由 し て再び誘導線 5 に戻る経路であ る。 走行経路記憶装置 3 4 は上記複数の走行経路の う ち適宜手段によ って選 択されたいずれか 1 つの走行経路を示す信号を操舵指 令発生装置 3 3 に加え る。
操舵指令発生装置 3 3 は、 車両位置検出装置 3 2 お よび走行経路記憶装置 3 4 か ら加わる信号に基づいて、 記憶 した走行経路に対する車両 1 の コ ー スずれ量およ び姿勢角 を検出 し、 上記 コ ー スずれ量および姿勢角を 示す操舵指令 s b および b を発生する。 なお、 予め 記憶 した走行経路に対する車両 1 の姿勢角は、 例えば 現在の車両の位置とその直前の車両の位置に基づいて 車両の進行方向を求め、 この進行方向 と予め記憶 した 走行経路とのなす角によ つて求める。
選択回路 2 2 は、 操舵指令発生装置 2 1 か ら入力端 子 に加わる操舵指令 s aa と操舵指令発生装 置 3 3 カゝ ら入力端子 T 2 に加わる操舵指令 s b , Θ b の う ちいずれか一方の入力に加わる操舵指令を選択 し て操舵装置 2 3 に出力する もので、 車両 1 を誘導線 5 によ って誘導する場合には入力端子 T 側の操舵指令 を選択出力 し、 電波測量によ って誘導する場合には入 力端子 T 2 側の操舵指令を選択出力する。 すなわち、 この選択切換えによ り 誘導線 5 に基づ く 定行経路と予 め記憶装置 3 4 に記憶された走行経路間の乗り換えが 行なわ lる。
さて、 誘導線 5 に基づ く 経路か ら予め記憶した走行 経路への乗り換えは、 電波測量によ る誘導が全作業領 域で可能である こ とか ら、 乗り換える地点を適宜指定 する こ とによ り 容易に行な う こ とができ る。 したがつ て、 以下、 予め記憶した走行経路か ら誘導線 5 への乗 り換えについて説明する。
第 6 図は、 第 1 図に示す予め記憶した走行経路 6 , 7および 8 か ら誘導線 5 への乗り換え部分の拡大図で ある。 同図では、 電波測量による コ ー スずれ量の検出 誤差を ± e 、 誘導線 5 への操舵可能な進入角を 土 α と しているため、 上記乗り換え部分は角度 2 α で V字形 に開口 しており 、 その先端の間隔は 2 e となっている なお、 予め記憶 した走行経路は破線で示すよ う に上記 角度 2 な を 2 等分して進入する よ う に設定されている 上記のよ う に乗り換え部分の誘導線 5 および該誘導 線 5 への走行経路を設定する こ とによ ]? 、 電波測量に よる誘導誤差があ つても確実に誘導線 5 に乗り換える ことができ る。
選択回路 2 2 は、 操舵指令発生装置 2 · 1 によって検 出-される コ ー スずれ量が電波測量による コ 一 スずれ量 の検出誤差 土 e 以内 となったとき、 あ るいは電波測量 によ つ て検出される車両 1 の位置がほぼ乗り換え位置 に達 した ときに、 電波測量によ る誘導か ら誘導線 5 に よ る誘導に切換える。 すなわち入力端子 T 2 か ら入力 端子 Τ 1 に切り 換えてその操舵指令を操舵装置 2 3 に カロ元る。
操舵装置 2 3 は選択回路 2 2 か ら加わる コ ー スずれ 量および姿勢角を示す操舵指令に基づいてコ 一 スずれ 量および姿勢角がと も に 0 になるよ う に車両 1 の操舵 量を制御する。
なお、 電波測量によ る誘導か ら誘導線 5 によ る誘導 に切り 換わったのち、 車両 1 は第 1 図に示す'よ う に誘 導線 5 に沿って地点 Α まで前進 し、 こ の地点 A力ゝ ら車 止め 9 の直前の地点 B まで直線後進 し、 こ こで積荷を 降ろ して再び直進 し、 地点 Aか らは電波測量によ る誘 導に切り換わるが、 これ らの各地点におけ る車両 1 へ の指令 ( 前進、 停止、 後進、 ベ ッ セル作動等 ) は公知 の適宜手段、 例えば誘導線に設けた特異点、 やサイ ン ボ ス 卜 等によ って与える こ と力: ίでき る。
また、 誘導線 5 に基づ く 経路ゃ該誘導線 5 を出てカ ら再び誘導線 5 に戻る までの電波測量用の予設定走行 経路は上記実施例に限 らず、 例えば第 7 図に示すよ う に複数の誘導線 ( 実線部分 ) か らな る経路を設け る と と も に、 これ らの誘導線間を結ぶ形で電波測量によ る 走行経路 ( 破線部分 ) を設ける こ とも でき る。 も ち論、 車両も運搬車両に限 らない。
更に、 本実施例では第 2 図に示すよ う に車両側に電 波測量によ る車両位置検出装匱 3 2 、 走行経路記憶装 置 3 4 、 操舵指令発生装置 3 3 を搭載する よ う に した が、 これに限 らず、 例えば一点鎖線 3 ひ で囲んだ部分 3 0 を単に車載局 3 1 と通信制御装置のみに し、 事務 所側に該車载局 と通信し、 車両位置を検出 し、 車両が 適宜の走行経路を走行すベ く 操舵指令を無線によ って 与える手段を設ける よ う に してもよい。 これによれば 走行中に実時間で走行経路、 走行ス ケ ジ ュ ールを変更 する こ とが可能となり 、 障害物の出現など作業環境の 変化に伴う 走行条件変更の要求にも早急に対処でき る 産業上の利用可能性
以上説明 したよ う に本発明によれば、 誘導線によ る 誘導方法の利点であ る高い誘導精度と電波測量による 誘導方法の利点である走行経路の融通性とを兼ね備え た実用性の高い車両の誘導を行な う こ とができる。
Figure imgf000012_0001

Claims

請求の範囲
1 . 高い誘導精度を必要 とする 目 標経路固定領域 と、 経路変更を必要とする 目 標経路可変領域と を有 した作 業領域で車両を誘導走行させる場合において、
前記 目標経路固定領域では前記車両を誘導線によ る 誘導方法によ つて走行させ、
前記目 標経路可変領域では前記誘導線を出てか ら該 誘導線に戻る までを電波測量によ る誘導方法によ つて 前記車両を走行させる こ と を特徵とする車両の複合型 誘導方法。
2 . 前記目標経路固定領域は前記車両の積荷を降ろす ホ ッ パ部であ り 、 前記目標経路可変領域は前記車両へ の積込作業を行な う切羽部および前記ホ ッ パ部と切羽 部間の走行部である請求の-範囲第 1 項記載の車両の複 合型誘導方法。
3 . 前記誘導線によ.る誘導方法は、 前記 目標経路固定 領域に敷設された誘導線か ら発生する誘導磁界を、 前 記車両に配設される ピ ッ ク ァ ッ プ コ イ ル によ って検出 して前記誘導線に対する車両の コ 一 スずれ量または コ — スずれ量および姿勢角 を求め、 これに基づいて前記 車両を誘導する方法であ る請求の範囲第 1 項記載の車 両の複合型誘導方法。 .
4 . 前記電波測量による誘導方法は、 それぞれ電波測 量用の電波を送信する主局および 2 つの従局を所定の 位置関係で配設 し、 前記主局 と一方の従局か らの電波 の前記車両への到達時間差と、 前記主局と他方の従局 か らの電波の前記車両への到達時間差とに基づいて該 車両の位置を求め、 上記車両の位置と予め設定した走 行経路とから該走行経路に対する車両のコ 一 スずれ量 またはコ ― スずれ量および姿勢角を検出 し、 これに基 づいて前記車両を誘導する方法である請求の範囲第 1 項記載の車両の複合型誘導方法。
5 . 高い誘導精度を必要とする 目標経路固定領域に敷 設され誘導磁界を発生する誘導鎳 と、 所定の位置関係 で配設されそれぞれ電波測量用の電波を送信する主局 および 2つの従局 と、 車両に配設され前記誘導線か ら の誘導磁界を検出す ¾ ピ ッ ク ア ッ プコ イ ル と、· 該ピ ッ ク ア ップコ イ ルの出力に基づいて車両の操舵指令を発 生する第 1 の操舵指令発生手段と、 前記車両に配設さ れ前記主局および 2つの従局か らの電波を受信する受 信手段と、 該受信手段が受信 した各電波の受信時間差 に基づいて車両の位置を検出する車両位置検出手段と . 少な く と も 前記誘導線を 出てか ら誘導線に戻る までの 1 乃至複数の走行経路を記憶する記憶手段と、 前記車 両位置検出手段で検出される前記車両の位 gと前記記 憶手段か ら読み出される走行経路とに基づいて車両の 3674
13
操舵指令を発生する第 2 の操舵指令発生手段 と、 前記 第 1 の操舵指令発生手段か らの操舵指令と前記第 2 の 操舵指令発生手段か らの操舵指令のいずれかを選択す る選択手段と、 該選択手段で選択された操舵指令によ つて前記車両を操舵する操舵手段と を具えた車両の複 合型誘導装置。
Figure imgf000015_0001
Figure imgf000015_0002
PCT/JP1986/000567 1986-11-07 1986-11-07 Composite method and apparatus for guiding vehicles WO1988003674A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE19863690742 DE3690742T1 (ja) 1986-11-07 1986-11-07
US07/143,999 US4955447A (en) 1986-11-07 1986-11-07 Compound type guiding method and apparatus for guiding movement of a vehicle
PCT/JP1986/000567 WO1988003674A1 (en) 1986-11-07 1986-11-07 Composite method and apparatus for guiding vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1986/000567 WO1988003674A1 (en) 1986-11-07 1986-11-07 Composite method and apparatus for guiding vehicles

Publications (1)

Publication Number Publication Date
WO1988003674A1 true WO1988003674A1 (en) 1988-05-19

Family

ID=13874556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1986/000567 WO1988003674A1 (en) 1986-11-07 1986-11-07 Composite method and apparatus for guiding vehicles

Country Status (3)

Country Link
US (1) US4955447A (ja)
DE (1) DE3690742T1 (ja)
WO (1) WO1988003674A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423332A1 (en) * 1989-05-01 1991-04-24 Kabushiki Kaisha Komatsu Seisakusho Travelling control apparatus for vehicules

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216605A (en) * 1990-06-28 1993-06-01 Eaton-Kenway, Inc. Update marker system for navigation of an automatic guided vehicle
US5191528A (en) * 1990-06-28 1993-03-02 Eaton-Kenway, Inc. Update marker system for naviagtion of an automatic guided vehicle
US5281901A (en) * 1990-12-03 1994-01-25 Eaton-Kenway, Inc. Downward compatible AGV system and methods
CN112109706B (zh) * 2019-06-21 2022-06-24 华为技术有限公司 基于磁感通信的车辆控制的装置和方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145831A (en) * 1974-10-18 1976-04-19 Komatsu Mfg Co Ltd Unpansharyono sojuhoho
JPS54132189A (en) * 1978-04-04 1979-10-13 Enajisuteitsukusu Corp Za Vehicle guiding device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4231093A (en) * 1978-09-11 1980-10-28 Motorola, Inc. Method of returning to a last point in a path after a temporary discontinuance of an operation
SE417021B (sv) * 1979-01-02 1981-02-16 Carrago Transportsystem Ab Anordning for automatisk reglering av en vridningsrorelse av en vagn
JPS59148909A (ja) * 1983-02-15 1984-08-25 Daifuku Co Ltd 無人車の自動誘導装置
SU1147258A2 (ru) * 1983-05-27 1985-03-30 Институт Горного Дела Ан Казсср Способ ориентации самоходных машин в переменном электромагнитном поле токонесущих проводов
DE3334548A1 (de) * 1983-09-23 1985-04-04 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Verfahren und vorrichtung zur spurfuehrung eines gleislosen fahrzeuges
US4700301A (en) * 1983-11-02 1987-10-13 Dyke Howard L Method of automatically steering agricultural type vehicles
JPS6170618A (ja) * 1984-09-12 1986-04-11 Caterpillar Mitsubishi Ltd 無人走行システム
US4780817A (en) * 1986-09-19 1988-10-25 Ndc Technologies, Inc. Method and apparatus for providing destination and vehicle function information to an automatic guided vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5145831A (en) * 1974-10-18 1976-04-19 Komatsu Mfg Co Ltd Unpansharyono sojuhoho
JPS54132189A (en) * 1978-04-04 1979-10-13 Enajisuteitsukusu Corp Za Vehicle guiding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0423332A1 (en) * 1989-05-01 1991-04-24 Kabushiki Kaisha Komatsu Seisakusho Travelling control apparatus for vehicules
EP0423332A4 (en) * 1989-05-01 1993-03-17 Kabushiki Kaisha Komatsu Seisakusho Travelling control apparatus for vehicules

Also Published As

Publication number Publication date
DE3690742T1 (ja) 1988-10-27
US4955447A (en) 1990-09-11

Similar Documents

Publication Publication Date Title
US5307277A (en) Location detecting apparatus
WO1990013856A1 (en) Travelling control apparatus for vehicules
JPS587574A (ja) 航行装置
JP3598601B2 (ja) 無人車の運行管理システム
WO1996015483A1 (fr) Systeme de guidage pour vehicule
JPH10508961A (ja) 別個の移動送信機を伴う自動車両用誘導システム、およびその車両を制御する方法
WO1988003674A1 (en) Composite method and apparatus for guiding vehicles
JP3913295B2 (ja) 自動追従システム
JP2020136876A (ja) 基地局選択装置と基地局選択方法
JPH09210701A (ja) ナビゲーション装置
JPH04308905A (ja) 自動誘導航行体の操縦装置及び方法
JPS6170618A (ja) 無人走行システム
JPH11190771A (ja) Gps測定位置補正装置
JP3738521B2 (ja) 飛しょう体誘導装置
WO1995016184A1 (fr) Appareil permettant de determiner la position d'un corps mobile
JPS63223585A (ja) 車両塔載型ナビゲ−タ装置
JPS62267900A (ja) 自動車用走行指示装置
CN207799464U (zh) 一种混合导航agv系统
JPS61254868A (ja) 車両の複合型誘導方法および装置
JPH0752220B2 (ja) 双曲線航法を用いた車両誘導装置
JPH0926821A (ja) 無人車の走行制御装置
JP3293448B2 (ja) 車両走行位置検出装置
JPH06247393A (ja) 飛行船の障害物自動回避装置付自動操船装置
JP2593224B2 (ja) 車両搭載型ナビゲータ装置
JPH0255804B2 (ja)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

RET De translation (de og part 6b)

Ref document number: 3690742

Country of ref document: DE

Date of ref document: 19881027

WWE Wipo information: entry into national phase

Ref document number: 3690742

Country of ref document: DE