WO1988001610A1 - Electrochemically stable aluminium oxide ceramic - Google Patents

Electrochemically stable aluminium oxide ceramic Download PDF

Info

Publication number
WO1988001610A1
WO1988001610A1 PCT/DE1987/000285 DE8700285W WO8801610A1 WO 1988001610 A1 WO1988001610 A1 WO 1988001610A1 DE 8700285 W DE8700285 W DE 8700285W WO 8801610 A1 WO8801610 A1 WO 8801610A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
content
weight
ceramic according
flux
Prior art date
Application number
PCT/DE1987/000285
Other languages
English (en)
French (fr)
Inventor
Thomas Frey
Karl-Hermann Friese
Heinz Geier
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE8787904025T priority Critical patent/DE3781414D1/de
Priority to JP62503720A priority patent/JPH0822771B2/ja
Priority to KR1019880700449A priority patent/KR950000630B1/ko
Publication of WO1988001610A1 publication Critical patent/WO1988001610A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics

Definitions

  • the invention is based on a ceramic according to the preamble of the main claim.
  • Ceramic components with integrated heating conductors in the form of printed patterns consisting of a cermet are endangered by electrochemical decomposition of the carrier ceramic, the ceramic cover layer and / or the ceramic supporting structure.
  • the electrolytic decomposition is caused by ionic conduction under the applied heating voltage, which is below 24 V DC for example in motor vehicle applications, and can ultimately lead to the destruction of the heating conductor due to the deposition of cations with the formation of alloys and / or through the deposition of oxygen with the formation of oxides or due to the formation of cracks due to the excess oxygen pressure generated under the insulation cover layer. This applies all the more the higher the application temperature is and can become critical even at temperatures from 600 ° C.
  • Such ceramic components with integrated heating conductors are used, for example, in glow plugs, in lambda probes or similar electrochemical sensors, in heated nozzles for various purposes and in instantaneous water heaters for boilers or coffee machines in the form of platelet-shaped, pin-shaped or tubular heaters.
  • Alumina as is commercially available, usually contains up to 0.5% by weight of sodium oxide and / or potassium oxide, usually the alumina used in this form, especially in mass products, because the purer specifications of the alumina are much more expensive compared to the above.
  • the ceramic according to the invention made of aluminum oxide with the characterizing features of the main claim now has the advantage that it is electrochemically stable at temperatures up to 1400 ° C. with DC voltage applied in continuous operation, that is to say shows no ceramic decomposition and / or damage to the heating conductor due to cation migration or oxygen separation.
  • the corresponding components in which such a ceramic is used thus have a significantly longer service life.
  • K 2 O contains.
  • a ceramic without flux and a ceramic with small amounts of flux can be produced from the alumina mentioned, a ceramic with a flux content of 2.5 to 10% by weight is particularly preferred, the proportions of Na 2 O, K 2 O, CaO and MgO are less than 1% by weight and the flux contains relatively large and therefore difficult to move ions, which are primarily barium and strontium, ma W.
  • the flux in the form of a barium silicate and / or a strontium silicate is present.
  • the molar ratio BaO or SrO: SiO 2 can be between 2: 1 and 1: 12.5.
  • This material has a flexural strength of 420 N / mm 2 up to about 800 ° C and about 1200 ° C
  • this flux-free ceramic has to be sintered at high sintering temperatures (1600 ° C), or it has to be very expensive Al 2 O 3 raw materials with increased sintering activity are used, the processability of such flux-free compositions is also known to be relatively poor.
  • This ceramic is composed of the following components: 97.5% by weight of aluminum oxide with an Al 2 O 3 content of 99% and less than 0.1% each of Na 2 O and K 2 O; 1.25 wt% SiO and 1.25 wt% CaO.
  • the sintering temperature and the sintering time depend on the one hand on the composition, but on the other hand also on the type of application, for example the type of substrate on which this ceramic is applied as a component of the heating conductor.
  • the electrochemical stability of the ceramic is further increased if it is after-annealed after sintering, for at least 2 hours at 1250 ° C for the above example. In this process, the glass phase is partially crystallized out and the mobile ions, namely alkali and alkaline earth, are bound.
  • the electrochemical stability of such a ceramic shows a limit temperature of 1250 ° C. This ceramic can be densely sintered at 1550 oC (96% of the theoretical density).
  • This example represents a particularly preferred variant of the ceramic according to the invention because, in addition to the electrochemical stability, it has improved processing properties, in particular a more favorable pressing behavior, compared to the examples mentioned above.
  • the exemplary ceramic has the following composition: 91.0% by weight of Al 2 O 3 ; 6.48% by weight of BaO and 2.52% by weight of SiO 2 , which has a BaO: SiO 2 ratio of 2.6 to 1
  • alkali and CaO or MgO fractions under one wt .-% and alkaline fractions under Should remain 0.2 wt .-% an aluminum oxide with 99.5% Al 2 O 3 is used.
  • the barium oxide is in the form of barium carbonate and the SiO 2 portion is at least predominantly as kaolinite or
  • Halloysite introduced, which leads to favorable manufacturing and pressing properties.
  • the components mentioned are treated and tested as described above.
  • this ceramic was shown to be electrochemically stable in an endurance test when used both as a support structure for heating conductors and for covering the semiconductor, up to 1400 ° C.
  • temperatures above 1000 ° C an increased

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

Elektrochemisch stabile Keramik aus Aluminiumoxid
Stand der Technik
Die Erfindung geht aus von einer Keramik nach der Gattung des Hauptanspruchs. Keramik-Bauelemente mit integrierten Heizleitern in Form von aus einem Cermet bestehenden aufgedruckten Mustern sind durch elektrochemische Zersetzung der Trägerkeramik, der keramischen Deckschicht und/oder des Keramik-Stützgerüstes gefährdet. Die elektrolytische Zersetzung wird durch Ionenleitung unter der anliegenden Heizspannung, die beispielsweise bei Kfz-Anwendungen unterhalb von 24 V Gleichspannung liegt, hervorgerufen und kann schließlich zur Zerstörung des Heizleiters aufgrund der Abscheidung von Kationen unter Legierungsbildung und/oder durch Abscheidung von Sauerstoff unter Oxidbildung bzw. durch Rißbildung aufgrund des unter der Isolationsdeckschicht entstehenden Sauerstoffüberdrucks führen. Dies gilt umso mehr, je höher die Anwendungstemperatur liegt und kann bereits bei Temperaturen ab 600 °C kritisch werden. Derartige Keramik-Bauelemente mit integrierten Heizleitern finden beispielsweise bei Glühstiftkerzen, bei Lambda-Sonden oder ähnlichen elektrochemischen Meßfühlern, bei beheizten Düsen für verschiedene Anwendungszwecke sowie bei Durchlauferhitzern für Boiler oder Kaffeemaschinen in Form von plättchenförmigen, stiftförmigen oder rohrförmigen Heizern Anwendung.
Aluminiumoxid, wie es in den Handel kommt, enthält normalerweise bis zu 0,5 Gew.-% Natriumoxid und/oder Kaliumoxid, üblicherweise wird das Aluminiumoxid in dieser Form eingesetzt, insbesondere bei Massenprodukten, weil die reineren Spezifikationen des Aluminiumoxids im Vergleich zu den genannten sehr viel teurer sind.
Vorteile der Erfindung
Die erfindungsgemäße Keramik aus Aluminiumoxid mit den kennzeichnenden Merkmalen des Hauptanspruchs hat nun den Vorteil, daß sie bei Temperaturen bis hin zu 1400 ºC bei angelegter Gleichspannung im Dauerbetrieb elektrochemisch stabil ist, das heißt, keine Keramikzersetzung und/oder Heizleiterschädigung durch Kationenwanderung oder Sauerstoffabscheidung zeigt. Damit weisen natürlich die entsprechenden Bauelemente, bei denen eine derartige Keramik Anwendung findet, eine wesentlich längere Lebensdauer auf.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen der im Hauptanspruch angegebenen Aluminiumoxid-Keramik möglich. Besonders vorteilhaft ist es, wenn die Al2O3-Keramik weniger als je 0,1 Gew.-% Na2O und
K2O enthält. Obwohl sich aus dem genannten Aluminiumoxid sowohl eine Keramik ohne Flußmittel als auch eine Keramik mit geringen Mengen an Flußmitteln herstellen lassen, ist doch eine Keramik mit einem Gehalt an Flußmitteln von 2,5 bis 10 Gew.-% besonders bevorzugt, wobei die Anteile an Na2O, K2O, CaO und MgO unter 1 Gew.-% sind und in dem Flußmittel relativ große und damit schwer bewegliche Ionen, das sind vor allem Barium und Strontium, enthalten sind, m. a. W. das Flußmittel in Form eines Bariumsilikates und/oder eines Strontiumsilikates vorliegt. Dabei kann das Mol-Verhältnis BaO bzw. SrO:SiO2 zwischen 2:1 und 1:12,5 liegen.
Beschreibung der Ausführungsbeispiele
Im folgenden werden drei Ausführungsbeispiele beschrieben, und zwar eines für eine AI2O3 -Keramik ohne Flußmittel, ein zweites für eine Al2O3-Keramik mit geringen Mengen Flußmittel und schließ- lieh ein drittes für eine Al2O3-Keramik mit einem Flußmittel aus Bariumsilikat. Da die Masseaufbereitung immer in der gleichen Weise erfolgte, soll diese eingangs für alle beschrieben werden. Die eingewogenen Komponenten werden mit einem Mahlhilfsmittelzusatz von einem Prozent Propandiol in einer Vibratommühle 3 Stunden trocken gemahlen. Daraus wird dann die Preßmasse z. B. durch Gefriertrocknen einer wässrigen Suspension des Mahlguts unter Zusatz organischer Bindemittel hergestellt und in der dann vorgesehenen Weise weiter verarbeitet, für die Beurteilung der elektrochemischen Stabilität beispielsweise, indem eine Pt/Al2O3-Heizleiterschicht mit AI2O3-Isolationsdeckschicht auf ein vorgesintertes Bauteil aufgebracht und gesintert wurde. Die Beurteilung der elektrochemischen Stabilität erfolgte, indem durch Erhöhung der Heizspannung eine Prüftemperatur eingestellt wurde und festgestellt wurde, ob der Aufbau bei dieser Prüftemperatur noch elektrochemisch stabil ist, nämlich durch jeweiliges Messen von Widerstand und Durchschlagsfestigkeit von Deckschicht und/oder Heizleiter sowie visuelle Feststellung von Verfärbungen und Rissen. Dabei ergab sich eine Grenztemperatur, bei welcher die untersuchten Schichten nicht mehr stabil waren. Zur Feststellung der Festigkeitswerte wurden aus den Materialien entsprechende Prüfkörper hergestellt.
1. Beispiel: Al2O3-Keramik ohne Flußmittel
Als 1. Beispiel diente ein Aluminiumoxid mit einem Gehalt von 99,5 % AI2O3, das nicht mehr als je 0,1 Gew.-% Na2O und
K2O hatte. Dieses Material weist bis etwa 800 ºC eine Biegefestigkeit von 420 N/mm2 und bei 1200 °C eine solche von etwa
300 N/mm2 auf. Bei der Prüfung der elektrochemischen Stabilität ergab sich eine Grenztemperatur von 1400 ºC.
Diese flußmittelfreie Keramik muß allerdings bei hohen Sintertemperaturen ( 1600 °C) gesintert werden, oder es müssen sehr teure Al2O3-Rohstoffe mit erhöhter Sinteraktivität verwendet werden, die Verarbeitbarkeit solcher flußmittelfreier Massen ist außerdem bekanntermaßen relativ schlecht.
2. Beispiel: Al2O3-Keramik mit geringen Mengen an Flußmitteln
Diese Keramik setzt sich aus den folgenden Komponenten zusammen: 97,5 Gew.-% Aluminiumoxid mit einem Al2O3-Gehalt 99 % sowie je weniger als 0,1 % Na2O und K2O; 1,25 Gew.-% SiO und 1,25 Gew.-% CaO. Die Sintertemperatur und die Sinterdauer richten sich zum einen nach der Zusammensetzung, zum anderen aber auch nach der Art der Anwendung, so beispielsweise nach der Art des Substrates, auf dem diese Keramik als Bestandteil des Heizleiters aufgetragen ist. Die elektrochemische Stabilität der Keramik erfährt noch eine weitere Erhöhung, wenn sie nach dem Sintern nachgeglüht wird, und zwar für das obengenannte Beispiel mindestens 2 Stunden bei 1250ºC. Hierbei wird die Glasphase teilweise auskristallisiert, und damit werden die beweglichen Ionen, nämlich Alkali und Erdalkali, gebunden. Die elektrochemische Stabilität einer solchen Keramik zeigt eine Grenztemperatur von 1250 ºC. Diese Keramik kann bereits bei 1550 ºC dichtgesintert werden ( 96 % der theoretischen Dichte).
3. Beispiel:
Hier geht es um eine Al2O3-Keramik mit einem größeren Anteil an Flußmittel und darin enthaltenen relativ schwer beweglichen, weil großen Ionen. Dieses Beispiel stellt eine besonders bevorzugte Variante der erfindungsgemäßen Keramik dar, weil sie neben der elektrochemischen Stabilität gegenüber den zuvor genannten Beispielen verbesserte Verarbeitungseigenschaften, insbesondere ein günstigeres Preßverhalten aufweist. Die beispielhafte Keramik hat die folgende Zusammensetzung: 91,0 Gew.-% Al2O3; 6,48 Gew. -% BaO und 2,52 Gew.-% SiO2, was einem BaO:SiO2-Verhältnis von 2,6 zu 1
Gewichtsteilen bzw. von 1:1 Molen entspricht. Da Alkali- und CaO- bzw. MgO-Anteile unter einem Gew.-% und Alkalianteile für sich unter 0,2 Gew.-% bleiben sollen, wird ein Aluminiumoxid mit 99,5 % AI2O3 eingesetzt. Das Bariumoxid wird in Form von Bariumcarbonat und der SiO2-Anteil zumindest überwiegend als Kaolinit oder
Halloysit eingebracht, was zu günstigen Herstell- und Preßeigenschaften führt. Die genannten Komponenten werden wie oben beschrieben behandelt und geprüft. Bei Anlegen einer Gleichspannung von 12,5 V zeigte sich diese Keramik im Dauerversuch bei Verwendung sowohl als Stützgerüst für Heizleiter als auch für die Abdeckung des Halbleiters als bis 1400 °C elektrochemisch stabil. Außerdem ist überraschenderweise bei Temperaturen oberhalb 1000 °C eine erhöhte
Festigkeit festzustellen, wobei bei 1300 °C immerhin eine Biegefestigkeit von 300 N/mm2 erreicht wird. Der geringe Abfall der
Festigkeit bei diesen hohen Temperaturen ist auf eine weitgehende Auskristallisation der Glasphase zurückzuführen. Diese Keramik sintert bereits bei 1525 °C auf 96 % der theoretischen Dichte (abgeschätzt aus der Phasenanalyse).

Claims

Ansprüche
1. Elektrochemisch stabile Keramik aus Al2O3 als Trägerkeramik, keramische Deckschicht und/oder keramisches Stützgerüst für Heizleiter, gekennzeichnet durch einen Gehalt an Na2O und K2O von je weniger als 0,2 Gew.-%.
2. Keramik nach Anspruch 1, dadurch gekennzeichnet, daß sie weniger als je 0,1 Gew.-% Na2O und K2O enthält.
3. Keramik nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie keine Flußmittel enthält und der Al2O3-Gehalt 99 Gew.-% beträgt.
4. Keramik nach Anspruch 1 oder 2, gekennzeichnet durch einen Gehalt an Flußmitteln von 2,5 bis 10 Gew.-%, wobei die Anteile an Na2O, K2O, CaO und MgO zusammen 1 Gew. -% sind und das Flußmittel in Form eines Bariumsilikates und/oder Strontiumsilikates vorliegt.
5. Keramik nach Anspruch 4, dadurch gekennzeichnet, daß das Mol-Verhältnis BaO bzw. SrO:SiO2 zwischen 2:1 und 1:12,5 liegt.
6. Keramik nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß der SiO2-Anteil in Form von Kaolinit oder Halloysit und der BaO- bzw. SrO-Anteil in Form von Carbonaten eingebracht ist.
7. Keramik nach Anspruch 1 oder 2 gekennzeichnet durch einen geringen Gehalt an Flußmitteln, wobei der Al2O3 -Gehalt
95 Gew.-%, der SiO2-Gehalt 5 Gew.-% und der ErdalkaliGehalt 2,5 Gew.-% ist.
8. Keramik nach Anspruch 7, dadurch gekennzeichnet, daß der Erdalkali-Gehalt aus CaO oder MgO besteht.
9. Keramik nach Anspruch 8, dadurch gekennzeichnet, daß CaO oder MgO teilweise oder ganz im Mol-Verhältnis 1:1 durch BaO oder SrO ersetzt sind.
10. Verfahren zur Herstellung eines Bauteils aus einer Keramik nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß das Bauteil nach dem Mischen, Mahlen, Sintern der Komponenten bei einer Temperatur, die unterhalb der Flußmittelschmelztemperatur im Sinterzustand liegt, 1 bis 3 Stunden nachgeglüht wird.
PCT/DE1987/000285 1986-08-27 1987-06-24 Electrochemically stable aluminium oxide ceramic WO1988001610A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE8787904025T DE3781414D1 (de) 1986-08-27 1987-06-24 Elektrochemisch stabile keramik aus aluminiumoxid.
JP62503720A JPH0822771B2 (ja) 1986-08-27 1987-06-24 酸化アルミニウムからなる電気化学的に安定なセラミックおよび該セラミックからなる部材を製造する方法
KR1019880700449A KR950000630B1 (ko) 1986-08-27 1987-06-24 전기화학적으로 안정한 산화 알루미늄으로 구성된 세라믹

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DEP3629100.5 1986-08-27
DE19863629100 DE3629100A1 (de) 1986-08-27 1986-08-27 Elektrochemisch stabile keramik aus aluminiumoxid

Publications (1)

Publication Number Publication Date
WO1988001610A1 true WO1988001610A1 (en) 1988-03-10

Family

ID=6308277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1987/000285 WO1988001610A1 (en) 1986-08-27 1987-06-24 Electrochemically stable aluminium oxide ceramic

Country Status (6)

Country Link
US (1) US5030602A (de)
EP (1) EP0321460B1 (de)
JP (1) JPH0822771B2 (de)
KR (1) KR950000630B1 (de)
DE (2) DE3629100A1 (de)
WO (1) WO1988001610A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701979A1 (de) * 1994-08-18 1996-03-20 Ngk Spark Plug Co., Ltd Sinterkörper aus Alumina für keramisches Heizelement
EP1101103B1 (de) * 1998-07-30 2015-09-09 Robert Bosch Gmbh Abgassonde, bei der die den heizer vom festelektrolyten trennende isolationsschicht durch sintern eines mit porenbildner versetzten al2o3-haltigen materials gebildet wird

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19853601A1 (de) * 1998-11-20 2000-05-25 Bosch Gmbh Robert Verfahren zur Herstellung einer Isolationsschicht und Meßfühler
JPWO2007015366A1 (ja) * 2005-08-02 2009-02-19 日本碍子株式会社 ガスセンサ素子
DE102011003481A1 (de) * 2011-02-02 2012-08-02 Robert Bosch Gmbh Elektronisches Bauteil umfassend einen keramischen träger und Verwendung eines keramischen Trägers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760875A (en) * 1951-10-31 1956-08-28 Gen Motors Corp Ceramic composition and process for making same
US2887394A (en) * 1956-04-04 1959-05-19 Corning Glass Works Method of making a nonporous, semicrystalline ceramic body
FR2256121A1 (de) * 1974-01-02 1975-07-25 Ibm
GB2108949A (en) * 1981-11-10 1983-05-25 Magyar Aluminium Process for the preparation of alkali-poor -alumina for ceramic purposes
EP0190768A2 (de) * 1985-02-08 1986-08-13 NGK Spark Plug Co. Ltd. Aluminiumoxid-Porzellan-Zusammensetzungen

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3167438A (en) * 1962-08-13 1965-01-26 Gen Electric Ceramic articles and methods of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2760875A (en) * 1951-10-31 1956-08-28 Gen Motors Corp Ceramic composition and process for making same
US2887394A (en) * 1956-04-04 1959-05-19 Corning Glass Works Method of making a nonporous, semicrystalline ceramic body
FR2256121A1 (de) * 1974-01-02 1975-07-25 Ibm
GB2108949A (en) * 1981-11-10 1983-05-25 Magyar Aluminium Process for the preparation of alkali-poor -alumina for ceramic purposes
EP0190768A2 (de) * 1985-02-08 1986-08-13 NGK Spark Plug Co. Ltd. Aluminiumoxid-Porzellan-Zusammensetzungen

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Advanced Ceramic, Band 1, Nr. 1, Januar 1986, (Columbus, Ohio, US), W.A. ZDANIEWSKI et al.: "Toughening of a Sintered Alumina by Crystallization of the Grain-Boundary Phase", seiten 99-103, siehe seite 99, linke spalte *
CHEMICAL ABSTRACTS, Band 101, Nr. 14, Oktober 1984, (Columbus, Ohio, US), siehe seite 286, Zusammenfassung 115749x, & JP, A, 5978926 (Mitsubishi Chemical Industries Co., Ltd) 8. Mai 1984 *
Design Engineering, November 1977, (London, GB), "Engineering Ceramics - when to use them", seiten 79, 81, 82 siehe seite 81, rechte spalte, unten *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0701979A1 (de) * 1994-08-18 1996-03-20 Ngk Spark Plug Co., Ltd Sinterkörper aus Alumina für keramisches Heizelement
US5753893A (en) * 1994-08-18 1998-05-19 Ngk Spark Plug Co., Ltd. Alumina-based sintered material for ceramic heater
EP1101103B1 (de) * 1998-07-30 2015-09-09 Robert Bosch Gmbh Abgassonde, bei der die den heizer vom festelektrolyten trennende isolationsschicht durch sintern eines mit porenbildner versetzten al2o3-haltigen materials gebildet wird

Also Published As

Publication number Publication date
EP0321460B1 (de) 1992-08-26
EP0321460A1 (de) 1989-06-28
JPH01503621A (ja) 1989-12-07
KR880701690A (ko) 1988-11-04
DE3629100A1 (de) 1988-03-03
KR950000630B1 (ko) 1995-01-26
JPH0822771B2 (ja) 1996-03-06
DE3781414D1 (de) 1992-10-01
US5030602A (en) 1991-07-09

Similar Documents

Publication Publication Date Title
DE69327747T2 (de) Dielektrische Zusammensetzung, Mehrschichtleitersubstrat und keramischer Mehrschichtkondensator
DE4109948C2 (de)
DE2655085C2 (de)
DE3041327C2 (de)
DE2517743C3 (de) Passivierender Schutzüberzug für Siliziumhalbleiterbauelemente
DE4440005C2 (de) Siliziumnitridkeramikheizer und Verfahren zu seiner Herstellung
DE2602429C2 (de) Sinterfähiges Glaspulver im System MgO-Al↓2↓O↓3↓-SiO↓2↓-MO
DE2946753C2 (de)
DE10025324B4 (de) Herstellungsverfahren für eine Zündkerze
DE1596851A1 (de) Widerstandsmaterial und aus diesem Widerstandsmaterial hergestellter Widerstand
DE2610303C2 (de) Siebdruckpaste für dicke, elektrisch leitende, Leiterbahnen bildende Schichten auf einem keramischen Substrat
DE3924563C2 (de) Nicht-reduzierende dielektrische keramische Zusammensetzung
DE2932914C2 (de) Hochfeste Tonerdeporzellanmasse für elektrische Isolatoren
DE69205557T2 (de) Zusammensetzung für Dickschicht-Widerstand.
DE2633289C2 (de) Elektrischer Isolator aus Porzellan mit einem Überzug aus Zinnoxid-Halbleiterglasur
WO1988001610A1 (en) Electrochemically stable aluminium oxide ceramic
DE3405205A1 (de) Gesintertes aluminiumoxidprodukt
DE60301463T2 (de) Halbleitendes Glasur-Produkt, Methode zur Herstellung des Glasurproduktes und damit überzogener Isolator
DE60117390T2 (de) Verfahren zur herstellung von barium-lanthan-silikat-glaskeramiken
EP0124943A1 (de) Dielektrisches Glas für Mehrschichtschaltungen und damit versehene Dickfilmschaltungen
DE1953891C3 (de) Hochtemperatur!estes Kittmaterial
DE2459177A1 (de) Keramische stoffzusammensetzung mit hohem tonerdegehalt zur herstellung von gesinterten, keramischen gegenstaenden
DE2635699A1 (de) Elektrischer widerstand und verfahren zur herstellung desselben
DE2946679A1 (de) Widerstandsmaterial, elektrischer widerstand und verfahren zur herstellung desselben
DE19639906A1 (de) Glaszusammensetzung zur Isolierung, Isolierpaste und gedruckte Dickfilmschaltung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987904025

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987904025

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987904025

Country of ref document: EP