WO1984002530A1 - Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives - Google Patents

Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives Download PDF

Info

Publication number
WO1984002530A1
WO1984002530A1 PCT/CH1982/000135 CH8200135W WO8402530A1 WO 1984002530 A1 WO1984002530 A1 WO 1984002530A1 CH 8200135 W CH8200135 W CH 8200135W WO 8402530 A1 WO8402530 A1 WO 8402530A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid components
mixing
flowing
housing
additives
Prior art date
Application number
PCT/CH1982/000135
Other languages
English (en)
French (fr)
Inventor
Werner Wehrli
Peter Franz
Original Assignee
Buss Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Buss Ag filed Critical Buss Ag
Priority to DE8383900011T priority Critical patent/DE3279839D1/de
Priority to EP83900011A priority patent/EP0128893B1/de
Priority to US06/783,339 priority patent/US4698378A/en
Priority to AT83900011T priority patent/ATE44973T1/de
Priority to BR8208106A priority patent/BR8208106A/pt
Priority to AU10189/83A priority patent/AU561175B2/en
Priority to PCT/CH1982/000135 priority patent/WO1984002530A1/de
Priority to IT24245/83A priority patent/IT1170014B/it
Publication of WO1984002530A1 publication Critical patent/WO1984002530A1/de
Priority to FI843262A priority patent/FI843262A0/fi
Priority to NO843304A priority patent/NO843304L/no

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/565Mixing liquids with solids by introducing liquids in solid material, e.g. to obtain slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/70Spray-mixers, e.g. for mixing intersecting sheets of material
    • B01F25/72Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles
    • B01F25/721Spray-mixers, e.g. for mixing intersecting sheets of material with nozzles for spraying a fluid on falling particles or on a liquid curtain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/93Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with rotary discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/836Mixing plants; Combinations of mixers combining mixing with other treatments
    • B01F33/8363Mixing plants; Combinations of mixers combining mixing with other treatments with coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/71775Feed mechanisms characterised by the means for feeding the components to the mixer using helical screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7179Feed mechanisms characterised by the means for feeding the components to the mixer using sprayers, nozzles or jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/40Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft
    • B29B7/401Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with single shaft having a casing closely surrounding the rotor, e.g. with a plunger for feeding the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/94Liquid charges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride

Definitions

  • the present invention relates to a method for dispersing granular or powdery solids with liquid components, in particular for the continuous production of PVC dry blend in a vertical continuous mixer with centrifugal discs rotating on a vertical shaft.
  • the object of the invention is to propose a method which makes it possible to produce reactive and free-flowing powders or agglomerates by mixing granular or dusty solids with liquid and wetting them.
  • the mixing time should be reduced to a few seconds while maintaining the mixing quality in order to reduce the thermal stress to a minimum during the mixing process, since either the solid particles and / or the liquid components are sensitive to prolonged thermal stress.
  • a mix temperature which is below the plasticizing range of the PVC mix generally has to be reached. between 85 and 150 ° C depending on the preparation process.
  • the plasticizer is added from 50 to 60 ° C.
  • the plastic raw material is heated until it softens or melts, in order to then agglomerate with the added stabilizers and optionally fillers and to form a free-flowing sintered powder.
  • batch-working machines were used for this preparation stage. Either slow-running and heatable belt screws or ploughshare mixers or high-speed turbomixers with a smaller chamber volume, in which a heating mixer is often combined with a subsequent cooling mixer to cool the batch quickly.
  • dry blend The product of hot mixing is called dry blend.
  • dry blend energy inputs of 100-150 KJ / kg were considered necessary.
  • Other plastic premixes are also processed in a similar way.
  • a high mixing quality can be achieved in a few seconds if the solids continuously metered into a continuous mixer at room temperature and swirled at high speed are simultaneously wetted with highly heated liquid components. It is expedient if the liquid components are briefly heated immediately before the dispersion.
  • the liquid components are injected heated to 80-200 ° C. in an advantageous manner.
  • the passage gap between the inner wall of the continuous mixer housing and the centrifugal discs designed as rotors is reduced in a manner known per se, so that high energies are kinematically introduced into the material passing through.
  • the additives melt in a split second, combine with the added solid additives, cool down again and form a free-flowing powder.
  • the thermal stress is advantageously short; the process is simple, inexpensive and fast, which results in a high mixing quality.
  • the following should be said about the concept of dwell time.
  • the result of a continuous mixer depends crucially on the addition of the individual components in the time unit. The more constant the individual components are added in the unit of time, the easier the task of the continuous mixer becomes.
  • the limit case of a continuous continuous mixer requires a theoretical volume close to zero, namely if the metering could be controlled so precisely that the particles of the components are brought together individually in accordance with the target mixing ratio. Since this is practically not possible, mixing times similar to batch mixers are necessary. Instead of mixing time, one speaks of dwell time.
  • FIG. 1 shows a schematically drawn system
  • FIG. 2 shows a mixing device of the system in vertical section
  • FIG. 3 shows a plan view of the housing of the mixing device
  • FIG. 4 shows an enlarged illustration of a rotor partially in vertical section
  • FIG. 5 shows a view of the rotor of FIG above. 6 shows a variant of FIG. 1.
  • a system shown in FIG. 1 is used for dispersing granular or powdery solids with liquid components, in particular for the continuous production of soft PVC dry blend. 6 is used for the preparation of free-flowing hard PVC premixes.
  • the system shown in FIG. 1, shown schematically, has a container 2 with a heating jacket and stirrer for receiving the liquid components and is connected via a line 3 to a vertical continuous mixer 13 which has a cylindrical housing 5.
  • the length of the case corresponds to approximately twice the diameter of the case.
  • a container 2 ' which can be connected to the line 3 serves to hold rinsing liquid for cleaning the continuous mixer 13 when the liquid components are changed.
  • a metering pump 6, a reheater 37 and a flow meter 7 are installed in line 3.
  • the aforementioned line 3 is connected to a ring line 8 surrounding the housing 5, which is provided with injection nozzles 9 which open into the interior of the housing 5 and through which the liquid components are injected from the container 2 into the continuous mixer 13.
  • a scale hopper 10 is used to hold the solids, at the bottom of which there is a discharge screw 11 which opens into the housing 5 of the continuous mixer 13.
  • the outlet of the discharge screw 11 is located somewhat above the ring line 8 in the housing 5.
  • Both the bunker 10 and the discharge screw 11 are arranged on a weighbridge 12.
  • the discharge screw 11 is driven by the control motor M 1 .
  • the vertically arranged continuous mixer 13 has a vertical shaft 14 which extends downwards and is equipped with two rotors 15.
  • a motor M 2 arranged at the top serves to drive the shaft 14.
  • FIGS. 2-5 The more detailed design of the flow mixer 13 can be seen in FIGS. 2-5.
  • Bearings 28 in which the shaft 14 is overhung are provided in the housing 5 of the continuous mixer.
  • the upper end of the shaft 14 protruding from the housing 5 carries a pulley 29 which is connected via a drive belt 30 to the motor M 2 , not shown here.
  • the lower end 31 of the shaft 14 is tapered and carries two rotors 15 arranged close to one another.
  • the wall 39 of the housing 5 is smooth and above the upper rotor 15 there is an annular constriction 32, one or three of which Injection nozzles 9 are arranged for the liquid components.
  • the entire cylindrical housing 5 is divided and hinged; it hangs on a triangular support plate 33 and is held together by means of clamping screws.
  • the support plate 33 rests on support buffers 33 'and the housing 5 is held by two columns 34 and by a pivot shaft 35.
  • the discharge screw 11 is connected for the supply of a solid pre-mix.
  • the shape of the rotor disks 15 can be seen from FIGS. 4 and 5. These are provided with radially distributed wings 38. However, other suitable rotor shapes can also be used, a tangential speed of 3-50 m / sec being adjustable.
  • an average residence time of the product between the rotors or between the lowermost rotor and outlet which was reduced to preferably 2-5 seconds could be achieved, so that Gluing of the parts of the mixing unit in contact with the product is prevented.
  • the high shaft speed of preferably 2000-7000 rpm. and the structural design of the mixing unit enables trouble-free, continuous production of high-quality solid dispersions with minimal energy consumption, which is only about 0.001 .0.08 kWh / kg.
  • the axial length of the mixing zone corresponds approximately to the diameter of the housing 5 of the device. An equal length is required for the solids supply and the dry solids disintegration, which results in a total length of the process part in the housing which corresponds to twice the diameter.
  • the shaft can be carried out on the fly, so that there is no need for a bearing at the end of the shaft. This results in the free, unimpeded outflow from the mixing unit which is important in the production of dispersions.
  • the product can be degassed immediately after leaving the mixer using a vacuum in a downpipe without heat, which is an economical solution.
  • liquid component If no substantial proportion of a liquid component is added to the mixture, for example a free-flowing and homogeneous mixture for rigid PVC is generated, then the liquid component must be generated kinematically from the added additive component as softening and melting through the swirling. The uniform dispersion of all ingredients is more critical and difficult than with flexible mixtures.
  • the continuous mixer 13 is the same as in Fig. 1, but without the injectors. Rings 45 are clamped onto the rotors 15 in order to narrow the passage gap 46 between the housing wall 5 and the rotor. There are clamping rings of various thicknesses available so that the gap width can be selected.
  • the variation of the shear gap and speed enable the energy introduced to be adapted to the qualitative requirements with gentle temperature / time stress.
  • a mixer as described above for the embodiment of FIG. 1 of 100 mm housing diameter, fed by a metering piston pump for the liquid component and a metering belt scale for the solid premix, were at a speed of the shaft of the mixer of 7000 rpm in continuous operation liquid components are introduced at a temperature of 180 C and solids at room temperature and 200-300 kg / h of dispersed powder are continuously produced and, if necessary, immediately deaerated under vacuum.
  • Three injection nozzles were used and two rotor disks were arranged on the lower part of the shaft. Due to the very short dwell time, the increased wetting speed was taken into account and an unimpeded flow of the dispersed material was made possible.
  • a continuous mixer with a housing diameter of 100 mm as described above was loaded with PVC, filler and additives from three dosing scales. These three solid components were mixed in a whirling manner and driven through two narrow shear gaps between the rotor and the housing wall at a distance of 0.6 mm.
  • the rotor speed was 5000 rpm.
  • the particles of the free-flowing and homogeneous premix produced in this way emerged from the continuous mixer after a short average residence time at approximately 95-115 ° C.
  • the product could be stored without using a special cooling level without baking.
  • the throughput was 200 kg / h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
  • Sliding-Contact Bearings (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

Verfahren zur kontinuierlichen Herstellung von rieselfähigen und homogenen Gemischen aus Kunststoffen mit Zusätzen
Die vorliegende Erfindung bezieht sich auf ein Verfahren zum Dispergieren von körnigen oder pulverigen Feststoffen mit Flüssigkeitskomponenten, insbesondere zur kontinuierlichen Herstellung von PVC-Dry-Blend in einem senkrechten Durchlaufmischer mit an einer senkrechten Welle rotierenden Schleuderscheiben.
Die Aufgabe der Erfindung besteht darin, ein Verfahren vorzuschlagen, welches ermöglicht, reaktionsbereite und rieselfähige Pulver oder Agglomerate herzustellen, indem körnige oder staubförmige Feststoffe mit Flüssigkeit gemischt und benetzt werden. Dabei soll die Mischzeit unter Beibehaltung der Mischgüte auf wenige Sekunden reduziert werden, um die thermische Beanspruchung zeitlich während des Mischvorganges auf ein Minimum zu reduzieren, da entweder die Feststoffteilchen und/oder die Flüssigkeitskomponenten gegen eine längere thermische Beanspruchung empfindlich sind.
Gemäss der herrschenden Auffassung muss bei der PVC- Heissmischung, beim "Dry blend" eine Mischungsteittperatur erreicht werden, die unterhalb des Plastifizierbereiches der PVC-Mischung liegt, i.a. zwischen 85 und 150°C je nach Aufbereitungsverfahren.
Für Weich-PVC wird der Weichmacher ab 50 bis 60°C zugegeben. Für Hart-PVC wird der Plastrohstoff bis zum Erweichen oder Schmelzen erwärmt, um dann mit den zugegebenen Stabilisatoren und gegebenenfalls Füllstoffen zu agglomerieren und ein rieselfähiges angesintertes Pulver zu bilden. Nach der bis heute angewendeten Technik benutzte man für diese Aufbereitungsstufe absatzweise arbeitende Maschinen. Entweder langsam laufende und beheizbare Bandschnecken oder Pflugscharmischer oder schnelllaufende Turbomischer von kleinerem Kammervolumen, bei denen ein Heizmischer häufig mit einem nachfolgenden Kühlraischer kombiniert ist, um die Charge rasch abzukühlen. Da der Temperaturanstieg von der Chargengrösse, von der spezifischen Wärme des Produktes, sowie von der pro Zeiteinheit eingeleiteten Energie abhängt und die ersten beiden Parameter feststehen, konzentrierten sich die Entwicklungen darauf, immer höhere Energien pro Zeiteinheit in die Mischung einzuleiten. Beim Heissmischen oder Trockenmischen, d.h. Mischen und gleichzeitiges Aufheizen des PVC bis unterhalb der Plastifiziertemperatur, d.h. bis ca. 130°C/werden alle Additive zerrieben, aufgeschmolzen und vom PVC-Korn absorbiert.
Das Produkt des Heissmischens nennt man Dry-Blend. Zur Herstellung von "Dry-Blend" wurden Energieeinleitungen von 100-150 KJ/kg als notwendig erachtet. Auch andere Kunststoff-Vormischungen werden in ähnlicher Weise aufbereitet. üeberraschenderweise wurde nun gefunden, dass auch bei möglichst schonender Aufbereitung bei kleinster Energiezufuhr sich in wenigen Sekunden eine hohe Mischgüte erzielen lässt, wenn die bei Raumtemperatur in einen Durchlaufmischer kontinuierlich eindosierte und hochtourig verwirbelte Feststoffe gleichzeitig mit hocherhitzten Flüssigkeitskomponenten benetzt werden. Es ist dabei zweckmässig, wenn die Flüssigkeitskomponenten unmittelbar vor der Dispergierung kurzfristig erhitzt werden.
Für Weich-PVC werden in vorteilhafter Weise die Flüssigkeitskomponenten auf 80-200º C aufgeheizt eingedüst. Für Hart-PVC wird der Durchtrittspalt zwischen der Innenwand des Gehäuses des Durchlaufmischers und den als Rotoren ausgebildeten Schleudertellern in an und für sich bekannter Weise verkleinert, sodass im hindurchtretenden Material hohe Energien kinematisch eingeleitet werden. Die Additive schmelzen in einem Sekundenbruchteil, verbinde sich so mit den beigegebenen FeststoffZusätzen, kühlt dabei wieder ab und bildet ein rieselfähiges Pulver.
Infolge der sehr kurzen Verweilzeit ist die zeitlich thermische Beanspruchung vorteilhaft kurz; der Prozess ist einfach, kostengünstig und schnell, worauf sich eine hohe Mischgüte ergibt. Zum Begriff der Verweilzeit soll folgendes ausgeführt werden. Grundsätzlich hängt das Ergebnis eines Durchlaufmischers in entscheidendem Masse von der Zugabe der Einzelkomponenten in der Zeiteinheit ab. Je konstanter in der Zeiteinheit die Einzelkomponenten zugegeben werden, desto leichter wird die Aufgabe des Durchlaufmischers. Der Grenzfall eines kontinuierlichen Durchlaufmischers benötigt ein theoretisches Volumen nahe Null, nämlich dann, wenn die Dosierung so genau gesteuert werden könnte, dass entsprechend dem Sollmischungsverhältnis die Partikel der Komponenten einzeln zusammengeführt werden. Da das praktisch nicht möglich ist, sind Mischzeiten ähnlich wie bei Chargenmischern notwendig. Statt Mischzeit spricht man von Verweilzeit. Vom Standpunkt der Mischgüte aus wird man bestrebt sein, die Verweilzeit so kurz wie möglich zu halten. Diese kurze Verweilzeit im Mischraum gestattet keine ausreichende Wärmezufuhr durch Beheizung der Mischwerkzeuge und Wandungen, was bis jetzt als unerlässlich erachtet wurde. Ebenso war die mechanische Beanspruchung der Teilchen beim Mischen ungenügend.
Alle diese Probleme und Nachteile werden durch das erfindungsgemässe Vorgehen sehr vorteilhaft gelöst. Durch die vorgeschlagene Erwärmung der Flüssigkeitskomponente wird die erforderliche Mischgüte leicht erreicht. Falls die Flüssigkeitskomponente auf eine zeitliche Wärmebeanspruchung empfindlich reagiert, so geschieht die Erwärmung in einem instant wirksamen Durchlauferhitzer vor dem Einspritzen.
Auf beiliegender Zeichnung ist eine Einrichtung zur Ausführung des vorgeschlagenen Verfahrens beispielsweise dargestellt. Es zeigen
Fig. 1 eine schematisch gezeichnete Anlage, Fig. 2 eine Mischvorrichtung der Anlage in Vertikalschnitt, Fig. 3 eine Draufsicht auf das Gehäuse der Mischvorrichtung Fig. 4 eine vergrösserte Darstellung eines Rotors teilweise im Vertikalschnitt, und Fig. 5 eine Ansicht auf den Rotor von oben. Fig. 6 eine Variante zu Fig. 1. Zum Dispergieren von körnigen oder pulverigen Feststoffen mit Flüssigkeitskomponenten, insbesondere zur kontinuierlichen Herstellung von Weich-PVC Dry-Blend wird eine aus der Fig. 1 ersichtliche Anlage verwendet. Die Anlage nach Fig. 6 dient zur Aufbereitung von rieselfähigen Hart-PVC-Vormischungen.
Die aus Fig. 1 ersichtliche, schematisch dargestellte Anlage weist einen Behälter 2 mit Heizmantel und Rührwerk zur Aufnahme der Flüssigkeitskomponenten auf und ist über eine Leitung 3 an einen vertikalen Durchlaufmischer 13 angeschlossen, welcher ein zylindrisches Gehäuse 5 besitzt.
Die Gehäuselänge entspricht etwa dem doppelten Durchmesser des Gehäuses. Ein an die Leitung 3 zuschaltbarer Behälter 2' dient zur Aufnahme von Spülflüssigkeit zur Reinigung des Durchlaufmischers 13 bei Wechsel der Flüssigkeitskomponenten.
In die Leitung 3 ist eine Dosierpumpe 6, ein Nacherhitzer 37 und ein Durchflussmesser 7 eingebaut. Die erwähnte Leitung 3 ist an eine das Gehäuse 5 umgebende Ringleitung 8 angeschlossen, die mit Einspritzdüsen 9 versehen ist, die in das Innere des Gehäuses 5 münden und durch welche die Flüssigkeitskomponenten aus dem Behälter 2 in den Durchlaufmischer 13 eingedüst werden.
Zur Aufnahme der Feststoffe dient ein Waagen-Bunker 10 an dessen Boden eine in das Gehäuse 5 des Durchlaufmischers 13 mündende Austragsschnecke 11 vorhanden ist. Der Auslass der Austragsschnecke 11 befindet sich etwas oberhalb der Ringleitung 8 im Gehäuse 5. Sowohl der Bunker 10 als auch die Austragsschnecke 11 sind auf einer Brückenwaage 12 angeordnet. Die Austragsschnecke 11 wird durch den Regelmotor M1 angetrieben. Der vertikal geordnete Durchlaufmischer 13 weist eine vertikale sich nach unten erstreckende Welle 14 auf, die mit zwei Rotoren 15 ausgerüstet ist. Zum Antrieb der Welle 14 dient ein oben angeordneter Motor M2.
Die nähere Ausbildung des Durσhlaufmischers 13 ist aus den Fig. 2-5 ersichtlich. Im Gehäuse 5 des Durchlaufmischers sind oben Lager 28 vorhanden, in welchen die Welle 14 fliegend gelagert ist. Das obere, aus dem Gehäuse 5 ragende Ende der Welle 14 trägt eine Riemenscheibe 29, welche über einem Antriebsriemen 30 mit dem hier nicht gezeigten Motor M2 in Verbindung steht. Das untere Ende 31 der Welle 14 ist verjüngt ausgebildet und trägt zwei dicht übereinander angeordnete Rotoren 15. Im Bereiche der Rotoren 15 ist die Wand 39 des Gehäuses 5 glatt und oberhalb des oberen Rotors 15 ist eine ringförmige Einschnürung 32 vorgesehen,unter welcher ein bis drei Einspritzdüsen 9 für die Flüssigkeitskomponenten angeordnet sind. Das ganze zylindrische Gehäuse 5 ist geteilt und aufklappbar; es hängt an einer dreieckförmigen Tragplatte 33 und ist mittels Klemmschrauben zusammengehalten. Die Tragplatte 33 ruht auf Auflage-Puffern 33' und das Gehäuse 5 wird durch zwei Säulen 34 und durch eine Schwenkwelle 35 gehalten. Am Stutzen 36 des Gehäuses 5 wird die Austragsschnecke 11 für die Zufuhr eines Feststoff-Vorgemisehes angeschlossen.
Die Formgebung der Rotorscheiben 15 ist aus den Fig. 4 und 5 erkennbar. Diese sind mit radial verteilten Flügeln 38 versehen. Es können aber auch andere geeignete Rotorformen verwendet werden, wobei eine Tangentialgeschwindigkeit von 3-50 m/sec einstellbar ist.
Durch die beschriebene einfache Anordnung der Rotoren und des glatten Gehäuses konnte eine wesentlich auf vorzugsweise 2-5 Sekunden verkürzte mittlere Verweilzeit des Produktes zwischen den Rotoren bzw. zwischen dem untersten Rotor und Auslauf erzielt werden, sodass ein Verkleben der mit dem Produkt in Berührung stehenden Teile des Mischaggregats verhindert wird. Die hohe Wellendrehzahl von vorzugsweise 2000-7000 U/min. und die konstruktive Ausgestaltung des Mischaggregates ermöglichen eine störungsfreie, kontinuierliche Produktion qualitativ hochstehender Feststoff-Dispersionen bei minimalem Energieverbrauch, der nur etwa 0,001 .0,08 kWh/kg beträgt. Die achsiale Länge der Mischzone entspricht annähernd dem Durchmesser des Gehäuses 5 der Einrichtung. Für den Feststoff-Zulauf und die trockene Feststoff-Desintegration wird eine gleich grosse Länge benötigt, woraus eine totale Länge des Verfahrensteils im Gehäuse resultiert, welche dem zweifachen Durchmesser entspricht.
Durch die beschriebene Lagerung kann die Welle fliegend ausgeführt werden, womit eine Lagerung am Auslaufende der Welle entfällt. Daraus resultiert der bei der Herstellung von Dispersionen wichtige freie, ungehinderte Abfluss aus dem Mischaggregat. Das Produkt kann unmittelbar nach Austritt aus dem Mischapparat unter Vakuumanwendung in einem Fallrohr ohne Wärmezufuhr entgast werden, was eine wirtschaftliche Lösung darstellt.
Wird in das Gemisch kein wesentlicher Anteil einer Flüssigkomponente zugegeben, also beispielsweise eine rieselfähige und homogene Mischung für Hart-PVC erzeugt, dann muss die Flüssigkeitskompbnente aus dem zugegebenen Additivanteil kinematisch als Erweichen und Anschmelzen durch die Verwirbelung erzeugt werden. Die gleichmässige Dispersion aller Zutaten ist dabei kritischer und schwieriger als bei flexiblen Mischungen.
Die Anlage nach Fig. 6 ist diesen Anforderungen angepasst. Der Durchlaufmischer 13 ist der gleiche wie in Fig. 1, jedoch ohne die Einspritzdüsen. Auf die Rotoren 15 sind Ringe 45 aufgeklemmt, um den Durchtrittspalt 46. zwischen der Gebäusewandung 5 und dem Rotor zu verengen. Es stehen Aufk lemmringe mit verschiedener Dicke zur Verfügung, so dass die Spaltbreite vorgewählt werden kann.
Die Variation Scherspalt und Drehzahl ermöglichen die Anpassung der eingeleiteten Energie an die qualitativen Erfordernisse bei schonender Temperatur/Zeit-Beanspruchung.
Anwendungsbeispiele:
1. In einen Mischapparat wie vorstehend für die Ausführung nach Fig. 1 beschrieben, von 100 mm Gehäusedurchmesser, beschickt durch eine Dosierkolbenpumpe für die Flüssigkeitskomponente und einer Dosierbandwaage für das Feststoff-Vorgemisch, wurden bei einer Drehzahl der Welle des Mischapparates von 7000 U/min im Dauerbetrieb Flüssigkeitskomponenten bei einer Temperatur von 180 C und Feststoffe bei Raumtemperatur eingebracht und kontinuierlich 200-300 kg/h dispergierte Pulver hergestellt und falls notwendig, direkt anschliessend unter Vakuum entlüftet. Es waren drei Einspritzdüsen eingesetzt, und zwei Rotorscheiben am unteren Teil der Welle angeordnet. Durch die sehr kurze Verweilzeit wurde der erhöhten Benetzungsgeschwindigkeit Rechnung getragen und ein ungehindertes Abfliessen des dispergierten Gutes ermöglicht.
2. In der gleichen Anordnung wie im ersten Beispiel wird kontinuierlich eine Mischung für Weich-PVC Kabelmassen homogen aufbereitet.
Auf 100 Teile Suspensions-PVC, mit k-Wert 65, grob vorgemischt mit 70 Teilen gemahlenem und oberflächenbehandeltem Calciumcarbonat als Füllstoff und 4,7 Teilen dreibasischem Bleisulfat als Stabilisator, wird in der Wirbelkammer eine heisse Flüssigkeitskomponente,bestehend aus einem Gemisch von 41 Teilen Di-isooctyl-phtalat (DIOP) , als Weichmacher und 20 Teilen Chlorparaffin, 52% Cl, als Extender, eingedüst. Es wird im Dauerbetrieb ein homogenes Dry-Blend erhalten, welches gut lagerfähig ist.
3. Anwendungsbeispiel auf einer Anlage nach Fig. 6: Ein wie vorstehend beschriebener Durchlaufmischer mit 100mm Gehäusedurchmesser wurde aus drei Dosierwaagen mit PVC, Füllstoff und Additiven beschickt. Diese drei Feststoffanteile wurden intensiv verwirbelnd gemischt und durch zwei enge Scherspalte zwischen Rotor und Gehäusewandung mit Abstand von 0,6mm getrieben. Die Rotordrehzahl betrug 5000 üpM. Die Teilchen der so hergestellten rieselfähigen und homogenen Vormischung traten nach kurzer mittlerer Verweilzeit mit ca. 95-115°C aus dem kontinuierlichen Mischer aus. Das Produkt konnte ohne Einsatz einer besonderen Kühlstufe gelagert werden ohne dass es verbackte. Der Durchsatz betrug 200 kg/h .
4. Anwendungsbeispiel wie vorstehend wurde kontinuierlich feine Hart-PVC Kunststoff-Vormischung für Flaschen nach folgender Rezeptur aufbereitet:
100 Teile eines Massen- oder Suspensions-PVC (40), mit k-Wόrt 50-55, werden über eine Dosierwaage (12) kontinuierlich in den Einlauf des Durchlaufmischers (13) gegeben, gleichzeitig erfolgt über eine weitere Dosierwaage die Zugabe einer Vormischung von 10 Teilen Methylmetacrylat-Butadien-Styrol-Copolymer (MBS) als Schlagfestmacher und 1,2 Teilen Thio-Di-octyl-Stannat als Stabilisator, sowie über einen weiteren Dosierer 1,5 Teile Calcium-Stearat als Verarbeitungs-Hilfsmittel. Der Wirkungsgrad der kinematischen Energie-Einleitung beträgt 60-70% bei Hart-PVC , bzw. 45-70% bei Weich-PVC , wenn die gleichzeitig angewendete Vorheizung des Weichmachers mit einem verengten Scherspalt kombiniert wird.
Die Beispiele 2 und 4 basieren auf Rezepturen wie sie in der nachstehenden Veröffentlichung angeführt wurden:
BHL-Compounding Manual von W.V.Titow et al
Verleger Buss-Hamilton Ltd. (1979) Kapitel CAl,S.6 und CA3, S.3.

Claims

P A T E N T AN S P R U C H
1. Verfahren zum Erzeugen von rieselfähigen Kunststoff-Vormischungen durch kontinuierliches Dispergieren von auf thermische Behandlung empfindliche körnige oder pulverförmige Feststoffe mit Flüssigkeitskomponenten, dadurch gekennzeichnet, dass die Feststoffe mit Raumtemperatur eindosiert, in einem einzigen Durchlauf verwirbelt und mit hocherhitzten Flüssigkeitskomponenten benetzt werden.
2. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Flüssigkeitskomponenten unmittelbar vor dem Eindüsen kurzfristig erhitzt werden.
3. Verfahren nach Anspruch 1 dadurch gekennzeichnet, dass die Flüssigkeitskomponenten auf 80-120ºC aufgeheizt homogen eingedüst werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Flüssigkeitskomponenten aus einem Teil der Feststoffe durch die Verwirbelung als hocherhitzte Schmelze erzeugt wird.
PCT/CH1982/000135 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives WO1984002530A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE8383900011T DE3279839D1 (en) 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives
EP83900011A EP0128893B1 (de) 1982-12-20 1982-12-20 Verfahren zur kontinuierlichen herstellung von rieselfähigen und homogenen gemischen aus kunststoffen mit zusätzen
US06/783,339 US4698378A (en) 1982-12-20 1982-12-20 Procedure for the continuous production of free flowing and homogenous mixtures of plastic materials with admixtures
AT83900011T ATE44973T1 (de) 1982-12-20 1982-12-20 Verfahren zur kontinuierlichen herstellung von rieselfaehigen und homogenen gemischen aus kunststoffen mit zusaetzen.
BR8208106A BR8208106A (pt) 1982-12-20 1982-12-20 Processo para a producao continua de misturas de plasticos com aditivos homogeneas e passiveis de escorrimento
AU10189/83A AU561175B2 (en) 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogen- eous mixtures based on synthetic materials with additives
PCT/CH1982/000135 WO1984002530A1 (en) 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives
IT24245/83A IT1170014B (it) 1982-12-20 1983-12-19 Procedimento per la lavorazione in continuo di pvc, ed additivi per ottenere una premiscelatura di materiale plastico scorrevole
FI843262A FI843262A0 (fi) 1982-12-20 1984-08-17 Foerfarande foer kontinuerlig framstaellning av flytbara och homogena blandningar av plast med tillsatsaemnen.
NO843304A NO843304L (no) 1982-12-20 1984-08-17 Fremgangsmaate for kontinuerlig fremstilling av overrislingsbare og homogene blandinger av plast med tilsatsstoffer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH1982/000135 WO1984002530A1 (en) 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives

Publications (1)

Publication Number Publication Date
WO1984002530A1 true WO1984002530A1 (en) 1984-07-05

Family

ID=4539341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1982/000135 WO1984002530A1 (en) 1982-12-20 1982-12-20 Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives

Country Status (10)

Country Link
US (1) US4698378A (de)
EP (1) EP0128893B1 (de)
AT (1) ATE44973T1 (de)
AU (1) AU561175B2 (de)
BR (1) BR8208106A (de)
DE (1) DE3279839D1 (de)
FI (1) FI843262A0 (de)
IT (1) IT1170014B (de)
NO (1) NO843304L (de)
WO (1) WO1984002530A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005451A1 (en) * 1987-01-21 1988-07-28 Norsk Hydro A.S. A polyvinyl chloride composition and a method of manufacturing said composition
WO1997034750A1 (en) * 1996-03-18 1997-09-25 M.A. Hannarubbercompounding Oil injection apparatus and method for polymer processing
WO2000049071A2 (en) * 1999-02-19 2000-08-24 Equistar Chemicals, Lp Non-blocking polymeric particles and method and apparatus for preparing them
EP2196255A1 (de) 2006-11-23 2010-06-16 EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H. Verfahren und Vorrichtung zur Einbringung von Zusatzstoffen

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69422522T2 (de) * 1993-10-01 2000-08-03 Idc Mixers Ltd., Peterhead Materialienmischer
CA2285154C (en) * 1999-10-05 2004-08-03 Ronald W. T. Birchard Apparatus and method for blending dry materials
US6683123B1 (en) * 2000-09-12 2004-01-27 Bayer Polymers Llc Process for making a thermoplastic molding composition
ITMI20022696A1 (it) * 2002-12-20 2004-06-21 Lico Spa Procedimento per la produzione di tubi, profili, cavi e calandrati in pvc rigido e plastificato
BRPI0906178B1 (pt) * 2008-03-14 2021-07-20 Dow Global Technologies Inc. Processo para fabricar um artigo moldado
JP5632395B2 (ja) 2009-01-30 2014-11-26 ダウ グローバル テクノロジーズ エルエルシー ポリマー組成物、及び審美性の向上したtpo物品
CN105980128B (zh) * 2014-02-13 2019-04-12 Sika技术股份公司 制备即用型软pvc膜或型材的方法
ITUA20163680A1 (it) * 2016-05-23 2017-11-23 Elav S R L Sistema di dosaggio e iniezione di sostanze a comportamento fluido e di almeno un liquido da alimentare ad un estrusore
IT202100009806A1 (it) * 2021-04-19 2022-10-19 Pegaso Ind S P A Dispositivo dosatore gravimetrico e relativo metodo di controllo
IT202100009815A1 (it) * 2021-04-19 2022-10-19 Pegaso Ind S P A Dispositivo dosatore gravimetrico e relativo metodo di controllo

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE561630A (de) * 1956-10-15
DE2252104A1 (de) * 1971-10-26 1973-05-03 Shell Int Research Verfahren zur herstellung eines gemisches aus polyvinylchlorid und einem bei raumtemperatur festen polyester
US4184026A (en) * 1978-12-18 1980-01-15 Dart Industries Inc. Method for incorporating nucleating agents in propylene polymers
EP0007624A1 (de) * 1978-07-26 1980-02-06 Union Carbide Corporation Verfahren zum Mischen von flüssigen Zusatzstoffen mit festen Stoffen
EP0008712A1 (de) * 1978-08-28 1980-03-19 Friedrich Horst Papenmeier Verfahren und Vorrichtung zum Aufbereiten von PVC-Pulver
DE3014741A1 (de) * 1980-04-17 1981-10-22 Dietrich Reimelt KG, 6074 Rödermark Verfahren und anordnung zum beimischen einer fluessigkeit zu einem pulverigen gut
GB2087247A (en) * 1980-11-13 1982-05-26 Clare R S & Co Ltd Making thermoplastic road marking materials
DE3125396A1 (de) * 1981-06-27 1983-01-13 Buss AG, 4052 Basel Verfahren zum dispergieren von koernigen oder pulverigen feststoffen mit fluessigkeitskomponenten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155623A (en) * 1981-01-28 1981-12-01 Sanyo Chem Ind Ltd Method of dispersing powder into liquid
DE3819111A1 (de) * 1988-06-04 1989-12-14 Netter Gmbh Pneumatischer klopfer

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE561630A (de) * 1956-10-15
DE2252104A1 (de) * 1971-10-26 1973-05-03 Shell Int Research Verfahren zur herstellung eines gemisches aus polyvinylchlorid und einem bei raumtemperatur festen polyester
EP0007624A1 (de) * 1978-07-26 1980-02-06 Union Carbide Corporation Verfahren zum Mischen von flüssigen Zusatzstoffen mit festen Stoffen
EP0008712A1 (de) * 1978-08-28 1980-03-19 Friedrich Horst Papenmeier Verfahren und Vorrichtung zum Aufbereiten von PVC-Pulver
US4184026A (en) * 1978-12-18 1980-01-15 Dart Industries Inc. Method for incorporating nucleating agents in propylene polymers
DE3014741A1 (de) * 1980-04-17 1981-10-22 Dietrich Reimelt KG, 6074 Rödermark Verfahren und anordnung zum beimischen einer fluessigkeit zu einem pulverigen gut
GB2087247A (en) * 1980-11-13 1982-05-26 Clare R S & Co Ltd Making thermoplastic road marking materials
DE3125396A1 (de) * 1981-06-27 1983-01-13 Buss AG, 4052 Basel Verfahren zum dispergieren von koernigen oder pulverigen feststoffen mit fluessigkeitskomponenten

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988005451A1 (en) * 1987-01-21 1988-07-28 Norsk Hydro A.S. A polyvinyl chloride composition and a method of manufacturing said composition
WO1997034750A1 (en) * 1996-03-18 1997-09-25 M.A. Hannarubbercompounding Oil injection apparatus and method for polymer processing
WO2000049071A2 (en) * 1999-02-19 2000-08-24 Equistar Chemicals, Lp Non-blocking polymeric particles and method and apparatus for preparing them
WO2000049071A3 (en) * 1999-02-19 2001-02-01 Equistar Chem Lp Non-blocking polymeric particles and method and apparatus for preparing them
US6328798B1 (en) 1999-02-19 2001-12-11 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
US6616968B2 (en) 1999-02-19 2003-09-09 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
EP2196255A1 (de) 2006-11-23 2010-06-16 EREMA Engineering Recycling Maschinen und Anlagen Gesellschaft m.b.H. Verfahren und Vorrichtung zur Einbringung von Zusatzstoffen

Also Published As

Publication number Publication date
FI843262A (fi) 1984-08-17
AU561175B2 (en) 1987-04-30
IT1170014B (it) 1987-06-03
AU1018983A (en) 1984-07-17
BR8208106A (pt) 1984-11-27
ATE44973T1 (de) 1989-08-15
DE3279839D1 (en) 1989-08-31
IT8324245A0 (it) 1983-12-19
EP0128893B1 (de) 1989-07-26
EP0128893A1 (de) 1984-12-27
NO843304L (no) 1984-08-17
IT8324245A1 (it) 1985-06-19
US4698378A (en) 1987-10-06
FI843262A0 (fi) 1984-08-17

Similar Documents

Publication Publication Date Title
US4443109A (en) Method and apparatus for continuous feeding, mixing and blending
WO1984002530A1 (en) Method for the continuous production of flowing and homogeneous mixtures based on synthetic materials with additives
DE102005025016B4 (de) Verfahren und Gerät zur kontinuierlichen Herstellung von homogenen Mischungen
DE2901341C2 (de)
EP1792643B1 (de) Grossvolumiger Reaktor beziehungsweise Dünnschichtverdampfer mit einem Vormischaggregat
DE2056611A1 (de) Verfahren und Einrichtung zur Her stellung von Farbstoff Dispersionen
EP0335096B1 (de) Vorrichtung zum Mischen und Homogenisieren von fliessfähigen Produkten
DD144166A5 (de) Kontinuierliche herstellung von explosivstoffgemischen
AT511564B1 (de) Mischvorrichtung und verfahren zum mischen eines schüttgutes oder einer pastösen masse
DE1118959B (de) Verfahren und Vorrichtung zur Aufbereitung von Thermoplasten oder Duroplasten
DE1778436C3 (de) Verfahren und Vorrichtung zum kontinuierlichen Aufbereiten von pulverformigen bis körnigen thermoplastischen Kunststoffen
DE3125396A1 (de) Verfahren zum dispergieren von koernigen oder pulverigen feststoffen mit fluessigkeitskomponenten
WO2005118123A1 (de) Rotationsspaltgranulation
DE2216444A1 (de) Mischvorrichtung zur herstellung einer homogenen mischung aus mehreren stoffkomponenten
DE69908471T2 (de) Kontinuierlich arbeitende Knetmaschine
DE1917195A1 (de) Verfahren und Einrichtung zur Herstellung von PVC-Granulat
DE3314727A1 (de) Mischer
EP0029072B1 (de) Mischer zum kontinuierlichen Mischen von Stoffen, insbesondere Kunststoffen
DE2835252C2 (de) Mischer zum kontinuierlichen Mischen von Stoffen, insbesondere Kunststoffen
DE1507892A1 (de) Mischvorrichtung
DE2543034A1 (de) Mischbehaelter zum kontinuierlichen dosieren, mischen und trocknen von polymerverarbeitungsstoffen
AT211638B (de) Misch- und Zerkleinerungsapparatur
DE2827865A1 (de) Anwendung einer ruehrwerksmuehle mit zwangszufuehreinrichtung
DE102021119066A1 (de) Vorkonditionierer für den labor- oder versuchsbetrieb,insbesondere zum behandeln von trockenen lebens- oder futtermitteln
DE2057594C3 (de) Vorrichtung zum kontinuierlichen Mischen von Feststoffen mit Flüssigkeiten

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR FI JP NO SU US

AL Designated countries for regional patents

Designated state(s): AT BE CH DE FR GB NL SE

WWE Wipo information: entry into national phase

Ref document number: 1983900011

Country of ref document: EP

Ref document number: 843262

Country of ref document: FI

WWP Wipo information: published in national office

Ref document number: 1983900011

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1983900011

Country of ref document: EP