USRE43471E1 - Method of manufacturing a semiconductor device - Google Patents
Method of manufacturing a semiconductor device Download PDFInfo
- Publication number
- USRE43471E1 USRE43471E1 US10/960,898 US96089804A USRE43471E US RE43471 E1 USRE43471 E1 US RE43471E1 US 96089804 A US96089804 A US 96089804A US RE43471 E USRE43471 E US RE43471E
- Authority
- US
- United States
- Prior art keywords
- film
- exposure
- conductive film
- photo resist
- bake
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 115
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- 229920002120 photoresistant polymer Polymers 0.000 claims abstract description 100
- 238000000034 method Methods 0.000 claims abstract description 48
- 238000005530 etching Methods 0.000 claims abstract description 26
- 238000001312 dry etching Methods 0.000 claims abstract description 23
- 239000010408 film Substances 0.000 claims description 215
- 239000011248 coating agent Substances 0.000 claims description 14
- 238000000576 coating method Methods 0.000 claims description 14
- 230000009467 reduction Effects 0.000 claims description 11
- 239000010409 thin film Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims 23
- 230000008569 process Effects 0.000 abstract description 41
- 238000000206 photolithography Methods 0.000 abstract description 37
- URQUNWYOBNUYJQ-UHFFFAOYSA-N diazonaphthoquinone Chemical compound C1=CC=C2C(=O)C(=[N]=[N])C=CC2=C1 URQUNWYOBNUYJQ-UHFFFAOYSA-N 0.000 abstract description 20
- 230000008602 contraction Effects 0.000 abstract description 19
- 239000002904 solvent Substances 0.000 abstract description 15
- 229920003986 novolac Polymers 0.000 abstract description 10
- 238000000059 patterning Methods 0.000 abstract description 8
- 239000003990 capacitor Substances 0.000 description 14
- 239000010936 titanium Substances 0.000 description 14
- 239000010410 layer Substances 0.000 description 13
- 239000004973 liquid crystal related substance Substances 0.000 description 12
- 239000011159 matrix material Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 239000012535 impurity Substances 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- 239000003779 heat-resistant material Substances 0.000 description 6
- 229910021417 amorphous silicon Inorganic materials 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- 239000007769 metal material Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000013557 residual solvent Substances 0.000 description 4
- 238000001039 wet etching Methods 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 238000002294 plasma sputter deposition Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 238000004904 shortening Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910015844 BCl3 Inorganic materials 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 229910003910 SiCl4 Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N SnO2 Inorganic materials O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- AZWHFTKIBIQKCA-UHFFFAOYSA-N [Sn+2]=O.[O-2].[In+3] Chemical compound [Sn+2]=O.[O-2].[In+3] AZWHFTKIBIQKCA-UHFFFAOYSA-N 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- 239000005001 laminate film Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- -1 silicon oxide nitride Chemical class 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/13439—Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66742—Thin film unipolar transistors
- H01L29/6675—Amorphous silicon or polysilicon transistors
- H01L29/66765—Lateral single gate single channel transistors with inverted structure, i.e. the channel layer is formed after the gate
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/136—Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
- G02F1/1362—Active matrix addressed cells
- G02F1/136286—Wiring, e.g. gate line, drain line
Definitions
- the present invention relates to a semiconductor device having a circuit formed of thin film transistors (thereafter, referred to as TFTs) and a method of manufacturing the same.
- the semiconductor device includes, for example, an electro-optical device such as a liquid crystal display formed of TFTs.
- the present invention relates to a method of manufacturing a semiconductor device having inverted staggered type TFTs with a bottom gate structure, and more particularly to a photolithography for patterning, the semiconductor device.
- an active matrix liquid crystal display technology using TFTs is of great interest. Since an active matrix display is provided with a TFT switch on each pixel, a liquid crystal orientation state of TN (i.e., twisted nematic) mode is available, and it is advantageous in terms of response speed, viewing angle and contrast, compared with a passive matrix display, it is mainly used in the current liquid crystal display.
- TN i.e., twisted nematic
- an inverted stagger type TFT which has a bottom gate structure having a channel forming region formed of an amorphous silicon film conventionally capable of being produced on a large area substrate with a low temperature process at 300° C. or less.
- the above-mentioned inverted stagger type TFT is basically advantageous of low cost, since a low cost glass substrate and the low temperature process at 300° C. or less are employed. However, since low cost is further required, the improvement of the productivity for attaining the low cost has been considered. Since shortening the process is most effective for improving the productivity, shortening the process has been considered in the industry. Therefore, reducing a photolithography step which is a pattering step, that is, reducing the number of photo masks is considered for shortening the process.
- DNQ diazo naphthoquinone
- the resist shape of a fine pattern (about 0.3-3 ⁇ m) is a good rectangular pattern, but in a larger pattern (about 10 ⁇ m or more), deformation in the pattern with variation in taper angle occurs on a side wall of the resist shape, and it is observed that the taper angle is reduced (see FIG. 1 ).
- the phenomenon occurs under a process condition, i.e., pre-bake temperature (90° C. for one minute), followed by PEB (post exposure bake) temperature (110° C. for three minutes) and post-bake temperature (120° C. for four minutes), in which the post-bake temperature after development is higher than the PEB temperature, the phenomenon is considered to be caused due to evacuation of residual solvent from the resist pattern at the post-bake. Also, in a photolithography step without PEB process, it is observed that deformation in the resist pattern due to volume contraction from the resist pattern at the post-bake occurs in the case of large difference between the pre-bake temperature and the post-bake temperature.
- DNQ diazo naphthoquinone
- pattern deformation with variation of side wall taper angle of large area photo resist pattern occurred as shown in FIG. 1 in a photolithography step with diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist. Since this pattern deformation dose not occur in fine pattern (about 3 82 m or less) formed simultaneously, it is observed that the pattern deformation is dependent on the dimension of the photo resist pattern, i.e., the area of the photo resist pattern (see FIG. 1 ).
- DNQ diazo naphthoquinone
- a reduction projection exposure apparatus is used as an exposure apparatus, in which a single wavelength (specifically, i-ray of an extra high-pressure mercury-vapor lamp) is used for accounting for chromatic aberration. Therefore, PEB process is generally applied between exposure and development because of adverse effect by standing wave due to a single wavelength of the exposed light. This company uses the PEB process in performing a photolithography step using the reduction projection exposure apparatus.
- the photo resist pattern deformation with variation of side wall taper angle occurs in a photolithography step applying the PEB process between exposure and development, i.e., in a sequence of photo processes consisting of a photo resist coating ⁇ pre-bake (90° C. for one minute) ⁇ exposure (using the reduction projection exposure apparatus)-PEB (110° C. for three minutes) ⁇ development, and post-bake (120° C. for four minutes).
- a photo resist coating ⁇ pre-bake (90° C. for one minute) ⁇ exposure (using the reduction projection exposure apparatus)-PEB (110° C. for three minutes) ⁇ development, and post-bake (120° C. for four minutes).
- the photo resist pattern deformation occurs after the post-bake process (120° C. for four minutes) at glass transition temperature (about 150° C.) or less, which can be a softening point of the photo resist, it is apparent that the photo resist pattern deformation dose not occur due to thermal softening of the photo resist. Therefore, factors of the photo resist pattern de
- the influence on the dimension of the large area resist pattern edge was measured as changing PEB temperature from 110° C. to 150° C.
- the dimension of the large area resist pattern edge was then measured by means of a measurement SEM (see FIGS. 2A and 2B ).
- FIG. 2A is a plot of PEB temperature (horizontal axis) and pattern edge width ( ⁇ m).
- the large area pattern is a part of a concave LSA mark and the periphery of the mark is a resist region.
- the exposure time was adjusted so that the line length of 0.8 ⁇ m L/S becomes substantially 0.8 ⁇ m ever, PEB condition. Focus is 0.0 ⁇ m. Referring to FIGS.
- the dimension of the large area resist pattern edge is Gradually decreased in response to the rise of the PEB temperature, and it was observed that it is tended to be stable at the higher PEB temperature than that close to post-bake temperature (120° C.), i.e., the pattern deformation with variation in the side wall taper angle of the large area resist pattern due to volume contraction phenomenon is reduced in a region at the higher temperature region than that close to post-bake temperature (120° C.).
- the PEB process is a step introduced to reduce interference fringes on the post-development resist pattern side wall occurring at a single wavelength exposure by the reduction projection exposure apparatus.
- the PEB process may not be necessarily introduced because interference fringes on the post-development resist pattern side wall basically do not occur in exposing by means of an equivalent projection exposure apparatus capable of multi-wavelength exposure (for example, g-ray, h-ray and i-ray of an extra high-pressure mercury-vapor lamp).
- a photo process without PEB process i.e., a photo process consisting of a sequence of photo resist coating ⁇ pre-bake ⁇ exposure ⁇ development ⁇ post-bake is generally used.
- the post-bake temperature normally, about 110-140° C.
- the pre-bake temperature normally, about 90-100° C.
- FIGS. 3A-3C are SEMI photographs of the resist pattern cross-section, at pre-bake temperature 90° C. ( FIG. 3A ), 110° C. ( FIG. 3B ) and 130° C. ( FIG. 3C ), respectively, wherein exposure is performed by means of an equivalent projection exposure apparatus using multi-wavelengths, and development and post-bake (140° C.) are directly performed without the PEB process.
- pre-bake temperature 90° C.
- FIG. 3B 110° C.
- 130° C. FIG. 3C
- the difference between the pre-bake temperature and the post-bake temperature must be 10° C. or less.
- the large area photo resist pattern (10 ⁇ m or more) is not measured. If the large area photo resist pattern is measured, appropriate range of the pre-bake temperature would be equal to or greater than that of the post-bake temperature similarly to a measurement with the PEB process because of severer condition of the measurement in terms of deformation phenomenon occurred due to volume contraction by evacuation of solvent at the post-bake. However, if the appropriate range of the pre-bake temperature is equal to or greater than that of the post-bake temperature, it is possible that exposure property such as sensitivity is adversely affected as pre-bake temperature rises. Preferably, the post-bake temperature is not excessively reduced for adherence of the photo resist pattern to the underlying substrate. From this point, the pre-bake temperature was measured using normal photo resist pattern (3 ⁇ m line pattern) rather than the large area photo resist pattern, and the bake condition was restricted so that pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature.
- a solution which can solve a problem of the area dependence of the photo resist pattern side wall taper angle inducing the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake.
- the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake is solved by restricting the pre-bake temperature within ⁇ 10° C. relative to the post-bake temperature.
- the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake is solved by restricting the PEB temperature so as to be equal to or higher than the post-bake temperature.
- a method of manufacturing a semiconductor device having inverted stagger type TFTs reduction of patterning steps is considered to reduce the overall process steps, and the present invention relates to a method of manufacturing the semiconductor device using three photo masks.
- the method of manufacturing the semiconductor device means solution for solving the area dependence of photo resist pattern side wall taper angle which is a problem of a photolithography step is described below.
- a method of manufacturing a semiconductor device in accordance with the present invention includes a first step of forming a first conductive film on an insulating surface, a second step of forming a resist pattern on the first conductive film, a third step of dry-etching the first conductive film to form a first pattern, a fourth step of forming a first insulating film on the first pattern, a fifth step of forming a first semiconductor film on the first insulating film, a sixth step of forming a one conductivity type second semiconductor film on the first semiconductor film, a seventh step of forming a second conductive film on the one conductivity type second semiconductor film, an eighth step of forming a resist pattern on the second conductive film, a ninth step of dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a second pattern, a tenth step of forming a third conductive film on the second pattern, an eleventh step of forming a resist pattern on the third conductive film, and a
- the third pattern formed by the twelfth step is patterned by etching not only the third conductive film but also the second pattern (formed by the ninth step).
- a method of manufacturing a semiconductor device in accordance with the present invention comprises a first step of forming a first conductive film on an insulating film, a second step of forming a resist pattern on the first conductive film, a third step of dry-etching the first conductive film to form a gate electrode, a fourth step of forming a first insulating film on the gate electrode, a fifth step of forming a first semiconductor film on the first insulating film, a sixth step of forming a one conductivity type second semiconductor film on the first semiconductor film, a seventh step of forming a second conductive film on the one conductivity type second semiconductor film, an eighth step of forming a resist pattern on the second conductive film, a ninth step of dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a source wiring and an active layer, a tenth step of forming a third conductive film on the source wiring and the active layer, an eleventh step of forming a resist pattern
- the first insulating film formed by the fourth step is a gate insulating film.
- the source wiring and the active layer formed by the ninth step are formed of a laminated pattern consisting of the first semiconductor film and the one conductivity type second semiconductor film. According to a pattern forming by the twelfth step, while the pixel electrode is formed of the third conductive film, in addition, a channel region is formed of the first semiconductor film, a source region and a drain region are formed of the one conductivity type second semiconductor film, and a source electrode and a drain electrode are formed of the second conductive film.
- each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, developing, and post-baking, characterized in that difference between the pre-bake temperature and the post-bake temperature is within ⁇ 10° C.
- each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, developing, and post-baking, characterized in that the pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature.
- each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, post-exposure baking, developing, and post-baking, characterized in that difference between the post-exposure bake temperature and the post-bake temperature is within ⁇ 10° C.
- FIG. 1 An SEM photograph illustrating deformation of a resist shape in a conventional large area resist pattern.
- FIG. 2A A graph illustrating PEB temperature dependence of the dimension of a large area resist pattern edge in accordance with the present invention.
- FIG. 2B An SEM photograph specifically illustrating measurement position shown in FIG. 2A .
- FIGS. 3A-3C SEM photographs of the resist pattern shapes in an equivalent projection exposure apparatus (MPA) in accordance with the present invention.
- FIGS. 4A-4D Cross-sectional views illustrating the structure of an inverted stagger type TFT and a method of manufacturing the same in accordance with the present invention.
- FIGS. 5A and 5B Cross-sectional views illustrating the structure of an inverted stagger type TFT and a method of manufacturing the same in accordance with the present invention.
- FIG. 6 A top view illustrating the structure of a pixel region in an active matrix liquid crystal display device having the inverted stagger type TFTs.
- the present invention relates to a structure of an inverted stagger type TFThaving a bottom gate structure and a method of manufacturing the same, characterized in that, by restricting a bake condition between a pre-bake temperature or PEB temperature and a post-bake temperature in a photolithographystep, taper angles of various dimensions of resist patterns are accurately controlled, as a result, accurately controlling shapes of various dimensions of etching patterns.
- Specific embodiment mode of the structure of the inverted stagger type TFT and the method of manufacturing the same in accordance with the present invention are described below with reference to FIGS. 4A-4D , FIGS. 5A-5B and FIG. 6 .
- FIGS. 4A-4D and FIGS. 5A-5B are cross-sectional views illustrating a manufacturing steps of an active matrix liquid crystal display device
- FIG. 6 is a top view illustrating configuration of a pixel region in the active matrix liquid crystal display device.
- the cross-sectional views of FIGS. 4A-4D and FIGS. 5A-5B are taken along a line A-A′ and a line B-B′ in FIG. 6 , respectively.
- a terminal portion, a pixel TFT portion and a capacitor portion are shown from the left side.
- a first conductive film (not shown) used as a (gate electrode material is deposited on the overall surface of an insulating transparent substrate 101 such as a glass substrate by sputtering or the like (a first step).
- the first conductive film (not shown) is used as a material for forming a gate wiring (including a gate electrode), a capacitor wiring (including a capacitor electrode) and the others, and preferably made from a low-resistance metal, such as Al (aluminum).
- a low-resistance metal such as Al (aluminum).
- Al aluminum alone has problems such as less heat-resistance and susceptibility to corrosion
- the first conductive film is generally made of a laminate film consisting of a low-resistance metal and a heat-resistant material.
- the laminated film includes a two-layer structure of a low-resistance material (e.g., Al) and a heat-resistant material, and a three-layer structure in which a low-resistance material is sandwiched between two heat-resistant material, i.e., a three-layer structure consisting of a heat-resistant material (e.g., Al)/ a low resistance material/a heat-resistant material (see FIG. 4A ).
- a low-resistance material e.g., Al
- a heat-resistant material e.g., Al
- a low resistance material is a material including Al as its principal component added with Sc (scandium), Ti (titanium), Cu (copper), Si (silicon) or the like at about 0.01-5%.
- a heat-resistant material is a high-melting metal such as Ti (titanium), Ta (tantalum), W (tungsten), Mo (molybdenum), Cr (chromium), or the like; a metal silicide which is a compound of the high-melting metal and silicon; or a metal nitride which is a compound of the high-melting metal and nitrogen.
- the first conductive film (not shown) consisting of Ti (50 ⁇ m thick)/Al (200 nm thick)/Ti (50 nm thick) was deposited by sputtering (see FIG. 4A ).
- a resist mask is formed by a first photolithography step (a second step)
- the bake condition is restricted so that PEB temperature is equal to or higher than the post-bake temperature
- the bake condition is restricted so that the pre-bake temperature is equal to the post-bake temperature or difference between the pre-bake temperature and the post-bake temperature is within about 10° C.
- a resist mask (not shown) is formed having a taper angle accurately controlled (see FIG. 4A ).
- the photolithography step without PEB process is applied and the bake condition is restricted so that the pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature. Therefore, the problem of the area dependency of the photo resist pattern side wall taper angle is solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake.
- wiring and electrodes are formed by etching out and then removing the resist mask (not shown) (a third step). In this case, the etching is performed so that a forward taper portion is formed at the end of the grate wiring 102 (see FIG. 4A ).
- a gate insulating film 105 a which is formed of a silicon oxide film, a silicon oxide nitride film or a silicon nitride film having a thickness of 50-200 nm is deposited by plasma CVD or sputtering (a fourth step).
- a first amorphous semiconductor film 106 having a thickness of 50-200 nm is deposited on the gate insulating film 105 a by plasma CVD or sputtering (a fifth step).
- the first amorphous semiconductor film 106 formed of an amorphous silicon film and having the thickness of 100 nm was deposited by sputtering (see FIG. 4A ).
- a second conductive film 108 made from metal material is deposited by sputtering (a seventh step).
- Any metal material having ohmic contact characteristics to the underlying second amorphous semiconductor film 107 is non-limited used as material of the second conductive film 108 .
- used may be a single-layer film formed of a single element or any alloys made from a plurality of elements, such as Al (aluminum), Cr (chromium), Ta (tantalum), and Ti (titanium), and a laminated layer consisting of the single layer film.
- the second conductive film 108 having a three-layer structure consisting of Ti (100 nm thick),/Al (350 nm thick)/Ti (100 nm thick) was deposited by sputtering (see FIG. 4A ).
- the gate insulating film 105 a having 50-200 nm thickness, the first amorphous semiconductor film 106 having 50-200 nm thickness, the second amorphous semiconductor film 107 having 20-80 nm thickness containing one conductivity type (n-type or p-type) impurity element, and the second conductive film 108 made from metal material are sequentially deposited.
- any metal material having ohmic contact characteristics to the second amorphous semiconductor film 107 is non-limitedly used as material of the second conductive film 108 (see FIG. 4A ).
- a resist mask 109 with a taper angle being accurately controlled is formed by a second photolithography step (an eighth step), and then a wiring 112 (in the subsequent step, becoming a source wiring and a drain electrode) is formed by etching (a ninth step).
- the second conductive film 108 , the second amorphous semiconductor film 107 containing an impurity element imparting n-type, and the first amorphous semiconductor film 106 are sequentially etched by using the resist mask 109 as a mask, and in a pixel TFT portion, the wiring 112 consisting of the second conductive film 108 , the second amorphous semiconductor film 111 containing the impurity element imparting n-type, and the first amorphous semiconductor film 110 are sequentially formed (see FIG. 4B ).
- the second conductive film 108 having a three-layer structure consisting of Ti (100 nm thick)/Al (350 nm thick)/Ti (100 nm thick) is dry-etched by using the mixed gas of SiCl 4 , Cl 2 , and BCl 3 as dry etching gas, and the second amorphous semiconductor film 107 and the first amorphous semiconductor film 106 are dry-etched by using the mixed gas of CF 4 and O 2 .
- the gate insulating film 105 a in the capacitor portion and the terminal portion remains without being dry-etched.
- the dry etching step since a laminated pattern consisting of the wiring 112 for forming a source and a drain electrodes, the second amorphous semiconductor film 111 for forming a source and a drain regions, and the first amorphous semiconductor film 110 for forming a channel region is dry-etched by using the photo resist mask 109 with little variation of the side wall taper angle as a mask, a stable etching shape can be obtained.
- a resist mask (not shown) is formed using a shadow mask, and an insulating film 105 b is formed by selectively removing a portion of the insulating film 105 a, which covers a pad portion of the terminal portion. Thereafter, the resist mask (not shown) is removed (see FIG. 4C ).
- a third conductive film 113 formed of a transparent conductive film is deposited overall thereon (a tenth step).
- Material of the third conductive film 113 includes indium oxide (In 2 O 3 ), indium oxide-tin oxide alloy (In 2 O 3 —SnO 2 : hereafter referred to as ITO) and the others (see FIG. 4D ).
- the third conductive film 113 made of ITO film having a thickness of 100 nm was deposited by sputtering.
- photo resist masks 114 a- 114 c with taper angle being accurately controlled are formed by a third photolithography step (an eleventh step) (see FIG. 5A ).
- the photolithography without PEB process is applied as well as in the second step and the eighth step, and the bake condition is restricted so that the pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature. Therefore, the problem of the area dependency of the photo resist pattern side wall taper angle is solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake.
- a first amorphous semiconductor film 115 ; a source region 116 and a drain region 117 ; a source electrode 118 and a drain electrode 119 ; and a pixel electrode 120 are formed by etching.
- the third conductive film 113 is patterned, while an opening is formed by etching out a portion of the wiring 112 , a portion of the second amorphous semiconductor film 111 containing an impurity element imparting n-type, and a portion of the first amorphous semiconductor film 110 .
- the bottom of the opening reaches the first amorphous semiconductor film 110 , so that the first amorphous semiconductor film 115 having a concave portion is formed.
- the opening divides the wiring 112 into the source electrode (source wiring) 118 and the drain electrode 119 , and the second amorphous semiconductor film 111 containing an impurity element imparting n-type is separated into the source region 116 and the drain region 117 (see FIG. 5A ).
- wet-etching is used to etch the third conductive film 113 .
- an organic acid about 3.4% solution: ITO-04 etchant
- a mixture of nitric acid and hydrochloric acid, and ferric chloride solution are used as etchant.
- the third conductive film (ITO film) 113 is selectively wet-etched by using the organic acid (about 3.4% solution: ITO-04N etchant).
- dry-etching is applied for the laminated film consisting of the wiring 112 / the second amorphous semiconductor film 111 / the first amorphous semiconductor film 110 .
- the wiring 112 for forming(y the source and, the drain electrodes having a three-layer structure consisting of Ti (100 nm thick)/Al (350 nm thick)/Ti (100 nm thick) was dry-etched using chlorine-based mixed gas (SiCl 4 , Cl 2 , and BCl 3 ), while the second amorphous semiconductor film 111 for forming the source and drain regions consisting of an amorphous silicon film having 50 nm thickness containing P (phosphorus) element, and the first amorphous semiconductor film 110 for forming a channel region consisting of an amorphous silicon film having 100 nm thickness were dry-etched using fluorine-based gas (CF 4 and O 2 .).
- fluorine-based gas CF 4 and O 2 .
- the etching shapes of the source electrode 118 , the drain electrode 119 , the source region 116 , the drain region 117 and the others formed by the dry-etching step are stable because of little variation of the photo resist pattern side wall taper angle.
- a third conductive film 121 in contact with the source electrode (source wiring) 118 plays a role to cover the source electrode (source wiring) 118 and prevent electro statics from occurring by rubbing in the subsequent manufacturing steps.
- a storage capacitor 202 is formed with the capacitor wiring 103 and the pixel electrode 120using the insulating film 105 b in the capacitor portion as dielectric.
- a third conductive film remains which is formed of a transparent conductive film covered with a resist mask 114 c and formed on the terminal portion.
- the resist masks 114 a- 114 c are removed (see FIG. 5B ).
- FIG. 6 A plane configuration of a pixel region in the active matrix liquid crystal display device formed on the basis of the above manufacturing steps is shown in FIG. 6 .
- the above manufacturing steps of the active matrix liquid crystal display device ( FIGS. 4A-4D and FIGS. 5A-5B ) is shown in cross-sectional views taken along the line of A-A′ (corresponding to the pixel TFT portion) and B-B′ (corresponding to the capacitor portion) in FIG. 6 .
- a plurality of gate wirings 102 positioned in parallel with each other and a plurality of source electrodes (source wirings) 118 each orthogonal to each of the gate wirings 102 are formed, and the pixel electrode 120 is provided in a region surrounded with the gate wiring 102 and the source electrode (source wiring) 118 .
- the third conductive film 121 which is a transparent electrode wiring formed simultaneously with the pixel electrode 120 , is provided so as to overlap the source electrode (source wiring) 118 , and plays a role to prevent electro statics from occurring by rubbing in the subsequent step. In the embodiment, while the third conductive film 121 overlaps the source electrode (source wiring,) 118 , the third conductive film 121 may not be formed.
- the capacitor wiring 103 is provided adjacent to and in parallel with the gate wiring 102 .
- the capacitor wiring (including the capacitor electrode) 103 is provided in each of all pixels, the storage capacitor 202 is formed using a gate insulating film 104 b between the capacitor wiring 103 and the pixel electrode 120 as dielectric.
- an inverted stagger type n-channel TFT 201 is formed which functions as a switching element (see FIG. 6 ).
- a photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist without PEB process is applied, and the bake condition is restricted so that the pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature. Therefore, an excellent photo resist pattern is formed without deformation phenomenon due to volume contraction occurred by evacuation of solvent at the post-bake. Since no deformation phenomenon occurs due to volume contraction, it is characterized in that the photo resist pattern has no problem of the area dependency of the photo resist pattern side wall taper angle.
- DNQ diazo naphthoquinone
- the inverted stagger type TFT having the bottom gate structure of the present invention is manufactured using photo masks three times, and thus, it is characterized in that low-cost and improvement of yield are achieved.
- the bake condition is restricted so that the PEB temperature is equal to or higher than the post-bake temperature, while without the PEB process, the bake condition is restricted so that the pre-bake temperature is equal to or within ⁇ 10° C. relative to the post-bake temperature, so that the resist pattern can be formed with the taper angle being accurately controlled, thereby obtaining the etching pattern accurately controlled.
- the bake condition is restricted so that the pre-bake temperature is within ⁇ 10° C. relative to the post-bake temperature, while for a photolithography step with the PEB process, the bake condition is restricted so that the PEB temperature is equal to or higher than the post-bake temperature.
- the photolithography step which is a manufacturing process of the semiconductor device having inverted stagger type TFTs
- a stable etching shape independent on the pattern area can be achieved in the subsequent dry-etching step.
- variation of the photo resist pattern side wall taper angle might sensitively influence the dry-etching shape. Accordingly, stabilization of the photo resist pattern side wall taper angle may advantageously affect stabilization of the etching shape.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Optics & Photonics (AREA)
- Thin Film Transistor (AREA)
Abstract
In a patterning process of a semiconductor device having inverted stagger type TFTs, a normal photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist is applied, and a problem of the area dependency of the photo resist pattern side wall taper angle may occur. The problem is critical for the reason of influence on variation of an etching shape in a dry-etching step. The present invention has an object to solve the above problem. In a photolithography step, which is patterning step of a semiconductor device having inverted stagger type TFTs, by adjusting a pre-bake temperature or a PEB (post-exposure-bake) temperature, and positively performing evacuation of solvent in a state of a photo resist film, the volume contraction by evacuation of solvent at the post-bake is reduced, and the problem of the area dependency of the photo resist pattern side wall taper angle is solved, which is deformation due to the volume contraction.
Description
The present invention relates to a semiconductor device having a circuit formed of thin film transistors (thereafter, referred to as TFTs) and a method of manufacturing the same. The semiconductor device includes, for example, an electro-optical device such as a liquid crystal display formed of TFTs.
More specifically, the present invention relates to a method of manufacturing a semiconductor device having inverted staggered type TFTs with a bottom gate structure, and more particularly to a photolithography for patterning, the semiconductor device.
In recent years, an active matrix liquid crystal display technology using TFTs is of great interest. Since an active matrix display is provided with a TFT switch on each pixel, a liquid crystal orientation state of TN (i.e., twisted nematic) mode is available, and it is advantageous in terms of response speed, viewing angle and contrast, compared with a passive matrix display, it is mainly used in the current liquid crystal display.
In the electro-optical device including such a liquid crystal display with the active matrix display, high definition, high aperture ratio and high reliability, along with enlarging the area of a screen have been greatly required, while low cost along with improvement of the productivity has been further greatly required. In particular, in response to the low cost requirement, an inverted stagger type TFT is widely adopted, which has a bottom gate structure having a channel forming region formed of an amorphous silicon film conventionally capable of being produced on a large area substrate with a low temperature process at 300° C. or less.
The above-mentioned inverted stagger type TFT is basically advantageous of low cost, since a low cost glass substrate and the low temperature process at 300° C. or less are employed. However, since low cost is further required, the improvement of the productivity for attaining the low cost has been considered. Since shortening the process is most effective for improving the productivity, shortening the process has been considered in the industry. Therefore, reducing a photolithography step which is a pattering step, that is, reducing the number of photo masks is considered for shortening the process.
A normal photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist, and an etchings step such as dry etching and wet etching are applied in the patterning step to he reduced.
In the normal photolithography step consisting of a combination of the diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist and a reduction projection exposure apparatus (also referred to as a stepper) which is a single wavelength (g-ray and i-ray of high-pressure mercury-vapor lamp) exposure apparatus, it has been apparent that fluctuation in taper angle of the resist pattern occurs due to variation in size of the resist pattern. Namely, the resist shape of a fine pattern (about 0.3-3 μm) is a good rectangular pattern, but in a larger pattern (about 10 μm or more), deformation in the pattern with variation in taper angle occurs on a side wall of the resist shape, and it is observed that the taper angle is reduced (see FIG. 1 ).
Since the above phenomenon occurs under a process condition, i.e., pre-bake temperature (90° C. for one minute), followed by PEB (post exposure bake) temperature (110° C. for three minutes) and post-bake temperature (120° C. for four minutes), in which the post-bake temperature after development is higher than the PEB temperature, the phenomenon is considered to be caused due to evacuation of residual solvent from the resist pattern at the post-bake. Also, in a photolithography step without PEB process, it is observed that deformation in the resist pattern due to volume contraction from the resist pattern at the post-bake occurs in the case of large difference between the pre-bake temperature and the post-bake temperature.
In producing the inverted stagger type TFT with a bottom gate structure, while the photolithography step without PEG process is generally adopted, it is not advantageous that as described above, deformation in the resist pattern due to volume contraction at the post-bake occurs. Since various dimensions of circuit patterns exist in a liquid crystal display, deformation in the resist pattern with variation in taper angle depending on variation in the area of the resist pattern influences the etched shape, and thus is a critical problem.
Also, for low cost and enhancement of yield, reduction of the photolithography step is required. In this case, since a plurality of thin film layers, are patterned simultaneously using the resist pattern as a mask, variation of the resist pattern side wall taper angle is a critical problem because it is observed that it also greatly influences the etched shape.
In light of the above problem, in a photolithography step which is a patterning step for a semiconductor device having an inverted stagger type TFT, a phenomenon in which the greater the dimension of the photo resist pattern is, the smaller the taper angle on the side wall is, i.e., the area dependence of the photo resist pattern side wall taper angle is worried. The problem of the area dependence of the photo resist pattern side wall taper angle is found in other companies, and the details are disclosed in Japanese Patent Application Laid-open No. Hei 09-54438.
It is an object of the present invention to provide an semiconductor device formed of inverted stagger type TFTs and a method of manufacturing the same, which can solve the above described problems.
Thus, it is an object of the present invention to solve the area dependence of photo resist pattern side wall taper angle in a photolithography step with diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist. In particular, it is an object of the present invention to the area dependence of the photo resist pattern side wall taper angle in a photolithography step which is a production process of a semiconductor device having inverted stagger type TFTs.
(Means for Solving Photo Resist Pattern Deformation)
First, a description will be made of means for solving resist pattern deformation with variation in taper angle dependent on the pattern area in a photolithography step.
As described above, pattern deformation with variation of side wall taper angle of large area photo resist pattern (about 10 μm or more) occurred as shown in FIG. 1 in a photolithography step with diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist. Since this pattern deformation dose not occur in fine pattern (about 3 82 m or less) formed simultaneously, it is observed that the pattern deformation is dependent on the dimension of the photo resist pattern, i.e., the area of the photo resist pattern (see FIG. 1 ).
The problem of the area dependence of the photo resist pattern side wall taper angle is found in other companies, and the details are disclosed in Japanese Patent Application Laid-open No. Hei 09-54438.
In patterning the photo resist pattern shown in FIG. 1 , a reduction projection exposure apparatus is used as an exposure apparatus, in which a single wavelength (specifically, i-ray of an extra high-pressure mercury-vapor lamp) is used for accounting for chromatic aberration. Therefore, PEB process is generally applied between exposure and development because of adverse effect by standing wave due to a single wavelength of the exposed light. This company uses the PEB process in performing a photolithography step using the reduction projection exposure apparatus.
As described above, the photo resist pattern deformation with variation of side wall taper angle occurs in a photolithography step applying the PEB process between exposure and development, i.e., in a sequence of photo processes consisting of a photo resist coating→pre-bake (90° C. for one minute)→exposure (using the reduction projection exposure apparatus)-PEB (110° C. for three minutes)→development, and post-bake (120° C. for four minutes). In the photo process, since the photo resist pattern deformation occurs after the post-bake process (120° C. for four minutes) at glass transition temperature (about 150° C.) or less, which can be a softening point of the photo resist, it is apparent that the photo resist pattern deformation dose not occur due to thermal softening of the photo resist. Therefore, factors of the photo resist pattern deformation other than the thermal softening are discussed as described below (see FIG. 1 ).
In the normal photolithography step consisting of a combination of the diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist and a reduction projection exposure apparatus (also referred to as a stepper) which is a single wavelength (g-ray and i-ray of high-pressure mercury,-vapor lamp) exposure apparatus, it is considered that volume contraction phenomenon in the resist pattern due to evacuation of residual solvent at the post-bake causes a pattern deformation on the side wall of large area photo resist pattern (about 10 μm or more). Accordingly, it is expected that if PEB temperature for baking the entire resist film after exposure is equal to or greater than the post-bake temperature, evacuation of solvent component at the PEB process is promoted, and evacuation of the solvent from the resist pattern at post-bake is relatively reduced.
For verifying the above expectation, the influence on the dimension of the large area resist pattern edge was measured as changing PEB temperature from 110° C. to 150° C. The dimension of the large area resist pattern edge was then measured by means of a measurement SEM (see FIGS. 2A and 2B ).
In other words, since decreasing the dimension of the large area photo resist pattern edge increases the side wall taper angle of the large area photo resist pattern, which means that the taper angle becomes sharp, it is understood that in a region at the PEB temperature higher than the post-bake temperature (120° C.), the side wall taper angle of the large area photo resist pattern is large and stable (see FIGS. 2A and 2B ).
Accordingly, it is demonstrated that the pattern deformation with variation in the resist taper angle in the large area photo resist pattern is effectively controlled by rising PEB temperature equal to or higher than the post-bake temperature (see FIGS. 2A and 2B ).
Actually, the PEB process is a step introduced to reduce interference fringes on the post-development resist pattern side wall occurring at a single wavelength exposure by the reduction projection exposure apparatus. The PEB process may not be necessarily introduced because interference fringes on the post-development resist pattern side wall basically do not occur in exposing by means of an equivalent projection exposure apparatus capable of multi-wavelength exposure (for example, g-ray, h-ray and i-ray of an extra high-pressure mercury-vapor lamp).
In practice, in a photolithography step for an inverted stagger type TFT manufactured on a large glass substrate, since the equivalent projection exposure apparatus using multi-wavelength is used for convenience of the production, a photo process without PEB process, i.e., a photo process consisting of a sequence of photo resist coating→pre-bake→exposure→development→post-bake is generally used.
Also, in this case, if the post-bake temperature (normally, about 110-140° C.) is higher than the pre-bake temperature (normally, about 90-100° C.), evacuation of residual solvent from the resist pattern at the post-bake is accelerated and the resist pattern deformation with variation in the taper angle due to volume contraction of the resist pattern may occur depending on the difference of the temperatures.
Based on the above discussion, in the photolithography step without PEB process, deformation of the photo resist pattern shape was measured as changing the pre-bake temperature (90° C., 110° C., and 130° C. -1.5 minutes) with the post-bake temperature being fixed (140° C. -two minutes). The photo resist pattern shape obtained is observed by means of cross-section SEM, and the measured results are shown in FIGS. 3A-3C . In the measurement, MPA (Canon inc.), which is an equivalent projection exposure apparatus, is used as an exposure apparatus, and a photo resist pattern having 3 μm line is used as measurement pattern.
In the measurement, the large area photo resist pattern (10 μm or more) is not measured. If the large area photo resist pattern is measured, appropriate range of the pre-bake temperature would be equal to or greater than that of the post-bake temperature similarly to a measurement with the PEB process because of severer condition of the measurement in terms of deformation phenomenon occurred due to volume contraction by evacuation of solvent at the post-bake. However, if the appropriate range of the pre-bake temperature is equal to or greater than that of the post-bake temperature, it is possible that exposure property such as sensitivity is adversely affected as pre-bake temperature rises. Preferably, the post-bake temperature is not excessively reduced for adherence of the photo resist pattern to the underlying substrate. From this point, the pre-bake temperature was measured using normal photo resist pattern (3 μm line pattern) rather than the large area photo resist pattern, and the bake condition was restricted so that pre-bake temperature is within ±10° C. relative to the post-bake temperature.
From the above discussion, for controlling variation of the taper angle dependent on change in size of the resist pattern regardless of the PEB process. Generally, it is understood that evacuation of residual solvent within the resist film is preferably accelerated in the state of the resist film before patterning in the development process, because volume contraction phenomenon is reduced due to evacuation solvent at the post-bake baking only the resist pattern. Specifically, for the process with PEB process, the bake condition is restricted so that PEB temperature is equal to or greater than the post-bake temperature. On the other hand, for the process without the PEB process, the bake condition is restricted so that pre-bake temperature is equal to or within ±10° C. relative to the post bake temperature.
Accordingly, in accordance with the present invention, a solution is provided which can solve a problem of the area dependence of the photo resist pattern side wall taper angle inducing the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake.
In the photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist without the PEB process, the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake is solved by restricting the pre-bake temperature within ±10° C. relative to the post-bake temperature.
In the photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist with the PEB process, the deformation phenomenon due to volume contraction occurred by evacuation of solvent from the photo resist pattern at the post-bake is solved by restricting the PEB temperature so as to be equal to or higher than the post-bake temperature.
(Method of Manufacturing a Semiconductor Device)
In a method of manufacturing a semiconductor device having inverted stagger type TFTs, reduction of patterning steps is considered to reduce the overall process steps, and the present invention relates to a method of manufacturing the semiconductor device using three photo masks. In the method of manufacturing the semiconductor device, means solution for solving the area dependence of photo resist pattern side wall taper angle which is a problem of a photolithography step is described below.
A method of manufacturing a semiconductor device in accordance with the present invention includes a first step of forming a first conductive film on an insulating surface, a second step of forming a resist pattern on the first conductive film, a third step of dry-etching the first conductive film to form a first pattern, a fourth step of forming a first insulating film on the first pattern, a fifth step of forming a first semiconductor film on the first insulating film, a sixth step of forming a one conductivity type second semiconductor film on the first semiconductor film, a seventh step of forming a second conductive film on the one conductivity type second semiconductor film, an eighth step of forming a resist pattern on the second conductive film, a ninth step of dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a second pattern, a tenth step of forming a third conductive film on the second pattern, an eleventh step of forming a resist pattern on the third conductive film, and a twelfth step of etching the third conductive film to form a third pattern,
It is to be noted that the third pattern formed by the twelfth step is patterned by etching not only the third conductive film but also the second pattern (formed by the ninth step).
Alternatively, a method of manufacturing a semiconductor device in accordance with the present invention comprises a first step of forming a first conductive film on an insulating film, a second step of forming a resist pattern on the first conductive film, a third step of dry-etching the first conductive film to form a gate electrode, a fourth step of forming a first insulating film on the gate electrode, a fifth step of forming a first semiconductor film on the first insulating film, a sixth step of forming a one conductivity type second semiconductor film on the first semiconductor film, a seventh step of forming a second conductive film on the one conductivity type second semiconductor film, an eighth step of forming a resist pattern on the second conductive film, a ninth step of dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a source wiring and an active layer, a tenth step of forming a third conductive film on the source wiring and the active layer, an eleventh step of forming a resist pattern on the third conductive film, and a twelfth step of etching the third conductive film to form a pixel electrode.
It is to be noted that the first insulating film formed by the fourth step is a gate insulating film. It is also to be noted that the source wiring and the active layer formed by the ninth step are formed of a laminated pattern consisting of the first semiconductor film and the one conductivity type second semiconductor film. According to a pattern forming by the twelfth step, while the pixel electrode is formed of the third conductive film, in addition, a channel region is formed of the first semiconductor film, a source region and a drain region are formed of the one conductivity type second semiconductor film, and a source electrode and a drain electrode are formed of the second conductive film.
In such a method of manufacturing a semiconductor device, each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, developing, and post-baking, characterized in that difference between the pre-bake temperature and the post-bake temperature is within ±10° C.
More specifically, each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, developing, and post-baking, characterized in that the pre-bake temperature is within ±10° C. relative to the post-bake temperature.
Alternatively, each of the second, the eighth and the eleventh steps includes the steps of resist coating, pre-baking, exposing, post-exposure baking, developing, and post-baking, characterized in that difference between the post-exposure bake temperature and the post-bake temperature is within ±10° C.
The present invention relates to a structure of an inverted stagger type TFThaving a bottom gate structure and a method of manufacturing the same, characterized in that, by restricting a bake condition between a pre-bake temperature or PEB temperature and a post-bake temperature in a photolithographystep, taper angles of various dimensions of resist patterns are accurately controlled, as a result, accurately controlling shapes of various dimensions of etching patterns. Specific embodiment mode of the structure of the inverted stagger type TFT and the method of manufacturing the same in accordance with the present invention are described below with reference to FIGS. 4A-4D , FIGS. 5A-5B and FIG. 6 .
It is to be noted that FIGS. 4A-4D and FIGS. 5A-5B are cross-sectional views illustrating a manufacturing steps of an active matrix liquid crystal display device, and FIG. 6 is a top view illustrating configuration of a pixel region in the active matrix liquid crystal display device. The cross-sectional views of FIGS. 4A-4D and FIGS. 5A-5B are taken along a line A-A′ and a line B-B′ in FIG. 6 , respectively. In FIGS. 4A-4D and FIGS. 5A-5B , a terminal portion, a pixel TFT portion and a capacitor portion are shown from the left side.
At first, a first conductive film (not shown) used as a (gate electrode material is deposited on the overall surface of an insulating transparent substrate 101such as a glass substrate by sputtering or the like (a first step). The first conductive film (not shown) is used as a material for forming a gate wiring (including a gate electrode), a capacitor wiring (including a capacitor electrode) and the others, and preferably made from a low-resistance metal, such as Al (aluminum). However, since Al alone has problems such as less heat-resistance and susceptibility to corrosion, the first conductive film is generally made of a laminate film consisting of a low-resistance metal and a heat-resistant material. Included in the laminated film are a two-layer structure of a low-resistance material (e.g., Al) and a heat-resistant material, and a three-layer structure in which a low-resistance material is sandwiched between two heat-resistant material, i.e., a three-layer structure consisting of a heat-resistant material (e.g., Al)/ a low resistance material/a heat-resistant material (see FIG. 4A ).
Generally used as a low resistance material is a material including Al as its principal component added with Sc (scandium), Ti (titanium), Cu (copper), Si (silicon) or the like at about 0.01-5%. On the other hand, used as a heat-resistant material is a high-melting metal such as Ti (titanium), Ta (tantalum), W (tungsten), Mo (molybdenum), Cr (chromium), or the like; a metal silicide which is a compound of the high-melting metal and silicon; or a metal nitride which is a compound of the high-melting metal and nitrogen. In this embodiment mode, the first conductive film (not shown) consisting of Ti (50 μm thick)/Al (200 nm thick)/Ti (50 nm thick) was deposited by sputtering (see FIG. 4A ).
After forming the conductive layer on the overall surface of the transparent substrate 101, a resist mask is formed by a first photolithography step (a second step) In the photolithography step with PEB process, the bake condition is restricted so that PEB temperature is equal to or higher than the post-bake temperature, on the other hand, in the photolithography step without PEB process, the bake condition is restricted so that the pre-bake temperature is equal to the post-bake temperature or difference between the pre-bake temperature and the post-bake temperature is within about 10° C. Thus a resist mask (not shown) is formed having a taper angle accurately controlled (see FIG. 4A ).
In this embodiment mode, the photolithography step without PEB process is applied and the bake condition is restricted so that the pre-bake temperature is within ±10° C. relative to the post-bake temperature. Therefore, the problem of the area dependency of the photo resist pattern side wall taper angle is solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake.
Next, wiring and electrodes (a gate wiring 102 including a gate electrode, a capacitor wiring 103, and a terminal 104) are formed by etching out and then removing the resist mask (not shown) (a third step). In this case, the etching is performed so that a forward taper portion is formed at the end of the grate wiring 102 (see FIG. 4A ).
Since little variation of the photo resist pattern side wall taper angle occurs in the taper etching shape of each wiring such as the gate wiring 102, a stable taper etching shape without variation is obtained (see FIG. 4A ).
Next, a gate insulating film 105a which is formed of a silicon oxide film, a silicon oxide nitride film or a silicon nitride film having a thickness of 50-200 nm is deposited by plasma CVD or sputtering (a fourth step). In this embodiment, the gate insulating film 105a formed of a silicon nitride film having a thickness of 150 nm was deposited by plasma CVD (see FIG. 4A ).
Next, a first amorphous semiconductor film 106 having a thickness of 50-200 nm is deposited on the gate insulating film 105a by plasma CVD or sputtering (a fifth step). In the embodiment mode, the first amorphous semiconductor film 106 formed of an amorphous silicon film and having the thickness of 100 nm was deposited by sputtering (see FIG. 4A ).
Next, a second amorphous semiconductor film 107 having a thickness of 20-80 nm, containing one conductivity type (n-type or p-type) impurity element, is deposited by plasma CVD or sputtering (a sixth step). In this embodiment mode, the second amorphous semiconductor film 107 formed of all amorphous silicon film and having a thickness of 50 nm was deposited by sputtering, using a silicon target containing P (phosphorus) element as n-type impurity (see FIG. 4A ).
Next, a second conductive film 108 made from metal material is deposited by sputtering (a seventh step). Any metal material having ohmic contact characteristics to the underlying second amorphous semiconductor film 107 is non-limited used as material of the second conductive film 108. For example, used may be a single-layer film formed of a single element or any alloys made from a plurality of elements, such as Al (aluminum), Cr (chromium), Ta (tantalum), and Ti (titanium), and a laminated layer consisting of the single layer film. In the embodiment mode, the second conductive film 108 having a three-layer structure consisting of Ti (100 nm thick),/Al (350 nm thick)/Ti (100 nm thick) was deposited by sputtering (see FIG. 4A ).
In this way, the gate insulating film 105a having 50-200 nm thickness, the first amorphous semiconductor film 106 having 50-200 nm thickness, the second amorphous semiconductor film 107 having 20-80 nm thickness containing one conductivity type (n-type or p-type) impurity element, and the second conductive film 108 made from metal material are sequentially deposited. As described above, any metal material having ohmic contact characteristics to the second amorphous semiconductor film 107 is non-limitedly used as material of the second conductive film 108 (see FIG. 4A ).
Next, a resist mask 109 with a taper angle being accurately controlled is formed by a second photolithography step (an eighth step), and then a wiring 112 (in the subsequent step, becoming a source wiring and a drain electrode) is formed by etching (a ninth step). At this point, the second conductive film 108, the second amorphous semiconductor film 107 containing an impurity element imparting n-type, and the first amorphous semiconductor film 106 are sequentially etched by using the resist mask 109 as a mask, and in a pixel TFT portion, the wiring 112 consisting of the second conductive film 108, the second amorphous semiconductor film 111 containing the impurity element imparting n-type, and the first amorphous semiconductor film 110 are sequentially formed (see FIG. 4B ).
In the embodiment, the second conductive film 108 having a three-layer structure consisting of Ti (100 nm thick)/Al (350 nm thick)/Ti (100 nm thick) is dry-etched by using the mixed gas of SiCl4, Cl2, and BCl3 as dry etching gas, and the second amorphous semiconductor film 107 and the first amorphous semiconductor film 106 are dry-etched by using the mixed gas of CF4 and O2. In this case, the gate insulating film 105a in the capacitor portion and the terminal portion remains without being dry-etched.
In the dry etching step, since a laminated pattern consisting of the wiring 112 for forming a source and a drain electrodes, the second amorphous semiconductor film 111 for forming a source and a drain regions, and the first amorphous semiconductor film 110 for forming a channel region is dry-etched by using the photo resist mask 109 with little variation of the side wall taper angle as a mask, a stable etching shape can be obtained.
Next, after removing the resist mask 109, a resist mask (not shown) is formed using a shadow mask, and an insulating film 105b is formed by selectively removing a portion of the insulating film 105a, which covers a pad portion of the terminal portion. Thereafter, the resist mask (not shown) is removed (see FIG. 4C ).
Next, a third conductive film 113 formed of a transparent conductive film is deposited overall thereon (a tenth step). Material of the third conductive film 113 includes indium oxide (In2O3), indium oxide-tin oxide alloy (In2O3—SnO2: hereafter referred to as ITO) and the others (see FIG. 4D ).
In the embodiment mode, the third conductive film 113 made of ITO film having a thickness of 100 nm was deposited by sputtering.
Next, photo resist masks 114a-114c with taper angle being accurately controlled are formed by a third photolithography step (an eleventh step) (see FIG. 5A ).
In the embodiment, the photolithography without PEB process is applied as well as in the second step and the eighth step, and the bake condition is restricted so that the pre-bake temperature is within ±10° C. relative to the post-bake temperature. Therefore, the problem of the area dependency of the photo resist pattern side wall taper angle is solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake.
Moreover, a first amorphous semiconductor film 115; a source region 116 and a drain region 117; a source electrode 118 and a drain electrode 119; and a pixel electrode 120 are formed by etching. In the third photolithography step, the third conductive film 113 is patterned, while an opening is formed by etching out a portion of the wiring 112, a portion of the second amorphous semiconductor film 111 containing an impurity element imparting n-type, and a portion of the first amorphous semiconductor film 110. The bottom of the opening reaches the first amorphous semiconductor film 110, so that the first amorphous semiconductor film 115 having a concave portion is formed. The opening divides the wiring 112 into the source electrode (source wiring) 118 and the drain electrode 119, and the second amorphous semiconductor film 111 containing an impurity element imparting n-type is separated into the source region 116 and the drain region 117 (see FIG. 5A ).
In the above etching step, wet-etching is used to etch the third conductive film 113. In the wet-etching, generally, an organic acid (about 3.4% solution: ITO-04 etchant), a mixture of nitric acid and hydrochloric acid, and ferric chloride solution are used as etchant. In the embodiment, the third conductive film (ITO film) 113 is selectively wet-etched by using the organic acid (about 3.4% solution: ITO-04N etchant). On the other hand, dry-etching is applied for the laminated film consisting of the wiring 112/ the second amorphous semiconductor film 111/ the first amorphous semiconductor film 110. In the embodiment, the wiring 112 for forming(y the source and, the drain electrodes having a three-layer structure consisting of Ti (100 nm thick)/Al (350 nm thick)/Ti (100 nm thick) was dry-etched using chlorine-based mixed gas (SiCl4, Cl2, and BCl3), while the second amorphous semiconductor film 111 for forming the source and drain regions consisting of an amorphous silicon film having 50 nm thickness containing P (phosphorus) element, and the first amorphous semiconductor film 110 for forming a channel region consisting of an amorphous silicon film having 100 nm thickness were dry-etched using fluorine-based gas (CF4 and O2.).
The etching shapes of the source electrode 118, the drain electrode 119, the source region 116, the drain region 117 and the others formed by the dry-etching step (except for wet-etching) are stable because of little variation of the photo resist pattern side wall taper angle.
A third conductive film 121 in contact with the source electrode (source wiring) 118 plays a role to cover the source electrode (source wiring) 118 and prevent electro statics from occurring by rubbing in the subsequent manufacturing steps. Also, in the third photolithography step, a storage capacitor 202 is formed with the capacitor wiring 103 and the pixel electrode 120using the insulating film 105b in the capacitor portion as dielectric. In the third photolithography step, a third conductive film remains which is formed of a transparent conductive film covered with a resist mask 114c and formed on the terminal portion. Next, the resist masks 114a-114c are removed (see FIG. 5B ).
A plane configuration of a pixel region in the active matrix liquid crystal display device formed on the basis of the above manufacturing steps is shown in FIG. 6 . The above manufacturing steps of the active matrix liquid crystal display device (FIGS. 4A-4D and FIGS. 5A-5B ) is shown in cross-sectional views taken along the line of A-A′ (corresponding to the pixel TFT portion) and B-B′ (corresponding to the capacitor portion) in FIG. 6 .
In the pixel region shown in FIG. 6 , a plurality of gate wirings 102 positioned in parallel with each other and a plurality of source electrodes (source wirings) 118 each orthogonal to each of the gate wirings 102 are formed, and the pixel electrode 120 is provided in a region surrounded with the gate wiring 102 and the source electrode (source wiring) 118. The third conductive film 121, which is a transparent electrode wiring formed simultaneously with the pixel electrode 120, is provided so as to overlap the source electrode (source wiring) 118, and plays a role to prevent electro statics from occurring by rubbing in the subsequent step. In the embodiment, while the third conductive film 121 overlaps the source electrode (source wiring,) 118, the third conductive film 121 may not be formed.
Moreover, the capacitor wiring 103 is provided adjacent to and in parallel with the gate wiring 102. The capacitor wiring (including the capacitor electrode) 103 is provided in each of all pixels, the storage capacitor 202 is formed using a gate insulating film 104b between the capacitor wiring 103 and the pixel electrode 120 as dielectric. In the intersection of the gate wiring 102 and the source electrode (source wiring) 118, an inverted stagger type n-channel TFT 201 is formed which functions as a switching element (see FIG. 6 ).
In the embodiment, in the manufacturing process of the active matrix liquid crystal display device having inverted stagger type TFTs, a photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist without PEB process is applied, and the bake condition is restricted so that the pre-bake temperature is within ±10° C. relative to the post-bake temperature. Therefore, an excellent photo resist pattern is formed without deformation phenomenon due to volume contraction occurred by evacuation of solvent at the post-bake. Since no deformation phenomenon occurs due to volume contraction, it is characterized in that the photo resist pattern has no problem of the area dependency of the photo resist pattern side wall taper angle.
As described above, the inverted stagger type TFT having the bottom gate structure of the present invention is manufactured using photo masks three times, and thus, it is characterized in that low-cost and improvement of yield are achieved. In the photolithography step using the photo mask with the PEB process, the bake condition is restricted so that the PEB temperature is equal to or higher than the post-bake temperature, while without the PEB process, the bake condition is restricted so that the pre-bake temperature is equal to or within ±10° C. relative to the post-bake temperature, so that the resist pattern can be formed with the taper angle being accurately controlled, thereby obtaining the etching pattern accurately controlled. Advantages of the present invention having characteristics described above arc recited below.
(Advantage 1)
In the manufacturing process of the semiconductor device having inverted stagger type TFTs, for the case of applying a photolithography step using diazo naphthoquinone (DNQ)-Novolac resin based positive photo resist without the PEB process, the bake condition is restricted so that the pre-bake temperature is within ±10° C. relative to the post-bake temperature, while for a photolithography step with the PEB process, the bake condition is restricted so that the PEB temperature is equal to or higher than the post-bake temperature. By such a bake condition restriction, a problem of the area dependency of the photo resist pattern side wall taper angle can be solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake.
(Advantage 2)
In the photolithography step which is a manufacturing process of the semiconductor device having inverted stagger type TFTs, since the problem of the area dependency of the photo resist pattern side wall taper angle can be solved which is deformation phenomenon due to the volume contraction occurred by evacuation of solvent at the post-bake, a stable etching shape independent on the pattern area can be achieved in the subsequent dry-etching step. Especially, since in the production process of the semiconductor device, a plurality of laminated layer films are dry-etched in a batch, variation of the photo resist pattern side wall taper angle might sensitively influence the dry-etching shape. Accordingly, stabilization of the photo resist pattern side wall taper angle may advantageously affect stabilization of the etching shape.
(Advantage 3)
In the dry-etching step of the manufacturing process of the semiconductor device having inverted stagger type TFTs, since a stable etching shape independent on the pattern area can be achieved, improvements of both quality and yield of the semiconductor device are advantageously achieved.
(Advantage 4)
In the manufacturing process of the semiconductor device having inverted stagger type TFTs, since it is intended to reduce the manufacturing steps by reducing the number of photo masks, both yield and productivity are also improved.
Claims (18)
1. A method of manufacturing a semiconductor device, said method comprises the steps of:
forming a first conductive film on an insulating surface;
forming a first photo resist pattern on the first conductive film;
dry-etching the first conductive film to form a first pattern;
depositing a first insulating film on the first pattern;
depositing a first semiconductor film on the first insulating film;
depositing a one conductivity type second semiconductor film on the first semiconductor film;
depositing a second conductive film on the one conductivity type second semiconductor film;
forming a second photo resist pattern on the second conductive film;
dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a second pattern;
depositing a third conductive film on the second pattern;
forming a third photo resist pattern on the third conductive film; and
etching the third conductive film and the second pattern to form a third pattern,
each of the steps of forming the first, the second and the third photo resist patterns comprising the steps of.:
coating a photo resist;
performing a pre-bake after coating the photo resist;
performing an exposure after performing the pre-bake;
performing a development after the exposure; and
performing a post-bake after the development,
wherein a pre-bake temperature is within ±10° C., relative to a post-bake temperature.
2. A method of manufacturing a semiconductor device having inverted stagger type thin-film transistors, said method comprises the steps of:
depositing a first conductive film on an insulating surface;
forming a first photo resist pattern on the first conductive film;
dry-etching the first conductive film to form a gate electrode;
depositing a gate insulating film on the gate electrode;
depositing a first semiconductor film on the gate insulating film;
depositing a one conductivity type second semiconductor film on the first semiconductor film;
depositing a second conductive film on the one conductivity-type second semiconductor film;
forming a second photo resist pattern on the second conductive film;
dry-etching the first semiconductor film, the one conductivity type second semiconductor film and the second conductive film to form a laminated film comprising the first semiconductor film, the one conductivity type second semiconductor film and the second conductive film;
depositing a third conductive film on the laminated film pattern;
forming a third photo resist pattern on the third conductive film;
etching the third conductive film to form a pixel electrode; and
dry-etching the laminated film to form a channel region from the first semiconductor film, to form a source region and a drain region from the one conductivity type second semiconductor film and to form a source electrode and a drain electrode from the second conductive film,
each of the steps of forming the first, the second and the third photo resist patterns comprising the steps of.:
coating a photo resist;
performing a pre-bake after coating the photo resist;
performing an exposure after performing the pre-bake;
performing a development after performing the exposure; and
performing a post-bake after performing the development,
wherein a pre-bake temperature is within ±10° C. relative to a post-bake temperature.
3. A method of manufacturing, a semiconductor device according, to claim 1 , wherein the step of performing, the exposure comprises performing an exposure using a multi-wavelength light.
4. A method of manufacturing a semiconductor device according to claim 1 , wherein the step of performing the exposure comprises performing an exposure using an equivalent projection exposure apparatus.
5. A method of manufacturing a semiconductor device, said method comprises the steps of:
depositing a first conductive film on an insulating surface;
forming a first photo resist pattern on the first conductive film;
dry-etching the first conductive film to form a first pattern;
depositing a first insulating film on the first pattern;
depositing a first semiconductor film on the insulating the insulating film;
depositing a one conductivity type second semiconductor film on the first semiconductor film;
depositing a second conductive film on the one conductivity type second semiconductor film;
forming a second photo resist pattern on the second conductive film;
dry-etching the first semiconductor film, the one conductivity type second semiconductor film, and the second conductive film to form a second pattern;
depositing a third conductive film on the second pattern;
forming a third photo resist pattern on the third conductive film; and
etching the third conductive film and the second pattern to form a third pattern,
each of the steps of forming the first, the second and the third photo resist patterns comprising the steps of:
coating a photo resist;
performing a pre-bake after coating the photo resist;
performing an exposure after performing the pre-bake;
performing a post-exposure bake after performing the exposure;
performing a development after performing the post-exposure bake; and
performing a post-bake after performing the development,
wherein a post-exposure bake temperature is equal to or greater than a post-bake temperature.
6. A method of manufacturing a semiconductor device having inverted stagger type thin-film transistors,
said method comprises the steps of:
depositing a first conductive film on an insulating surface;
forming a first photo resist pattern on the first conductive film;
dry-etching the first conductive film to form a gate electrode;
depositing a gate insulating film on the gate electrode;
depositing a first semiconductor film on the gate insulating film;
depositing a one conductivity type second semiconductor film on the first semiconductor film;
depositing a second conductive film on the one conductivity type second semiconductor film;
forming a second photo resist pattern on the second conductive film;
dry-etching the first semiconductor film, the one conductivity type second semiconductor film and the second conductive film to form a laminated film comprising the first semiconductor film, the one conductivity type second semiconductor film and the second conductive film;
depositing a third conductive film on the laminated film;
forming a third photo resist pattern on the third conductive film;
etching the third conductive film to form a pixel electrode; and
dry-etching the laminated film to form a channel region from the first semiconductor film, to form a source region and a drain region from the one conductivity type second semiconductor film and to form a source electrode and a drain electrode from the second conductive film,
each of the steps of forming the first, the second and the third photo resist patterns comprising the steps of;:
coating a photo resist;
performing a pre-bake after coating the photo resist;
performing an exposure after performing the pre-bake;
performing a post-exposure bake after performing the exposure;
performing a development after performing the post-exposure; and
performing a post-bake after performing the development,
wherein a post-exposure bake temperature is equal to or higher than a post-bake temperature.
7. A method of manufacturing a semiconductor device according to claim 5 , wherein the step of performing the exposure comprises performing an exposure using a single-wavelength light.
8. A method of manufacturing a semiconductor device according to claim 5 , wherein the step of performing the exposure comprises performing an exposure using a reduction projection exposure apparatus.
9. A method of manufacturing a semiconductor device according to claim 2 , wherein the step of performing the exposure comprises performing an exposure using a multi-wavelength light.
10. A method of manufacturing a semiconductor device according to claim 2 , wherein the step of performing the exposure comprises performing an exposure using an equivalent projection exposure apparatus.
11. A method of manufacturing a semiconductor device according to claim 6 , wherein the step of performing the exposure comprises performing an exposure using a single-wavelength light.
12. A method of manufacturing a semiconductor device according to claim 6 , wherein the step of performing the exposure comprises performing an exposure using a reduction projection exposure apparatus.
13. A method of manufacturing a semiconductor device, said method comprising the steps of:
forming a conductive film on an insulating surface;
forming a photo resist on the conductive film;
pre-baking the photo resist at a first temperature;
performing an exposure to the photo resist after pre-baking the photo resist;
performing a development after the exposure;
post-baking the photo resist at a second temperature after the development; and
etching the conductive film by using the post-baked photo resist to form a wiring having a taper portion,
wherein the first temperature is within ±10° C. relative to the second temperature.
14. A method of manufacturing a semiconductor device according to claim 13, wherein the step of performing the exposure comprises performing an exposure using a multi-wavelength light.
15. A method of manufacturing a semiconductor device according to claim 13, wherein the step of performing the exposure comprises performing an exposure using an equivalent projection exposure apparatus.
16. A method of manufacturing a semiconductor device, said method comprising the steps of:
forming a conductive film on an insulating surface;
coating a photo resist on the conductive film;
pre-baking the photo resist at a first temperature;
performing an exposure to the pre-baked photo resist;
performing a post-exposure bake to the photo resist at a second temperature;
performing a development to the post-exposure baked photo resist;
post-baking the developed photo resist at a third temperature; and
etching the conductive film by using the post-baked photo resist to form a wiring having a taper portion,
wherein the second temperature is equal to or greater than the third temperature.
17. A method of manufacturing a semiconductor device according to claim 16, wherein the step of performing the exposure comprises performing an exposure using a single-wavelength light.
18. A method of manufacturing a semiconductor device according to claim 16, wherein the step of performing the exposure comprises performing an exposure using a reduction projection exposure apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/960,898 USRE43471E1 (en) | 2000-05-13 | 2004-10-08 | Method of manufacturing a semiconductor device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000180549 | 2000-05-13 | ||
JP2000-180549 | 2000-05-13 | ||
US09/852,916 US6461886B1 (en) | 2000-05-13 | 2001-05-11 | Method of manufacturing a semiconductor device |
US10/960,898 USRE43471E1 (en) | 2000-05-13 | 2004-10-08 | Method of manufacturing a semiconductor device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/852,916 Reissue US6461886B1 (en) | 2000-05-13 | 2001-05-11 | Method of manufacturing a semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
USRE43471E1 true USRE43471E1 (en) | 2012-06-12 |
Family
ID=18681613
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/852,916 Ceased US6461886B1 (en) | 2000-05-13 | 2001-05-11 | Method of manufacturing a semiconductor device |
US10/960,898 Expired - Lifetime USRE43471E1 (en) | 2000-05-13 | 2004-10-08 | Method of manufacturing a semiconductor device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/852,916 Ceased US6461886B1 (en) | 2000-05-13 | 2001-05-11 | Method of manufacturing a semiconductor device |
Country Status (3)
Country | Link |
---|---|
US (2) | US6461886B1 (en) |
KR (1) | KR100825907B1 (en) |
TW (1) | TW497269B (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100825907B1 (en) * | 2000-05-13 | 2008-04-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | A method of manufacturing a semiconductor device |
US7102168B2 (en) * | 2001-12-24 | 2006-09-05 | Samsung Electronics Co., Ltd. | Thin film transistor array panel for display and manufacturing method thereof |
US6716681B2 (en) * | 2002-03-27 | 2004-04-06 | Chi Mei Optoelectronics Corp. | Method for manufacturing thin film transistor panel |
US7344825B2 (en) | 2002-04-04 | 2008-03-18 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating semiconductor device, and developing apparatus using the method |
KR100820842B1 (en) * | 2002-07-15 | 2008-04-10 | 삼성전자주식회사 | Pattern mask assembly for exposure and liquid crystal display substrate using the same |
US7875419B2 (en) * | 2002-10-29 | 2011-01-25 | Semiconductor Energy Laboratory Co., Ltd. | Method for removing resist pattern and method for manufacturing semiconductor device |
TW589663B (en) * | 2003-05-12 | 2004-06-01 | Au Optronics Corp | Flat panel display and manufacturing method thereof |
JP2004347682A (en) * | 2003-05-20 | 2004-12-09 | Tokyo Ohka Kogyo Co Ltd | Positive photoresist composition for manufacturing system liquid crystal display and method for forming resist pattern |
US7115488B2 (en) * | 2003-08-29 | 2006-10-03 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
KR101028662B1 (en) * | 2004-05-31 | 2011-04-12 | 엘지디스플레이 주식회사 | Manufacturing method of thin film transistor and semiconductor film pattern for liquid crystal display device |
TWI234288B (en) * | 2004-07-27 | 2005-06-11 | Au Optronics Corp | Method for fabricating a thin film transistor and related circuits |
KR101240643B1 (en) | 2005-07-08 | 2013-03-08 | 삼성디스플레이 주식회사 | Photoresist composition, a method for forming a pattern using the same, and a method for manufacturing thin film transistor array panel using the same |
US20070287209A1 (en) * | 2006-04-28 | 2007-12-13 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing light-emitting device |
US7910929B2 (en) * | 2007-12-18 | 2011-03-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device |
US20110287593A1 (en) * | 2010-05-20 | 2011-11-24 | Semiconductor Energy Laboratory Co., Ltd. | Method for forming semiconductor film and method for manufacturing semiconductor device |
CN104576523A (en) * | 2013-10-16 | 2015-04-29 | 北京京东方光电科技有限公司 | Array substrate, production method of array substrate and display device |
KR102525586B1 (en) * | 2017-11-15 | 2023-04-26 | 삼성디스플레이 주식회사 | Photo mask and method of manufacturing semiconductor element using photo mask |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03232274A (en) | 1989-08-14 | 1991-10-16 | Hitachi Ltd | Thin film transistor, manufacture thereof, liquid crystal display panel, and liquid display device |
US5078771A (en) | 1989-02-07 | 1992-01-07 | Canyon Materials, Inc. | Method of making high energy beam sensitive glasses |
US5174857A (en) * | 1990-10-29 | 1992-12-29 | Gold Star Co., Ltd. | Slope etching process |
EP0530834A1 (en) | 1991-09-05 | 1993-03-10 | Casio Computer Company Limited | Thin-film transistor and method of manufacturing the same |
EP0544069A1 (en) | 1991-11-26 | 1993-06-02 | Casio Computer Company Limited | Thin-film transistor panel and method of manufacturing the same |
JPH05152327A (en) | 1991-11-27 | 1993-06-18 | Casio Comput Co Ltd | Manufacturing method of thin film transistor panel |
JPH05206086A (en) | 1992-01-27 | 1993-08-13 | Fujitsu Ltd | Method of etching thin film |
US5242543A (en) * | 1991-02-06 | 1993-09-07 | Mitsubishi Denki Kabushiki Kaisha | Wet etching method for forming metal film pattern having tapered edges |
US5248576A (en) * | 1989-09-18 | 1993-09-28 | Idemitsu Kosan Co., Ltd. | Method of producing color filter using a micellar disruption method |
US5334859A (en) | 1991-09-05 | 1994-08-02 | Casio Computer Co., Ltd. | Thin-film transistor having source and drain electrodes insulated by an anodically oxidized film |
JPH06222370A (en) | 1993-01-25 | 1994-08-12 | Sony Corp | Production of liquid crystal panel |
JPH06244155A (en) | 1993-02-19 | 1994-09-02 | Sumitomo Metal Ind Ltd | Formation of metallic wiring pattern of semiconductor device |
JPH07153965A (en) | 1993-11-30 | 1995-06-16 | Sanyo Electric Co Ltd | Manufacture of thin-film transistor |
JPH0887033A (en) | 1994-09-16 | 1996-04-02 | Toshiba Corp | Production of active matrix display |
US5518860A (en) | 1994-06-08 | 1996-05-21 | Tokyo Ohka Kogyo Co., Ltd. | Positive-working quinonediazide photoresist composition containing hydroxyalkyl substituted pyridine compound |
US5589962A (en) | 1992-06-08 | 1996-12-31 | Hitachi, Ltd. | Active matrix display device using aluminum alloy in scanning signal line or video signal line |
US5604138A (en) | 1993-12-16 | 1997-02-18 | Goldstar Electron Co., Ltd. | Process for making a semiconductor MOS transistor |
JPH0954438A (en) | 1995-08-17 | 1997-02-25 | Mitsubishi Electric Corp | Photoresist pattern and its forming method |
US5607900A (en) | 1991-03-28 | 1997-03-04 | Sumitomo Electric Industries, Ltd. | Process for cleaning a surface of thin film of oxide superconductor |
KR970051899A (en) | 1995-12-27 | 1997-07-29 | 김광호 | Pattern formation method of semiconductor device |
JPH09197436A (en) | 1996-01-23 | 1997-07-31 | Toshiba Corp | Active matrix substrate |
JPH09274313A (en) | 1996-04-03 | 1997-10-21 | Toshiba Corp | Formation of resist pattern |
JPH09279367A (en) | 1996-04-17 | 1997-10-28 | Mitsubishi Electric Corp | Al taper dry etching method |
JPH09288347A (en) | 1996-02-20 | 1997-11-04 | Ricoh Co Ltd | Reticle with dummy pattern and semiconductor device produced by using the same |
JPH1026829A (en) | 1996-07-10 | 1998-01-27 | Japan Synthetic Rubber Co Ltd | Radiation sensitive resin composition |
JPH1056179A (en) | 1996-08-08 | 1998-02-24 | Hoshiden Philips Display Kk | Manufacture of thin film device |
KR19990004786A (en) | 1997-06-30 | 1999-01-25 | 배순훈 | Manufacturing method of thin film type optical path control device |
KR19990070241A (en) | 1998-02-18 | 1999-09-15 | 구본준 | Manufacturing Method of Semiconductor Device |
JP2000047263A (en) | 1998-07-31 | 2000-02-18 | Fujitsu Ltd | Etching method, thin film transistor matrix substrate and its production |
JP2000089477A (en) | 1998-09-11 | 2000-03-31 | Nec Corp | Resist pattern forming method |
US6051484A (en) | 1996-03-08 | 2000-04-18 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing thereof |
US6156583A (en) | 1998-06-13 | 2000-12-05 | Lg Philips Lcd Co., Ltd. | Method for manufacturing a liquid crystal display device |
US6221787B1 (en) | 1998-04-20 | 2001-04-24 | Tokyo Electron Limited | Apparatus and method of forming resist film |
US6304309B1 (en) * | 1998-03-19 | 2001-10-16 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and method of manufacturing the same |
JP2001339072A (en) | 2000-03-15 | 2001-12-07 | Advanced Display Inc | Liquid crystal display device |
US20020016028A1 (en) * | 2000-06-07 | 2002-02-07 | Tatsuya Arao | Method of manufacturing semiconductor device |
US20020022364A1 (en) * | 2000-08-16 | 2002-02-21 | Yoshihisa Hatta | Method for producing a metal film, a thin film device having such metal film and a liquid crystal display device having such thin film device |
US20020122285A1 (en) * | 2000-12-21 | 2002-09-05 | Alps Electric Co., Ltd. | Temperature-compensating thin-film capacitor and electronic device |
US20020125427A1 (en) * | 2001-03-09 | 2002-09-12 | Veeco Instruments Inc. | Method and apparatus for manipulating a sample |
US20020127887A1 (en) * | 2000-05-13 | 2002-09-12 | Ichiro Uehara | Method of manufacturing a semiconductor device |
US20030160236A1 (en) * | 2000-03-13 | 2003-08-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
US20030186478A1 (en) * | 2002-04-02 | 2003-10-02 | Advanced Display Inc. | Thin film transistor array, fabrication method thereof, and liquid crystal display device employing the same |
US6716681B2 (en) * | 2002-03-27 | 2004-04-06 | Chi Mei Optoelectronics Corp. | Method for manufacturing thin film transistor panel |
US6746965B2 (en) * | 2001-08-01 | 2004-06-08 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
US6838696B2 (en) | 2000-03-15 | 2005-01-04 | Advanced Display Inc. | Liquid crystal display |
US20050011752A1 (en) * | 2003-02-05 | 2005-01-20 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for wiring |
US20050024549A1 (en) * | 2003-07-28 | 2005-02-03 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing thin film transistor array |
US6855957B1 (en) * | 2000-03-13 | 2005-02-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20050112889A1 (en) * | 1999-04-16 | 2005-05-26 | Junichi Inoue | Semiconductor device manufacturing method and manufacturing line thereof |
US6900084B1 (en) * | 2000-05-09 | 2005-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a display device |
US7102718B1 (en) * | 2000-03-16 | 2006-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device with particular TFT structure and method of manufacturing the same |
-
2001
- 2001-05-11 KR KR1020010025719A patent/KR100825907B1/en not_active IP Right Cessation
- 2001-05-11 US US09/852,916 patent/US6461886B1/en not_active Ceased
- 2001-05-11 TW TW090111364A patent/TW497269B/en not_active IP Right Cessation
-
2004
- 2004-10-08 US US10/960,898 patent/USRE43471E1/en not_active Expired - Lifetime
Patent Citations (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5078771A (en) | 1989-02-07 | 1992-01-07 | Canyon Materials, Inc. | Method of making high energy beam sensitive glasses |
US5585290A (en) | 1989-08-14 | 1996-12-17 | Hitachi, Ltd. | Method of manufacturing a thin film transistor substrate |
JPH03232274A (en) | 1989-08-14 | 1991-10-16 | Hitachi Ltd | Thin film transistor, manufacture thereof, liquid crystal display panel, and liquid display device |
US5889573A (en) | 1989-08-14 | 1999-03-30 | Hitachi, Ltd. | Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment |
US5672523A (en) | 1989-08-14 | 1997-09-30 | Hitachi, Ltd. | Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment |
US5719408A (en) | 1989-08-14 | 1998-02-17 | Hitachi, Ltd. | Thin film transistor substrate, manufacturing method thereof, liquid crystal display panel and liquid crystal display equipment |
US5359206A (en) | 1989-08-14 | 1994-10-25 | Hitachi, Ltd. | Thin film transistor substrate, liquid crystal display panel and liquid crystal display equipment |
US5248576A (en) * | 1989-09-18 | 1993-09-28 | Idemitsu Kosan Co., Ltd. | Method of producing color filter using a micellar disruption method |
US5174857A (en) * | 1990-10-29 | 1992-12-29 | Gold Star Co., Ltd. | Slope etching process |
US5242543A (en) * | 1991-02-06 | 1993-09-07 | Mitsubishi Denki Kabushiki Kaisha | Wet etching method for forming metal film pattern having tapered edges |
US5607900A (en) | 1991-03-28 | 1997-03-04 | Sumitomo Electric Industries, Ltd. | Process for cleaning a surface of thin film of oxide superconductor |
EP0530834A1 (en) | 1991-09-05 | 1993-03-10 | Casio Computer Company Limited | Thin-film transistor and method of manufacturing the same |
US5334859A (en) | 1991-09-05 | 1994-08-02 | Casio Computer Co., Ltd. | Thin-film transistor having source and drain electrodes insulated by an anodically oxidized film |
EP0544069A1 (en) | 1991-11-26 | 1993-06-02 | Casio Computer Company Limited | Thin-film transistor panel and method of manufacturing the same |
JPH05152327A (en) | 1991-11-27 | 1993-06-18 | Casio Comput Co Ltd | Manufacturing method of thin film transistor panel |
JPH05206086A (en) | 1992-01-27 | 1993-08-13 | Fujitsu Ltd | Method of etching thin film |
US5589962A (en) | 1992-06-08 | 1996-12-31 | Hitachi, Ltd. | Active matrix display device using aluminum alloy in scanning signal line or video signal line |
US6226059B1 (en) | 1992-06-08 | 2001-05-01 | Hitachi, Ltd. | Active matrix display device using aluminum alloy in scanning signal line or video signal line |
US5781255A (en) | 1992-06-08 | 1998-07-14 | Hitachi, Ltd. | Active matrix display device using aluminum alloy in scanning signal line or video signal line |
JPH06222370A (en) | 1993-01-25 | 1994-08-12 | Sony Corp | Production of liquid crystal panel |
JPH06244155A (en) | 1993-02-19 | 1994-09-02 | Sumitomo Metal Ind Ltd | Formation of metallic wiring pattern of semiconductor device |
JPH07153965A (en) | 1993-11-30 | 1995-06-16 | Sanyo Electric Co Ltd | Manufacture of thin-film transistor |
US5604138A (en) | 1993-12-16 | 1997-02-18 | Goldstar Electron Co., Ltd. | Process for making a semiconductor MOS transistor |
US5518860A (en) | 1994-06-08 | 1996-05-21 | Tokyo Ohka Kogyo Co., Ltd. | Positive-working quinonediazide photoresist composition containing hydroxyalkyl substituted pyridine compound |
JPH0887033A (en) | 1994-09-16 | 1996-04-02 | Toshiba Corp | Production of active matrix display |
JPH0954438A (en) | 1995-08-17 | 1997-02-25 | Mitsubishi Electric Corp | Photoresist pattern and its forming method |
KR970051899A (en) | 1995-12-27 | 1997-07-29 | 김광호 | Pattern formation method of semiconductor device |
JPH09197436A (en) | 1996-01-23 | 1997-07-31 | Toshiba Corp | Active matrix substrate |
JPH09288347A (en) | 1996-02-20 | 1997-11-04 | Ricoh Co Ltd | Reticle with dummy pattern and semiconductor device produced by using the same |
US6051484A (en) | 1996-03-08 | 2000-04-18 | Kabushiki Kaisha Toshiba | Semiconductor device and method of manufacturing thereof |
JPH09274313A (en) | 1996-04-03 | 1997-10-21 | Toshiba Corp | Formation of resist pattern |
JPH09279367A (en) | 1996-04-17 | 1997-10-28 | Mitsubishi Electric Corp | Al taper dry etching method |
JPH1026829A (en) | 1996-07-10 | 1998-01-27 | Japan Synthetic Rubber Co Ltd | Radiation sensitive resin composition |
JPH1056179A (en) | 1996-08-08 | 1998-02-24 | Hoshiden Philips Display Kk | Manufacture of thin film device |
KR19990004786A (en) | 1997-06-30 | 1999-01-25 | 배순훈 | Manufacturing method of thin film type optical path control device |
KR19990070241A (en) | 1998-02-18 | 1999-09-15 | 구본준 | Manufacturing Method of Semiconductor Device |
US20020135720A1 (en) * | 1998-03-19 | 2002-09-26 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and method for fabricating the same |
US6563557B2 (en) * | 1998-03-19 | 2003-05-13 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device including a stack of plurality of resin film and method for fabricating the same |
US6304309B1 (en) * | 1998-03-19 | 2001-10-16 | Matsushita Electric Industrial Co., Ltd. | Liquid crystal display device and method of manufacturing the same |
US6221787B1 (en) | 1998-04-20 | 2001-04-24 | Tokyo Electron Limited | Apparatus and method of forming resist film |
US6156583A (en) | 1998-06-13 | 2000-12-05 | Lg Philips Lcd Co., Ltd. | Method for manufacturing a liquid crystal display device |
US6335290B1 (en) | 1998-07-31 | 2002-01-01 | Fujitsu Limited | Etching method, thin film transistor matrix substrate, and its manufacture |
JP2000047263A (en) | 1998-07-31 | 2000-02-18 | Fujitsu Ltd | Etching method, thin film transistor matrix substrate and its production |
US6534789B2 (en) | 1998-07-31 | 2003-03-18 | Fujitsu Limited | Thin film transistor matrix having TFT with LDD regions |
JP2000089477A (en) | 1998-09-11 | 2000-03-31 | Nec Corp | Resist pattern forming method |
US20050112889A1 (en) * | 1999-04-16 | 2005-05-26 | Junichi Inoue | Semiconductor device manufacturing method and manufacturing line thereof |
US20050221542A1 (en) * | 2000-03-13 | 2005-10-06 | Semiconductor Energy Laboratory Co., Ltd | Semiconductor device and manufacturing method thereof |
US20030160236A1 (en) * | 2000-03-13 | 2003-08-28 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
US6806499B2 (en) * | 2000-03-13 | 2004-10-19 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
US20050041166A1 (en) * | 2000-03-13 | 2005-02-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and a method of manufacturing the same |
US6709901B1 (en) * | 2000-03-13 | 2004-03-23 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having stick drivers and a method of manufacturing the same |
US6855957B1 (en) * | 2000-03-13 | 2005-02-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
JP2001339072A (en) | 2000-03-15 | 2001-12-07 | Advanced Display Inc | Liquid crystal display device |
US7084017B2 (en) | 2000-03-15 | 2006-08-01 | Advanced Display Inc. | Liquid crystal display |
US7755088B2 (en) | 2000-03-15 | 2010-07-13 | Mitsubishi Electric Corporation | Liquid crystal display |
US7645648B2 (en) | 2000-03-15 | 2010-01-12 | Mitsubishi Electric Corporation | Liquid crystal display |
US7394097B2 (en) | 2000-03-15 | 2008-07-01 | Mitsubishi Electric Corporation | Liquid crystal display |
US6838696B2 (en) | 2000-03-15 | 2005-01-04 | Advanced Display Inc. | Liquid crystal display |
US7102718B1 (en) * | 2000-03-16 | 2006-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Liquid crystal display device with particular TFT structure and method of manufacturing the same |
US7102165B2 (en) * | 2000-05-09 | 2006-09-05 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US20050205870A1 (en) * | 2000-05-09 | 2005-09-22 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6900084B1 (en) * | 2000-05-09 | 2005-05-31 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device having a display device |
US20070001171A1 (en) * | 2000-05-09 | 2007-01-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method thereof |
US6461886B1 (en) * | 2000-05-13 | 2002-10-08 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing a semiconductor device |
US20020127887A1 (en) * | 2000-05-13 | 2002-09-12 | Ichiro Uehara | Method of manufacturing a semiconductor device |
US20040018670A1 (en) * | 2000-06-07 | 2004-01-29 | Semiconductor Energy Laboratory Co., Ltd., A Japan Corporation | Method of manufacturing semiconductor device |
US20020016028A1 (en) * | 2000-06-07 | 2002-02-07 | Tatsuya Arao | Method of manufacturing semiconductor device |
US6596571B2 (en) * | 2000-06-07 | 2003-07-22 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US6933184B2 (en) * | 2000-06-07 | 2005-08-23 | Semiconductor Energy Laboratory Co., Ltd. | Method of manufacturing semiconductor device |
US20020022364A1 (en) * | 2000-08-16 | 2002-02-21 | Yoshihisa Hatta | Method for producing a metal film, a thin film device having such metal film and a liquid crystal display device having such thin film device |
US6556421B2 (en) * | 2000-12-21 | 2003-04-29 | Alps Electric Co., Ltd. | Temperature-compensating thin-film capacitor and electronic device |
US20020122285A1 (en) * | 2000-12-21 | 2002-09-05 | Alps Electric Co., Ltd. | Temperature-compensating thin-film capacitor and electronic device |
US20020125427A1 (en) * | 2001-03-09 | 2002-09-12 | Veeco Instruments Inc. | Method and apparatus for manipulating a sample |
US6746965B2 (en) * | 2001-08-01 | 2004-06-08 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method of semiconductor device |
US6716681B2 (en) * | 2002-03-27 | 2004-04-06 | Chi Mei Optoelectronics Corp. | Method for manufacturing thin film transistor panel |
US20030186478A1 (en) * | 2002-04-02 | 2003-10-02 | Advanced Display Inc. | Thin film transistor array, fabrication method thereof, and liquid crystal display device employing the same |
US6750087B2 (en) * | 2002-04-02 | 2004-06-15 | Advanced Display Inc. | Thin film transistor array, fabrication method thereof, and liquid crystal display device employing the same |
US20050011752A1 (en) * | 2003-02-05 | 2005-01-20 | Semiconductor Energy Laboratory Co., Ltd. | Manufacturing method for wiring |
US20050024549A1 (en) * | 2003-07-28 | 2005-02-03 | Mitsubishi Denki Kabushiki Kaisha | Method for manufacturing thin film transistor array |
Non-Patent Citations (2)
Title |
---|
Office Action (Korean Application No. 2001-0025719) mailed Jul. 25, 2007 with English language translation. |
Office Action, Japanese Application No. 2001-144035, dated Aug. 2, 2011, 14 pages with English translation. |
Also Published As
Publication number | Publication date |
---|---|
US20020127887A1 (en) | 2002-09-12 |
KR100825907B1 (en) | 2008-04-28 |
US6461886B1 (en) | 2002-10-08 |
KR20010104263A (en) | 2001-11-24 |
TW497269B (en) | 2002-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE41632E1 (en) | Liquid crystal display device and method of manufacturing the same | |
US8563980B2 (en) | Array substrate and manufacturing method | |
USRE43471E1 (en) | Method of manufacturing a semiconductor device | |
US6927105B2 (en) | Thin film transistor array substrate and manufacturing method thereof | |
US7553711B2 (en) | Method for fabricating a thin film transistor for use with a flat panel display device | |
US8896794B2 (en) | Liquid crystal display device and method for fabricating the same | |
US7649581B2 (en) | Array substrate of an LCD comprising first and second gate insulating layers and method of fabricating the same | |
US7718994B2 (en) | Array substrates for use in liquid crystal displays and fabrication methods thereof | |
US20070102770A1 (en) | Thin film transistor array panel and manufacturing method thereof | |
US7422916B2 (en) | Method of manufacturing thin film transistor panel | |
US7381597B2 (en) | Method for fabricating a thin-film transistor | |
US8093110B2 (en) | Method for manufacturing thin film transistor | |
KR100881819B1 (en) | Method for manufacturing a bottom substrate of a liquid crystal display | |
JP2002098995A (en) | Method of manufacturing matrix substrate for liquid crystal | |
JP3706043B2 (en) | Manufacturing method of matrix substrate for liquid crystal | |
TW201322340A (en) | Pixel structure and method of fabricating the same | |
KR20070045751A (en) | Mask for photo lithography | |
JP2002098994A (en) | Matrix substrate for liquid crystal, and method for manufacturing the same and method of forming the contact hole | |
JP3706033B2 (en) | Manufacturing method of matrix substrate for liquid crystal | |
JP5276758B2 (en) | Method for manufacturing liquid crystal display device | |
KR0183757B1 (en) | Method of manufacturing thin-film transistor liquid crystal display device | |
KR101586860B1 (en) | Array Substrate for Liquid Crystal Display Device and Manufacturing Method of the same | |
KR20020056705A (en) | Method for manufacturing the thin film transistor liquid crystal display device | |
US20050101071A1 (en) | Thin film transistor structure and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 12 |