WO1981000112A1 - Procede et installation pour la gazeification de combustibles en morceaux - Google Patents

Procede et installation pour la gazeification de combustibles en morceaux Download PDF

Info

Publication number
WO1981000112A1
WO1981000112A1 PCT/DE1980/000097 DE8000097W WO8100112A1 WO 1981000112 A1 WO1981000112 A1 WO 1981000112A1 DE 8000097 W DE8000097 W DE 8000097W WO 8100112 A1 WO8100112 A1 WO 8100112A1
Authority
WO
WIPO (PCT)
Prior art keywords
gases
coke
carbonization
gas
fuel
Prior art date
Application number
PCT/DE1980/000097
Other languages
German (de)
English (en)
Inventor
K Kiener
Original Assignee
Kiener Karl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiener Karl filed Critical Kiener Karl
Priority to AU61214/80A priority Critical patent/AU6121480A/en
Publication of WO1981000112A1 publication Critical patent/WO1981000112A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • C10J3/64Processes with decomposition of the distillation products
    • C10J3/66Processes with decomposition of the distillation products by introducing them into the gasification zone
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/20Apparatus; Plants
    • C10J3/34Grates; Mechanical ash-removing devices
    • C10J3/40Movable grates
    • C10J3/42Rotary grates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/485Entrained flow gasifiers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/58Production of combustible gases containing carbon monoxide from solid carbonaceous fuels combined with pre-distillation of the fuel
    • C10J3/60Processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/74Construction of shells or jackets
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/78High-pressure apparatus
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0916Biomass
    • C10J2300/092Wood, cellulose
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/093Coal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0913Carbonaceous raw material
    • C10J2300/0946Waste, e.g. MSW, tires, glass, tar sand, peat, paper, lignite, oil shale
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0956Air or oxygen enriched air
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • C10J2300/0976Water as steam
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1253Heating the gasifier by injecting hot gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1603Integration of gasification processes with another plant or parts within the plant with gas treatment
    • C10J2300/1609Post-reduction, e.g. on a red-white-hot coke or coal bed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Definitions

  • the invention relates to a method for gasifying lump fuels such as bituminous hard coal, lignite, wood, straw and the like.
  • lump fuels such as bituminous hard coal, lignite, wood, straw and the like.
  • At least approximately atmospheric pressure in which the fuels carbonized in a first process stage by indirect heating at temperatures between 300 and 600 ° C with constant circulation and in a second process stage, the hot smoldering gases partially burned by mixing with preheated air, at the same time at temperatures of Thermally cracked at 850 to 1200 ° C. and then passed through a reaction zone formed from the coke in the first stage.
  • the invention further relates to a plant for carrying out such a method.
  • a large number of processes and plants for gasification, pyrolysis and / or high-temperature distillation of fuels of the most varied types have been developed, which have at least partially been implemented in practice. This consisted of an initial smoldering and / or coking of the given fuels in the absence of air through direct or indirect heating, by means of which the volatile constituents are expelled and separated from the solid fuels, possibly with thermal cracking.
  • the coke formed in this process could either be withdrawn as a salable end product or else be decomposed by a further thermal treatment by adding steam to preferably CH 4 , CO and H 2 -containing fuel gases .
  • So z. B. in DE-PS 972 468 describes a method for producing a fuel gas from bituminous fuels, in which the fuels are degassed in a first chamber of a conventional coke oven block and the distillation gases obtained are transferred via pipes and a template into a second, identically designed chamber , in which the glowing, already fully cooked distillation residues from a previous degassing process are located. This chamber is supplied with heat from the outside through the chamber walls.
  • finely atomized fuel e.g. B. oil or tar
  • the fuel which is finely atomized in the connecting line, forms a warm aerosol together with the hot raw gases, which is split into the gap volume of the glowing coke.
  • water or steam can also be added to the raw gases to carry out the water gas reaction in the glowing coke of the second chamber.
  • This method is therefore primarily based on fuels with only minor impurities, i. H. low ash and sulfur content, limited as feed materials.
  • a complete conversion of e.g. B. hard coal or brown coal with a high sulfur and ash content is not easily possible, since the coke obtained can be processed only with difficulty.
  • DE-OS 24 08 461 describes a method and a plant for the production of synthesis gas using a rack generator charged with coke, in which the fully cooked batch of coke from the generator is introduced in the heated state from the upstream coking furnace into the rack generator via a pressure lock .
  • the gasifying agent consists of a mixture of oxygen saturated with hot water, to which air can optionally be added, and of water vapor.
  • This gasification medium passes through a heat exchanger with temperatures between 200 and 300 ° C in the lower part of the tapping generator previously charged with hot coke.
  • the hot fuel gases are dedusted and give off their heat content to waste heat boilers before they are fed to a washer cooler as synthesis gas.
  • the coking gases mixed with the gasification agent formed from oxygen and water vapor can be introduced into the coke filling of the tapping generator.
  • the glowing foreign coke in the reaction zone remains largely uninvolved in the reactions taking place, i. H. it serves on the one hand as a heat store and on the other hand as a carrier for the soot particles with an extraordinarily large surface area.
  • the solid charring residues discharged from the rotating drum are sorted into smoldering coke, other usable and worthless residues. Gasification of the smoked coke is not provided for in this known method.
  • the object of the invention is to provide a method and a system for gasifying ash and sulfur-rich bituminous fuels, in which the continuously produced fuel gases are largely free of environmentally harmful contaminants, e.g. B. hydrogen sulfide, and at the same time have a relatively high calorific value.
  • environmentally harmful contaminants e.g. B. hydrogen sulfide
  • This object is achieved according to the invention in that in a third process stage the smoldering coke is partially burned in a substoichiometric ratio by introducing a gaseous oxygen carrier, in that the gas mixture obtained, which is initially between 900 and 1200 ° C., is sucked through an immediately adjacent reaction zone formed from the smoldering coke, in which the gas temperatures are reduced by endothermic reactions and at the same time the calorific value of the gases is increased, and that these gases are then mixed with the fuel gases from the second process stage and the mixture obtained is fed to heat exchangers and scrubbers in a known manner.
  • a gaseous oxygen carrier in that the gas mixture obtained, which is initially between 900 and 1200 ° C.
  • This method according to the invention has a number of advantages over known fuel gasification methods, which include lie in the extraordinarily simple process control and control and on the other hand in the quality of the fuel gas, which has a high calorific value and is practically free of sulfur, chlorine and heavy metal compounds as well as harmful hydrocarbons even with ash or sulfur-rich feed materials. Furthermore, the above-mentioned method offers the possibility of effectively and completely gasifying fuels with ash contents of up to 30% by weight. In addition, other different fuels, such as ash-rich coking coal, lignite, peat, and also wood, wood chips, straw and the like. Like., serve as feed materials.
  • the smoked coke fulfills several functions in the fuel gas reactor.
  • it serves to support the cracking processes of the smoldering gases during their substoichiometric partial combustion
  • the soot particles formed during the partial combustion and cracking process are deposited on the smoldering coke grains, with extraordinarily large overs surfaces are formed.
  • the carbonization gases react with the deposited soot, whereby carbon monoxide and hydrogen are produced from the carbonization gases using sensible heat in accordance with the known water gas equations.
  • Corresponding processes also play out for the conversion of the gas mixtures generated in the low-level zone during the partial combustion of the coke.
  • the continuous burning of the smoked coke in the lowest reaction zone results in a gradual lowering movement of the entire coke filling across the different reaction zones.
  • the speed of this gradual lowering movement and thus also the intensity of the gasification of the Schwelkoks can be controlled in the simplest way by simply adjusting the amount of combustion air and steam.
  • the admixture of steam produced by the sensible heat of the fuel gases produced into the combustion air has the advantage of intensifying the water gas reactions in the third process stage.
  • the carbonization gases and, on the other hand, the combustion air for the carbonization coke are introduced into the reaction zones formed in each case over the entire reactor cross-section, evenly distributed.
  • the partial combustion takes place with simultaneous thermal cracking of the carbonization gases with intensive turbulence in a reaction space separate from the water gas reaction zone containing the lumpy carbonization coke.
  • it can be expediently passed through it from a pressure chamber under the ash conveyor be introduced into the combustion zone.
  • the system for carrying out the process comprises a carbonization drum heated indirectly via its hollow jacket, preferably by exhaust gases, and a shaft-shaped fuel gas reactor charged with the carbonization gases and the coke from the carbonization drum, and as auxiliary units, air preheaters and scrubbers for the fuel gases produced, an upper partial combustion according to the invention in the fuel gas reactor - And cracking zone for the smoldering gases, an adjoining water gas reaction zone filled with smoldering coke for the cracked smoldering products, then a withdrawal zone for the fuel gases generated, and then a water gas reaction zone filled with smoldering coke for the reaction products from the partial smelting coke and thereon a hot combustion zone for the smoked coke with feed lines for the preheated combustion air and steam is then formed at the bottom.
  • a gas-permeable partition is expediently provided between the upper partial combustion and cracking zone for the carbonization gases and the water gas reaction zone adjoining it, which partition is advantageously designed as a uniformly perforated ceramic plate.
  • FIG. 1 shows the block diagram of a first embodiment
  • 2 shows the fuel gas reactor of the plant according to FIG. 1 in an enlarged schematic illustration
  • Fig. 3 shows the block diagram of another embodiment with common charging of the fuel gas reactor with carbonization gas and carbonization coke.
  • the gas generation plant shown in FIG. 1 contains a smoldering drum 1, a fuel gas reactor 2 and a gas engine 3 as main units.
  • the lumpy bituminous fuels are introduced into the entry end of the rotary drum 1 via a funnel 4 with locks 5, 6 arranged in an entry shaft 7 and a horizontal conveyor 8.
  • the rotary drum 1 consists of the actual smoldering drum 10, in which hollow, essentially longitudinally oriented internals 11 in the form of longitudinal ribs or blades are arranged.
  • This smoldering drum 10 is surrounded by a jacket 12, which is connected via a line 13 to the exhaust system 14 of the gas engine 3. In this way, the rotary drum is heated indirectly by the exhaust gases of the gas engine 3 which are at approximately 600 ° C.
  • an additional burner 15 is provided on the drum discharge side, the exhaust gases of which flow into the jacket space 12 and the carbonization of the Start fuels inside the drum.
  • the heat supply in the exhaust gases of the gas engine 3 is sufficient for a complete carbonization of fuels, even with a high ash and water content.
  • the hollow internals 11 are flowed through by the hot exhaust gases, which on the one hand increases the heat transfer surfaces and on the other hand the heat transfer to the feed or smoldering material is improved by the conveying effect of these internals. With appropriate design of these internals 11, the interior of them can be enlarged so that they themselves form the jacket 12.
  • the exhaust gases After flowing through the internals 11 or the drum casing 12, the exhaust gases are discharged into the atmosphere via a line 16 with a metering valve 17.
  • the line 16 is connected by a branch line 18, a blower 19 and a metering valve 20 to the burner 15 or the entry-side distribution chamber 21 in the drum jacket 1-2 in order to control the temperature of the heating gases by admixing predetermined, already cooled gas quantities.
  • the rotary drum 1 is adjustable in the usual way in its inclination on - not shown - supporting and drive rollers.
  • the carbonization gas generated in the rotary drum 1 is fed at temperatures of 400 to 500 ° C. at the discharge end of the drum via pipes 22 to a burner 23 which opens into the upper part of the fuel gas reactor 2.
  • a feed line 25 for the combustion air ends which is intensively mixed in the ejector part 24 and the adjoining diffuser 26 of the burner 23 with the carbonization gases to obtain a partial combustion of the carbonization gases.
  • the fuel gas reactor 2 has in its upper part a chamber 27 free of internals, in which one in aggressive swirling of the partially burned smoldering gases flowing in through the burner 23 takes place.
  • the thermal cracking of the carbonization gases heated to approx. 1000 to 1200 ° C by the substoichiometric partial combustion takes place in this chamber.
  • This chamber 27 is delimited at the bottom by a partition wall 28, which consists of a ceramic plate of approximately 100 to 200 mm in thickness, in which a plurality of holes 29 are provided in a suitable size.
  • the flow resistance of this plate 28 or the holes 29 is selected so that there is a slight overpressure in the chamber 27, which ensures a uniform flow through the plate 28 over the entire cross section of the shaft-shaped fuel gas reactor.
  • the smoldering coke is fed to this feed conveyor 30 from the discharge end of the rotary drum 1 via a chute 32 and a pressure-tight metering wheel device 33.
  • the feed conveyor 30 feeds the fuel gas reactor 2 via a side, sealed entry opening 34 with the smoked coke produced in the rotary drum 1.
  • the fuel gas reactor is charged in such a way that a sufficient height of the coke bed 35 is present in the fuel gas reactor.
  • a discharge for the fuel gases which is designed as an annular channel 36 and which consists of a plurality of radial There are openings in the reactor wall.
  • the reactor floor is formed by a discharge conveyor 37 for the ash and slag of the smoked coke, which is driven by a motor 38 via a gear 39.
  • a discharge conveyor 37 which is designed as a rotating grate, there is provided a discharge chute 41 sealed by piston slide 40, through which the ash or slag loosened and crushed by means of the discharge conveyor 37 is discharged.
  • Air and steam lines 42 open into the interior of this discharge chute 41.
  • a hot gas line 43 leads from the fuel gas outlet designed as an annular duct 36 to an air preheater 44 and to evaporators 45, 46.
  • the air preheater is connected via a warm air line 47 with an air line 48 leading to the pipe 25 via a metering valve 49 and via an air line 50 and further metering valve 51 connected to the air connections 42.
  • quantities of water supplied are evaporated by means of metering pumps 53, 54, which are fed via a steam line 55 into the warm air line 48 downstream of the valve 49 and on the other hand via a further steam line 56 into the warm air line 50 downstream of the metering valve 51 .
  • the fuel gases flow from the heat exchangers 44 to 46 via a gas line 60 into a scrubber 61, which is only shown schematically and in which pollutants and other by-products are separated in several stages, if necessary.
  • the cleaned fuel gas is fed to the gas engine 3 via a line 62, the output shaft of which is coupled to a generator 63.
  • the degassing of the fuels commences at approx. 200 ° C., which continues continuously up to temperatures of approx. 500 ° C. at the right discharge end of the drum.
  • the carbonization gases are extracted by the ejector action of the burner 23 via the lines 22 at temperatures of approximately 400 to 500 ° C.
  • the smoked coke is introduced via the discharge chute 32, the metering wheel 33 and the feed conveyor 30 into the fuel gas reactor 2 below the intermediate wall 28.
  • the reactions taking place in the carbonization gas are described in detail below with reference to FIG. 2.
  • the smoldering gases are partially burned by admixing metered amounts of air in the burner 23 and flow with a comparatively high kinetic energy into the empty chamber 27, in which intensive swirling of the gases 1 takes place. These eddy currents cause a temperature of approximately 1000 ° C. in the entire chamber, at which the thermal cracking of the carbonization gases takes place with high efficiency. Maintaining the temperature is achieved by introducing appropriate amounts of air and thus by the intensity of the carbonization gas combustion.
  • the partially burned and Cracked carbonization gases flow through the holes 29 in the intermediate wall 28 into the coke bed 35, the surface of which is heated to a temperature of about 900 to 1000 ° C.
  • the combustion air introduced into the space 41 below the conveyor via the line 50, the ring channel 42 and the openings 42a in the reactor wall flows through the spaces between the conveyor grate bars 37 and partial combustion of the smoked coke occurs in a temperature range of immediately above the conveyor grate 37 1000 to 1200 ° C.
  • the intensity of this partial combustion is achieved by adjusting the air supply by means of the metering valve 51.
  • the gases formed by the partial combustion of the smoked coke flow through zone IV of the coke bed and are withdrawn from the fuel gas reactor through the exhaust openings 36a, the annular channel 36 and the fuel gas line 43. Because of the steam added to the combustion air, strongly endothermic reactions also occur when this flows through the coke filling in reaction zone IV Increase in calorific value and simultaneous temperature reduction - according to the reactions in Zone II -.
  • the system shown in FIG. 3 corresponds in its essential components and functional features to that of FIG. 1.
  • the corresponding components are identified by reference numerals expanded by 100.
  • This system is particularly suitable for feed materials in which the carbonization produced in the carbonization drum is on the one hand sufficiently granular to be introduced into the fuel gas reactor together with the carbonization gases via the burner 123 and forms a coke bed of sufficient gas permeability on the other
  • the coke should also be swirled by the combustion gases in space 127 in order to enable deposition that is largely uniform over the entire cross section of the fuel gas reactor.
  • this version has the advantage that the separate feed conveyor 30 for the coke and the gas-tight metering wheel lock 33 can be omitted.
  • the perforated partition 28 according to FIG. 1 is missing in this embodiment.
  • the other units (such as heat exchangers, scrubbers, gas engines, etc.) of this system correspond to those in FIG. 1, so that it was not necessary to show them in the drawing.
  • the invention is not limited to the embodiments shown and described.
  • the preheating of the combustion air and / or the steam generation for the water gas reaction can be carried out in the third process stage by further utilizing the waste heat from the exhaust gases of the gas engine.
  • the fuel gases obtained by the thermal cracking of the carbonization gases on the one hand and on the other hand the fuel gases obtained by the gasification of the carbonization coke separately from the fuel gas reactor and to further treat them according to their possibly different chemical composition.
  • the utilization of the fuel gases in a gas engine is one of the most energy-efficient options, since the engine's exhaust gases can be used to heat the smoldering drum, the fuel gases generated can also be used for other heating purposes or as a chemical raw material. In this case, the smoldering drum could be indirectly heated by the generated, approximately 600 oC hot fuel gases themselves, which are then passed through the hollow jacket or the hollow internals in the drum.
  • a further process and system variant is suitable for special applications, in particular for the use of fuels with a high ash content, in which the incombustible components tend to cake and sinter, in which the smoldering coke in the reactor shaft is wholly or partly in the state of a calmed fluidized bed (Fluid bed) is added.
  • a sufficiently high overpressure is generated in the air chamber on the bottom, which leads to gas flows evenly distributed over the bottom cross-section into the filling coke.
  • this combustion air can either be mixed with a corresponding part of the fuel gas generated and / or a corresponding part of the exhaust gases.
  • At least some of these exhaust gases from the internal combustion engine (gas engine) operated with the fuel gas produced are thermally cracked in the hot partial combustion zone.
  • the admixed fuel gases preferably have a fluidic carrier function for producing the fluidized bed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Industrial Gases (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Le combustible tel que le charbon bitumineux, le lignite, le bois, la paille et analogue, est carbonise a la pression approximativement atmospherique dans une premiere etape par chauffage indirect entre 300 et 600 C et en agitant constamment (1). Les gaz degages chauds sont melanges avec de l'air prechauffe et partiellement brules (27) dans une deuxieme etape. Simultanement, ils sont craques thermiquement a des temperatures comprises entre 850 et 1200 C et ensuite ils passent a travers une zone de reaction (35) composee de coke de basse carbonisation obtenu pendant la premiere etape. Dans une troisieme etape le coke subit une combustion partielle, par exemple au moyen d'air et de vapeur d'eau. Le melange gazeux se trouvant initialement a une temperature comprise entre 900 et 1200 C est aspire a travers une zone de reaction formee du coke de basse carbonisation ou la temperature des gaz est diminuee grace a une reaction endothermique et ou la valeur calorifique des gaz est simultanement augmentee. Ces gaz et les gaz provenant de la deuxieme etape seront conduits vers des echangeurs de chaleur (44 a 46) et des laveurs a gaz (61).
PCT/DE1980/000097 1979-07-05 1980-07-04 Procede et installation pour la gazeification de combustibles en morceaux WO1981000112A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU61214/80A AU6121480A (en) 1979-07-05 1980-07-04 Process and plant for the gazeification of solid fuels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2927240 1979-07-05
DE2927240A DE2927240C2 (de) 1979-07-05 1979-07-05 Verfahren und Vorrichtung zum Vergasen von stückigen Brennstoffen mit Vorschwelung und Cracken der Schwelgase im Gasgenerator

Publications (1)

Publication Number Publication Date
WO1981000112A1 true WO1981000112A1 (fr) 1981-01-22

Family

ID=6075019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1980/000097 WO1981000112A1 (fr) 1979-07-05 1980-07-04 Procede et installation pour la gazeification de combustibles en morceaux

Country Status (3)

Country Link
EP (1) EP0031351A1 (fr)
DE (1) DE2927240C2 (fr)
WO (1) WO1981000112A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055440A1 (fr) * 1980-12-27 1982-07-07 Forschungszentrum Jülich Gmbh Procédé et installation pour la production continue de gaz combustible à partir de déchets organiques
EP0055840A1 (fr) * 1980-12-27 1982-07-14 Forschungszentrum Jülich Gmbh Procédé et installation pour la combustion de matières organiques
FR2511028A1 (fr) * 1981-08-07 1983-02-11 Carrasse Jean Procede et installation pour la gazeification de matieres carbonees
EP0038415B1 (fr) * 1980-04-15 1983-12-21 Siemens Nixdorf Informationssysteme Aktiengesellschaft Dispositif pour une amenée progressive de porteurs d'enregistrement pour un système à écrire électromécanique
EP0136255A2 (fr) * 1983-09-28 1985-04-03 Herwig Michel-Kim Gazogène pour la production de gaz à partir de déchets combustibles
EP0152912A2 (fr) * 1984-02-22 1985-08-28 Kraftwerk Union-Umwelttechnik GmbH Procédé pour la production de gaz combustibles à partir de déchets
FR2564102A1 (fr) * 1984-05-11 1985-11-15 Frenay Gaston Procede de gazeification a prepyrolyse distincte, dispositif equipant un moteur thermique et combustible adapte a ce procede
FR2575488A1 (fr) * 1984-12-28 1986-07-04 Skf Steel Eng Ab Procede et dispositif de la production d'un gaz compose principalement de co et h2, a partir d'une matiere de depart carbonee
EP0263338A2 (fr) * 1986-09-30 1988-04-13 Kraftwerk Union-Umwelttechnik GmbH Installation de pyrolyse
EP0271477A1 (fr) * 1986-11-26 1988-06-15 VOEST-ALPINE Aktiengesellschaft Dispositif pour le dégazage et la gazéification de combustible solide
EP0309387A2 (fr) * 1987-09-25 1989-03-29 Herwig Michel-Kim Procédé et appareil pour la production de gaz de gazogène et de charbon actif à partir de combustibles solides
EP0523815A1 (fr) * 1991-07-15 1993-01-20 JOHN BROWN DEUTSCHE ENGINEERING GmbH Procédé de fabrication de gaz de synthèse ou de combustion à partir de matériaux pâteux ou solides de restes ou de déchets ou de combustibles de moindre valeur dans un réacteur de gazéification
DE4317806C1 (de) * 1993-05-28 1994-11-10 Gottfried Dipl Ing Roessle Allothermer Gasgenerator und Verfahren zur Erzeugung von Brenngas mittels des allothermen Gasgenerators
WO1995021903A1 (fr) * 1994-02-15 1995-08-17 Crg Kohlenstoffrecycling Ges.Mbh Procede de generation de gaz combustible
EP0718391A2 (fr) * 1994-11-22 1996-06-26 DBI DEUTSCHES BRENNSTOFFINSTITUT ROHSTOFF & ANLAGENTECHNIK GmbH Procédé et dispositif d'obtention d'un gaz utilisable par pyrolyse
WO1999025790A1 (fr) * 1997-11-13 1999-05-27 Umwelttechnik Stefan Bothur Procede de production de gaz de synthese ou d'hydrocarbures liquides a partir de matieres brutes ou de rebuts a croissance posterieure et a teneur en cellulose
US6251148B1 (en) 1991-07-15 2001-06-26 John Brown Deutsche Entineering Gmbh Process for producing synthetic gasses
EP3508556A1 (fr) * 2018-01-04 2019-07-10 Günter Hirr Procédé de fonctionnement d'une installation de production d'énergie et installation correspondante
DE102023102586A1 (de) 2023-02-02 2024-08-08 GSE Green Synthetic Energy GmbH Verfahren und Vorrichtungen zur Erzeugung eines wasserstoffhaltigen Synthesegases

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3412582A1 (de) * 1984-04-04 1985-10-24 KPA Kiener Pyrolyse Gesellschaft für thermische Abfallverwertung mbH, 7000 Stuttgart Gaswandler fuer schwelgase aus einer pyrolyse von abfallstoffen
DE3828534A1 (de) * 1988-08-23 1990-03-08 Gottfried Dipl Ing Roessle Verfahren zur verwertung von energiehaltiger masse, vorrichtung zur durchfuehrung des verfahrens und verwendung eines bei der verwertung anfallenden produkts
DE4107046A1 (de) * 1991-03-06 1992-09-10 Menges Georg Verfahren und vorrichtung zum verwerten von organischen abfaellen
DE4224959A1 (de) * 1992-07-24 1994-01-27 Ver Energiewerke Ag Verfahren und Anordnung zum Betreiben eines Kombikraftwerkes
DE4338927A1 (de) * 1993-11-15 1995-05-18 Kloeckner Humboldt Deutz Ag Verfahren und Anlage zur thermischen Verwertung von Abfallstoffen
DE19536383C2 (de) * 1995-09-29 2001-09-13 Krc Umwelttechnik Gmbh Verfahren und Vorrichtung zur Vergasung von heizwertarmen Brennstoffen
DE19618213A1 (de) * 1996-05-07 1997-11-13 Petersen Hugo Verfahrenstech Verfahren zur Erzeugung von Brenngas und Anlage zur Durchführung des Verfahrens
FR2792926B1 (fr) * 1999-04-30 2001-07-13 Air Liquide Procede pour la production d'un gaz de synthese a debit regule dans une unite de traitement de dechets
WO2005028595A1 (fr) * 2003-08-28 2005-03-31 Tk Energi A/S Appareil et procede pour la production de gaz combustibles a partir d'une matiere organique
DE102005030096A1 (de) * 2005-06-28 2007-01-04 Achim Solbach Energiewandlungssystem für feste Biomasse
DE102006061583A1 (de) 2006-12-27 2008-07-03 Achim Solbach Energiewandlungssystem für feste Biomasse und andere energetische, vergasbare Stoffe
DE102008027858A1 (de) * 2008-06-11 2009-12-17 Jörg HO Verfahren und Vorrichtung zur Erzeugung eines teerfreien Brenngases
CN102757823B (zh) * 2011-04-26 2014-01-01 储晞 一种生物质气化装置和生物质收集利用系统
DE102015000357B4 (de) * 2015-01-20 2021-01-07 Michael Artmann Vorrichtung und Verfahren zur Erzeugung von Produktgas aus kohlenwasserstoffhaltigem Vergasungsmaterial

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE196697C (fr) *
DE2408461A1 (de) * 1974-02-22 1975-08-28 Siegener Ag Geisweid Verfahren und anlage zur erzeugung von synthesegas unter anwendung eines koksbeschickten abstichgenerators
DE2432504B2 (de) * 1974-07-04 1976-12-16 Kiener, Karl, Dipl.-Ing., 7080 Goldshöfe Verfahren und anlage zum herstellen von brenngasen aus stueckigem haus- und industriemuell u.dgl.
US4057402A (en) * 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
DE2622266A1 (de) * 1976-05-19 1977-11-24 Projektierung Chem Verfahrenst Verfahren und vorrichtung zur erzeugung von gas aus kohlenstoff- einsatzgut
DE2732544A1 (de) * 1977-07-19 1979-02-01 Steag Ag Verfahren und festbettreaktor zur autothermen druckvergasung von stueckigen brennstoffen, insbesondere von steinkohle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE479032C (de) * 1929-07-06 Nicola Lengersdorff Gaserzeuger mit Oberfeuer zur Erzeugung bestaendiger Gase
DE424724C (de) * 1924-10-18 1926-02-01 Abteilung Schalke Verfahren und Vorrichtung zur Gewinnung der leicht siedenden Kohlenwasserstoffe aus Schwelgasen
AT150302B (de) * 1933-06-28 1937-08-10 Siemens Ag Verfahren zur Herstellung saugfähiger oxydischer Schichten auf Aluminium und Aluminium-Legierungen für photographische Zwecke.
DE646277C (de) * 1933-08-01 1937-06-15 Studien Und Verwertungs G M B Gaserzeuger mit abwaerts gerichtetem Zug und zweifacher Luftzufuehrung
DE742272C (de) * 1940-05-15 1943-11-26 Vergasungs Ind A G Verfahren zur Erzeugung eines kohlenwasserstoffarmen Gases aus bituminoesen stueckigen Brennstoffen
AT170621B (de) * 1949-12-17 1952-03-10 Friedrich Van Straten-Ponthoz Verfahren und Einrichtung zum Betrieb eines Gasgenerators
DE2651302C3 (de) * 1976-05-12 1981-07-09 PLS Gesellschaft für Pyrolyse-Müllverwertungsverfahren mbH, 8000 München Vorrichtung zur Destillationsgaserzeugung aus Abfall

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE196697C (fr) *
DE2408461A1 (de) * 1974-02-22 1975-08-28 Siegener Ag Geisweid Verfahren und anlage zur erzeugung von synthesegas unter anwendung eines koksbeschickten abstichgenerators
DE2432504B2 (de) * 1974-07-04 1976-12-16 Kiener, Karl, Dipl.-Ing., 7080 Goldshöfe Verfahren und anlage zum herstellen von brenngasen aus stueckigem haus- und industriemuell u.dgl.
DE2622266A1 (de) * 1976-05-19 1977-11-24 Projektierung Chem Verfahrenst Verfahren und vorrichtung zur erzeugung von gas aus kohlenstoff- einsatzgut
US4057402A (en) * 1976-06-28 1977-11-08 Institute Of Gas Technology Coal pretreatment and gasification process
DE2732544A1 (de) * 1977-07-19 1979-02-01 Steag Ag Verfahren und festbettreaktor zur autothermen druckvergasung von stueckigen brennstoffen, insbesondere von steinkohle

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0038415B1 (fr) * 1980-04-15 1983-12-21 Siemens Nixdorf Informationssysteme Aktiengesellschaft Dispositif pour une amenée progressive de porteurs d'enregistrement pour un système à écrire électromécanique
EP0055440A1 (fr) * 1980-12-27 1982-07-07 Forschungszentrum Jülich Gmbh Procédé et installation pour la production continue de gaz combustible à partir de déchets organiques
EP0055840A1 (fr) * 1980-12-27 1982-07-14 Forschungszentrum Jülich Gmbh Procédé et installation pour la combustion de matières organiques
FR2511028A1 (fr) * 1981-08-07 1983-02-11 Carrasse Jean Procede et installation pour la gazeification de matieres carbonees
EP0136255A2 (fr) * 1983-09-28 1985-04-03 Herwig Michel-Kim Gazogène pour la production de gaz à partir de déchets combustibles
EP0136255A3 (en) * 1983-09-28 1986-01-22 Herwig Michel-Kim Reactor for producing generatorgas from combustible waste products
EP0152912A2 (fr) * 1984-02-22 1985-08-28 Kraftwerk Union-Umwelttechnik GmbH Procédé pour la production de gaz combustibles à partir de déchets
EP0152912A3 (en) * 1984-02-22 1986-06-25 Kiener Pyrolyse Gesellschaft Fur Thermische Abfallverwertung Mbh Process for producing combustible gases from waste products
FR2564102A1 (fr) * 1984-05-11 1985-11-15 Frenay Gaston Procede de gazeification a prepyrolyse distincte, dispositif equipant un moteur thermique et combustible adapte a ce procede
FR2575488A1 (fr) * 1984-12-28 1986-07-04 Skf Steel Eng Ab Procede et dispositif de la production d'un gaz compose principalement de co et h2, a partir d'une matiere de depart carbonee
EP0263338A3 (en) * 1986-09-30 1988-10-05 Kraftwerk Union-Umwelttechnik Gmbh Pyrolysis plant
EP0263338A2 (fr) * 1986-09-30 1988-04-13 Kraftwerk Union-Umwelttechnik GmbH Installation de pyrolyse
EP0271477A1 (fr) * 1986-11-26 1988-06-15 VOEST-ALPINE Aktiengesellschaft Dispositif pour le dégazage et la gazéification de combustible solide
EP0309387A2 (fr) * 1987-09-25 1989-03-29 Herwig Michel-Kim Procédé et appareil pour la production de gaz de gazogène et de charbon actif à partir de combustibles solides
EP0309387A3 (en) * 1987-09-25 1989-04-26 Herwig Michel-Kim Process and apparatus for the production of generator gas and activated carbon from solid fuels
US6251148B1 (en) 1991-07-15 2001-06-26 John Brown Deutsche Entineering Gmbh Process for producing synthetic gasses
EP0523815A1 (fr) * 1991-07-15 1993-01-20 JOHN BROWN DEUTSCHE ENGINEERING GmbH Procédé de fabrication de gaz de synthèse ou de combustion à partir de matériaux pâteux ou solides de restes ou de déchets ou de combustibles de moindre valeur dans un réacteur de gazéification
WO1993002162A1 (fr) * 1991-07-15 1993-02-04 John Brown Deutsche Engineering Gmbh Procede de production de gaz synthetiques ou combustibles a partir de residus et de dechets solides ou pateux ou de combustibles a faible pouvoir calorifique dans un reacteur de gazeification
DE4317806C1 (de) * 1993-05-28 1994-11-10 Gottfried Dipl Ing Roessle Allothermer Gasgenerator und Verfahren zur Erzeugung von Brenngas mittels des allothermen Gasgenerators
WO1995021903A1 (fr) * 1994-02-15 1995-08-17 Crg Kohlenstoffrecycling Ges.Mbh Procede de generation de gaz combustible
EP0718391A2 (fr) * 1994-11-22 1996-06-26 DBI DEUTSCHES BRENNSTOFFINSTITUT ROHSTOFF & ANLAGENTECHNIK GmbH Procédé et dispositif d'obtention d'un gaz utilisable par pyrolyse
EP0718391A3 (fr) * 1994-11-22 1997-04-02 Deutsches Brennstoffinst Procédé et dispositif d'obtention d'un gaz utilisable par pyrolyse
WO1999025790A1 (fr) * 1997-11-13 1999-05-27 Umwelttechnik Stefan Bothur Procede de production de gaz de synthese ou d'hydrocarbures liquides a partir de matieres brutes ou de rebuts a croissance posterieure et a teneur en cellulose
DE19750327C1 (de) * 1997-11-13 1999-06-02 Umwelttechnik Stefan Bothur Verfahren zur Herstellung von Synthesegas aus nachwachsenden zellulosehaltigen Roh- oder Abfallstoffen
EP3508556A1 (fr) * 2018-01-04 2019-07-10 Günter Hirr Procédé de fonctionnement d'une installation de production d'énergie et installation correspondante
DE102023102586A1 (de) 2023-02-02 2024-08-08 GSE Green Synthetic Energy GmbH Verfahren und Vorrichtungen zur Erzeugung eines wasserstoffhaltigen Synthesegases

Also Published As

Publication number Publication date
EP0031351A1 (fr) 1981-07-08
DE2927240A1 (de) 1981-01-08
DE2927240C2 (de) 1985-10-31

Similar Documents

Publication Publication Date Title
WO1981000112A1 (fr) Procede et installation pour la gazeification de combustibles en morceaux
EP1226222B1 (fr) Procede de gazeification de matieres organiques et melanges de matieres
EP1192234B1 (fr) Procede et dispositif de pyrolyse et de gazeification de substances organiques ou de melanges de substances organiques
DE19755693C1 (de) Verfahren zur Vergasung von organischen Stoffen und Stoffgemischen
CH615215A5 (fr)
DE102007005799A1 (de) Verfahren zur Erzeugung eines wasserstoffreichen Produktgases
WO2010003968A2 (fr) Procédé et dispositif pour produire du gaz de synthèse à faible teneur en goudrons à partir de biomasse
DE2448354B2 (de) Wirbelschichtreaktor zur Erzeugung von Dampf, brennbaren Gasen und flüssigen Nebenprodukten aus Kohle
EP1337607B1 (fr) Procede de gazeification de substances organiques en un etat liquide a pateux, et de melanges de telles substances
DE112007003339B4 (de) Verfahren und Vorrichtung zur Vergasung von Vergasungsbrennstoff
DE60026264T2 (de) Verfahren und Anlage für die Herstellung von brennbaren Gasen aus an organischen Materialien reichen Einsätzen
DE3239624A1 (de) Gasgenerator
DE10226862B3 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
WO2018146179A1 (fr) Production de gaz de synthèse à partir de substances riches en carbone au moyen d'un procédé combiné de co-courant et contre-courant
DE3228532A1 (de) Verfahren zur verschwelung und vergasung von kohlenstoffhaltigen feststoffen
DE2825429A1 (de) Verfahren zur pyrolyse von muell
CH283414A (de) Verfahren und Vorrichtung zur Durchführung von Prozessen, bei welchen fein verteilte feste Stoffe mit Gasen in Berührung gebracht werden.
DE2943309A1 (de) Verfahren und vorrichtung zur durchfuehrung des verfahrens-integrierte, vorzugsweise ballastkohle-muellvergasung
DE3317977C2 (fr)
DE2805244A1 (de) Verfahren und vorrichtung zum kuehlen von staubfoermigen oder feinkoernigen feststoffen
DE4317412C2 (de) Anlage zur thermischen Behandlung von kohlenstoffhaltigem Material
DE10010358A1 (de) Verfahren und Vorrichtung zum Vergasen von brennbarem Material
DE2933402C2 (de) Verfahren und Anlage zum Herstellen von Schwelgas, Wassergas und Koks aus festen Brennstoffen
DE2439014C3 (de) Verfahren und Vorrichtung zur Herstellung von Formkoks
DE2604140B2 (de) Verfahren zur Herstellung von Synthese- und Reduktionsgas ·

Legal Events

Date Code Title Description
AK Designated states

Designated state(s): AU BR JP SU US

Kind code of ref document: A1

Designated state(s): AU BR JP SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): FR GB SE

Designated state(s): FR GB SE