US9550762B2 - Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use - Google Patents

Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use Download PDF

Info

Publication number
US9550762B2
US9550762B2 US14/819,256 US201514819256A US9550762B2 US 9550762 B2 US9550762 B2 US 9550762B2 US 201514819256 A US201514819256 A US 201514819256A US 9550762 B2 US9550762 B2 US 9550762B2
Authority
US
United States
Prior art keywords
amino
methyl
hept
azabicyclo
thia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/819,256
Other languages
English (en)
Other versions
US20160046618A1 (en
Inventor
Jennifer R. Allen
Albert Amegadzie
Matthew P. Bourbeau
James A. Brown
Jian J. Chen
Yuan Cheng
Michael J. Frohn
Angel Guzman-Perez
Paul E. Harrington
Longbin Liu
Qingyian Liu
Jonathan D. Low
Vu Van Ma
James Manning
Ana Elena Minatti
Thomas T. Nguyen
Nobuko Nishimura
Mark H. Norman
Liping H. Pettus
Alexander J. Pickrell
Wenyuan Qian
Shannon Rumfelt
Robert M. Rzasa
Aaron C. Siegmund
Markian M. Stec
Ryan D. White
Qiufen Xue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc filed Critical Amgen Inc
Priority to US14/819,256 priority Critical patent/US9550762B2/en
Assigned to AMGEN INC. reassignment AMGEN INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: QIAN, WENYUAN, MANNING, JAMES R, AMEGADZIE, ALBERT, PICKRELL, ALEXANDER J, GUZMAN-PEREZ, ANGEL, WHITE, RYAN D, BOURBEAU, MATTHEW P, CHEN, JIAN J, FROHN, MICHAEL J, MINATTI, ANA ELENA, NGUYEN, THOMAS T, NISHIMURA, NOBUKO, PETTUS, LIPING H, RUMFELT, SHANNON, RZASA, ROBERT M, SIEGMUND, AARON C, STEC, MARKIAN M, XUE, QIUFEN, ALLEN, JENNIFER R, BROWN, JAMES A, CHENG, YUAN, HARRINGTON, PAUL E, LIU, LONGBIN, LIU, QINGYIAN, LOW, JONATHAN D, MA, VU VAN, NORMAN, MARK H
Publication of US20160046618A1 publication Critical patent/US20160046618A1/en
Priority to US15/354,877 priority patent/US20170267673A1/en
Application granted granted Critical
Publication of US9550762B2 publication Critical patent/US9550762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/04Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D279/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D279/041,3-Thiazines; Hydrogenated 1,3-thiazines
    • C07D279/081,3-Thiazines; Hydrogenated 1,3-thiazines condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/10Spiro-condensed systems

Definitions

  • the invention relates generally to pharmaceutically active compounds, pharmaceutical compositions and methods of use thereof, to treat beta-secretase mediated diseases and conditions, including, without limitation, Alzheimer's disease, plaque formation and associated central nervous system (CNS) disorders.
  • beta-secretase mediated diseases and conditions including, without limitation, Alzheimer's disease, plaque formation and associated central nervous system (CNS) disorders.
  • CNS central nervous system
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • AD Alzheimer's disease
  • AD is generally characterized by the progressive decline of memory, reasoning, judgement and orientation.
  • motor, sensory, and vocal abilities are affected until there is global impairment of multiple cognitive functions.
  • the loss of cognitive function occurs gradually, typically leading to a diminished cognition of self, family and friends.
  • Patients with severe cognitive impairment and/or diagnosed as end-stage AD are generally bedridden, incontinent, and dependent on custodial care.
  • the AD patient eventually dies in about nine to ten years, on average, after initial diagnosis. Due to the incapacitating, generally humiliating and ultimately fatal effects of AD, there is a need to treat AD effectively upon diagnosis.
  • AD is characterized by two major physiological changes in the brain.
  • the first change, beta amyloid plaque formation supports the “amyloid cascade hypothesis” which conveys the thought that AD is caused by the formation of characteristic beta amyloid peptide (A-beta), or A-beta fragments thereof, deposits in the brain (commonly referred to as beta amyloid “plaques” or “plaque deposits”) and in cerebral blood vessels (beta amyloid angiopathy).
  • a wealth of evidence suggests that beta-amyloid and accompanying amyloid plaque formation is central to the pathophysiology of AD and is likely to play an early role in this intractable neurodegenerative disorder. Vassar & Yan, Lancet Neurology, 13:319-329 (2014).
  • the second change in AD is the formation of intraneuronal tangles, consisting of an aggregate form of the protein tau. Besides being found in patients with AD, intraneuronal tangles are also found in other dementia-inducing disorders. Joachim et al., Alz. Dis. Assoc. Dis., 6:7-34 (1992).
  • Amyloid containing plaques and vascular amyloid angiopathy were also found in the brains of individuals with Down's Syndrome, Hereditary Cerebral Hemorrhage with Amyloidosis of the Dutch-type (HCHWA-D), and other neurodegenerative disorders.
  • A-beta formation is a causative precursor or factor in the development of AD. More specifically, deposition of A-beta in areas of the brain responsible for cognitive factors is believed to be a major factor in the development of AD.
  • Beta amyloid plaques are primarily composed of amyloid beta peptide (A-beta peptide).
  • A-beta peptide is derived from the proteolytic cleavage of a large transmembrane amyloid precursor protein (APP), and is a peptide comprised of about 39-42 amino acid residues.
  • A-beta 42 (42 amino acids long) is thought to be the major component of these plaque deposits in the brains of Alzheimer's Disease patients. Citron, Trends in Pharmacological Sciences, 25(2):92-97 (2004).
  • plaques appear in some variants of Lewy body dementia and in inclusion body myositis, a muscle disease.
  • a ⁇ also forms aggregates coating cerebral blood vessels in cerebral amyloid angiopathy.
  • These plaques are composed of a tangle of regularly ordered fibrillar aggregates called amyloid fibers, a protein fold shared by other peptides such as prions associated with protein misfolding diseases.
  • Research on laboratory rats suggest that the dimeric, soluble form of the peptide is a causative agent in the development of Alzheimer's and is the smallest synaptotoxic species of soluble amyloid beta oligomer. Shankar, G. M., Nature Medicine (Jun. 22, 2008) online doi 10:1038 nm 1782.
  • Beta secretase (BACE, also commonly referred to as memapsin) is thought to first cleave APP to generate two fragments: (1) a first N-terminus fragment (beta APP) and (2) a second C-99 fragment, which is subsequently cleaved by gamma secretase to generate the A-beta peptide.
  • APP has also found to be cleaved by alpha-secretase to produce alpha-sAPP, a secreted form of APP that does not result in beta-amyloid plaque formation. This alternate pathway precludes the formation of A-beta peptide.
  • a description of the proteolytic processing fragments of APP is found, for example, in U.S. Pat. Nos. 5,441,870, 5,712,130 and 5,942,400.
  • BACE is an aspartyl protease enzyme comprising 501 amino acids and responsible for processing APP at the beta-secretase specific cleavage site.
  • BACE is present in two forms, BACE 1 and BACE 2, designated as such depending upon the specific cleavage site of APP.
  • Beta secretase is described in Sinha et al., Nature, 402:537-554 (1999) (p 510) and PCT application WO 2000/17369. It has been proposed that A-beta peptide accumulates as a result of APP processing by BACE.
  • in vivo processing of APP at the beta secretase cleavage site is thought to be a rate-limiting step in A-beta production.
  • inhibition of the BACE enzyme activity is desirable for the treatment of AD.
  • BACE inhibition may be linked to the treatment of AD.
  • the BACE enzyme is essential for the generation of beta-amyloid or A-beta.
  • BACE knockout mice do not produce beta-amyloid and are free from Alzheimer's associated pathologies including neuronal loss and certain memory deficits. Cole, S. L., Vasser, R., Molecular Degeneration 2:22, 2007.
  • the progeny of BACE deficient mice show reduced amounts of A-beta in brain extracts as compares with control animals (Luo et al., Nature Neuroscience, 4:231-232 (2001)).
  • a small molecule gamma-secretase inhibitor, LY450139 (“Semagacestat”) an A-beta lowering agent, advanced to phase III clinical trials for the treatment of Alzheimer's Disease.
  • the pharmacokinetics of semagacestat in plasma, as well as the plasma and cerebral spinal fluid (CSF) A-Beta peptide levels as pharmacodynamic responses to semagacestat administration were evaluated in healthy human subjects in single and multiple doses, and pharmacokinetic and pharmacodynamic changes were also assessed in mild to moderate AD patients in two (2) clinical trials ( Expert Opin. Pharmacother . (2009), 10 (10); Clin. Neuropharmacol. 2007; 30 (pgs 317-325); and Neurology, 2006, 66 (pgs 602-624)).
  • EP2703401 describes “Pyridine Derivative and BACE1 Inhibitor Containing Same” and discloses compounds of the general formula:
  • CatD The lysosomal aspartic protease Cathepsin D (CatD) is ubiquitously expressed in eukaryotic organisms. CatD activity is essential to accomplish the acid-dependent extensive or partial proteolysis of protein substrates within endosomal and lysosomal compartments therein delivered via endocytosis, phagocytosis or autophagocytosis. CatD may also act at physiological pH on small-size substrates in the cytosol and in the extracellular milieu. Mouse and fruit fly CatD knock-out models have highlighted the multi-pathophysiological roles of CatD in tissue homeostasis and organ development.
  • Cathepsin D has been implicated in undesirable side effects.
  • the inhibition of Cathepsin D is believed to be linked to adverse retinal development and retinal atrophy.
  • cathepsin D is essential for the metabolic maintenance of retinal photoreceptor cells and that its deficiency induces apoptosis of the cells, while the loss of INL neurons is mediated by nitric oxide release from microglial cells.
  • no atrophic change was detected in the retina of mice deficient in cathepsin B or L. Mol. Cell. Neurosci, 2003, Feb. 22 (2):146-161.
  • the present invention provides a new class of compounds useful for the modulation of beta secretase activity, and as treatment of AD.
  • the compounds of the invention are useful for the regulation or reduction of the formation of A-beta peptide and, consequently, the regulation and/or reduction of formation of beta amyloid plaque both on the brain, as well as in the CNS.
  • the compounds are useful for the treatment of AD and other beta secretase and/or plaque-related and/or mediated disorders.
  • the compounds are useful for the prophylaxis and/or treatment, acute and/or chronic, of AD and other diseases or conditions involving the deposition or accumulation of beta amyloid peptide, and formation of plaque, on the brain.
  • the invention further provides pharmaceutical compositions comprising compounds of the invention, and uses of these compositions in the treatment of beta secretase mediated diseases.
  • the invention provides a pharmaceutical composition comprising an effective dosage amount of a compound of Formula I in association with at least one pharmaceutically acceptable excipient.
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than two of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH;
  • each of R 1 and R 2 is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 -alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH, C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, C(O)C 1-6 -alkyl or —C(O)C 1-6 -alkenyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 1-6 —
  • R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms;
  • each of R 4 , R 5 , R 6 and R 8 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl;
  • R 7 is —NH—R 9 or —NH—C( ⁇ O)—R 9 ;
  • R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ;
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the subscript o is selected from 0, 1, or 2.
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than two of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH;
  • R 1 and either R a or R b may optionally join to form a 5-membered saturated ring that includes one S heteroatom;
  • R 1 is H, F, Cl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —C 1-6 -alkylNH 2 , —C 1-6 -alkylNHC 1-6 -alkyl, —C 1-6 -alkylNHC(O)OC 1-6 -alkyl, —C 1-6 -alkylNHC(O)NHC 1-6 -alkyl, —C 1-6 -alkylNHC(O)C 1-6 -alkyl, —C 1-6 -alkylNHC(O)C 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 -alkyl, —CH ⁇ CHC(O)N
  • R 2 is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 -alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH, C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, —C(O)C 1-6 -alkyl or —C(O)C 1-6 -alkenyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl,
  • R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms;
  • each of R 4 , R 5 , R 6 and R 8 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl, C(O)C 1-4 -alkyl, C(O)OC 1-4 -alkyl, or CH 2 OH;
  • R 7 is —NH—R 9 or —NH—C( ⁇ O)—R 9 ;
  • R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ;
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHC 1-6 -alkyl, —OCH 2 C(O)NHC 1-6 -alkyl, —OCH 2 C(O)N(C 1-6 -alkyl) 2 , —OCH 2 CH 2 -pyrollidinonyl, oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, 3-butynyloxy, 3-pentynyloxy, 2-pentyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, —OC 2 -C 6 alkenyl, C 1-6 1-6 -
  • the subscript o is selected from 0, 1, or 2.
  • the invention provides compounds according to alternative embodiment 1, or a stereoisomer or pharmaceutically acceptable salt thereof wherein R 1 is a —CH 2 -heteroaryl or a heteroaryl and the heteroaryl groups of the —CH 2 -heteroaryl and heteroaryl is selected from triazolyl, oxazolyl, or isoxazolyl optionally substituted with 1 or 2 methyl groups.
  • R 10 is a —OCH 2 -heteroaryl and the heteroaryl group of the —OCH 2 -heteroaryl is selected from an oxadiazolyl, thiadiazolyl, oxazolyl, thiazolyl, pyridinyl, or pyrimidinyl optionally substituted independently with 1 or 2 F, Cl, Br, or methyl groups.
  • the invention provides compounds according to alternative embodiment 1, or a stereoisomer or pharmaceutically acceptable salt thereof wherein, R 10 is a —OCH 2 -heteroaryl and the heteroaryl group of the —OCH 2 -heteroaryl is selected from an oxadiazolyl, thiadiazolyl, oxazolyl, isoxazolyl, thiazolyl, pyridinyl, or pyrimidinyl optionally substituted independently with 1 or 2 F, Cl, Br, or methyl groups.
  • the invention provides compounds according to embodiment 1, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R 1 and R 2 , independently, is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 , CF 3 , —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH or C 1-6 -alkyl-C(O)NHC 1-6 -alkyl.
  • the invention provides compounds according to any one of embodiments 1 and 2, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R a and R b , independently, is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 .
  • the invention provides compounds according to any one of embodiments 1, 2 and 3, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R 1 and R 2 , independently, is H, F, CH 2 OCH 3 , or CF 3 .
  • the invention provides compounds according to any one of embodiments 1-4, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R a and R b , independently, is H or F.
  • the invention provides compounds according to any one of embodiments 1-5, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of H, F, CH 2 OCH 3 , or CF 3 ; and each of R a and R b , independently, is H or F.
  • the invention provides compounds according to any one of embodiments 1-5, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of H or CH 2 OCH 3 ; and each of R a and R b , independently, is H.
  • the invention provides compounds according to any one of embodiments 1-6, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R 1 , R 2 , R a and R b , independently, is H.
  • the invention provides compounds according to any one of embodiments 1-7, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 .
  • the invention provides compounds according to any one of embodiments 1-8, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 7 is —NH—C( ⁇ O)—R 9 ;
  • the invention provides compounds according to any one of embodiments 1 and 9, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 or CH 2 OCHF 2 ;
  • each of R 1 and R 2 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 , CH 2 OCH 3 or CH 2 OCHF 2 ;
  • R 3 is C 1-4 alkyl, C 1-4 haloalkyl, CH 2 OH, CH 2 OCHF 2 or cyclopropyl;
  • each of R 4 , R 5 , R 6 and R 8 is H, F, Cl, CF 2 H, CH 2 F, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 .
  • the invention provides compounds according to any one of embodiments 1-9, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • each of R 1 and R 2 is H, F, CH 2 OCH 3 or CF 3 ;
  • each of R a and R b is H or F;
  • R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 ;
  • R 7 is —NH—C( ⁇ O)—R 9 or
  • the invention provides compounds according to any one of embodiments 1-11, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 7 is —NH—C( ⁇ O)—R 9 .
  • the invention provides compounds according to any one of embodiments 1-11, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 7 is
  • the invention provides compounds according to any one of embodiments 1-13, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 ;
  • a 5 is CR 5 or N
  • a 6 is CR 6 ;
  • a 8 is CR 8 or N, provided only one of A 5 and A 8 is N, and wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 3 , CF 2 H, CH 2 F or CH 3 .
  • the invention provides compounds, including stereoisomers, tautomers, hydrates, solvates and pharmaceutically acceptable salts thereof, which are generally defined by Formula I:
  • a 4 is CH, CF or CCl
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • a 6 is CH or CF
  • a 8 is CH, CF or N, provided that no more than one of A 5 and A 8 is N;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms;
  • R 7 is —NH—R 9 or —NH—C( ⁇ O)—R 9 ;
  • R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds, including stereoisomers, tautomers, hydrates, solvates and pharmaceutically acceptable salts thereof, which are generally defined by Formula II:
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than two of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH;
  • each of R 1 and R 2 is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 -alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH, C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, —C(O)C 1-6 -alkyl or —C(O)C 1-6 -alkenyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC
  • R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms;
  • each of R 4 , R 5 , R 6 and R 8 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl;
  • R 7 is —NH—C( ⁇ O)—R 9 ;
  • R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein ring is optionally substituted, independently, with 1-5 substituents of R 10 ;
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the subscript o is selected from 0, 1, or 2.
  • the invention provides compounds according any one of embodiments 1 and 16, or a stereoisomer, tautomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is C 1-4 alkyl, C 1-4 haloalkyl, CH 2 OH, CH 2 OCHF 2 or cyclopropyl;
  • each of R 4 , R 5 , R 6 and R 8 is H, F, Cl, CF 2 H, CH 2 F, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 .
  • the invention provides compounds according to any one of embodiments 1-6, 7 and 16-17, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 3 , CF 2 H, CH 2 F or CH 3 ;
  • R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 ;
  • R 7 is —NH—C( ⁇ O)—R 9 or
  • the invention provides compounds according to any one of embodiments 16-17, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 7 is —NH—C( ⁇ O)—R 9 .
  • the invention provides compounds according to any one of embodiments 16-18, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 7 is
  • the invention provides compounds according to any one of embodiments 16-20, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of H, F, CH 2 OCH 3 or CF 3 ; and each of R a and R b , independently, is H or F.
  • the invention provides compounds according to any one of embodiments 1-12, or a stereoisomer or pharmaceutically acceptable salt thereof, having a Formula I-A
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH;
  • each of R 1 and R 2 is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 -alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH, C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, —C(O)C 1-6 -alkyl or —C(O)C 1-6 -alkenyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC
  • R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms;
  • each of R 4 , R 5 , R 6 and R 8 independently, is H, F, Cl or CH 3 ;
  • R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ;
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the subscript o is selected from 0, 1, or 2.
  • the invention provides compounds according to any one of embodiments 1-3, 8-20 and 22, or a stereoisomer, tautomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 2 H, CH 2 F, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 ;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is CH 3 , C 2 H 5 , CF 2 H or CH 2 F;
  • R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds according to any one of embodiments 1-19 and 22-23, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl or CH 3 , provided no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R 1 , R 2 , R a and R b is H;
  • R 3 is CF 3 , CH 3 , CF 2 H or CH 2 F.
  • the invention provides compounds according to any one of embodiments 1-12, 16-19 and 22-24, or a stereoisomer or pharmaceutically acceptable salt thereof, having a Formula II-A
  • a 4 is CR 4 , wherein R 4 is H, F or Cl;
  • a 5 is CR 5 or N, wherein R 5 is H, F, Cl or CH 3 ;
  • a 6 is CH
  • a 8 is CR 8 or N, wherein R 8 is H or F,
  • each of R 1 and R 2 is H, F, CH 2 OCH 3 or CF 3 ;
  • each of R a and R b is H or F;
  • R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 ;
  • R 9 is a fully unsaturated 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds according to embodiment 25, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R a , R b , R 1 and R 2 , independently, is H.
  • the invention provides compounds according ng any one of embodiments 25 and 26, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 3 , CH 2 F or CHF 2 .
  • the invention provides compounds according to any one of embodiments 25-27, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F or CHF 2 .
  • the invention provides compounds according to any one of embodiments 25-28, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F.
  • the invention provides compounds according to any one of embodiments 25-28, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 .
  • the invention provides compounds according to any one of embodiments 25-30, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CF or CCl;
  • a 5 is CH, CF, CH 3 or N;
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 25-31, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CF; A 5 is CH, CF or N;
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 25-31, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CCl;
  • a 5 is CH or CF
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 25-33, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 ; and each R 10 , independently, is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-
  • the invention provides compounds according to any one of embodiments 25-33, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 9 is a ring selected from pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 .
  • the invention provides compounds according to any one of embodiments 25-35 or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 9 is
  • each R 10 is H, F, Cl, Br, CF 3 , CHF 2 , CH 2 F, CN, OH, —C(O)NHCH 3 , cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkoxyl or C 1-6 thioalkoxyl, wherein each of the cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkoxyl and C 1-6 thioalkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, CN, NO 2 , NH 2 , OH, oxo, CF 3 , CHF 2
  • the invention provides compounds according to any one of embodiments 25-36, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 ; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 25-36, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 25-36, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 ; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 25-36, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 1-11, 13-18 and 20-21, or a stereoisomer, tautomer, hydrate, solvate or pharmaceutically acceptable salt thereof, having a Formula II-B:
  • a 4 is CR 4 , wherein R 4 is H, F or Cl;
  • a 5 is CR 5 or N, wherein R 5 is H, F, Cl or CH 3 ;
  • a 6 is CH
  • a 8 is CR 8 or N, wherein R 8 is H or F,
  • each of R 1 and R 2 is H, F, CH 2 OCH 3 or CF 3 ;
  • each of R a and R b is H or F;
  • R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 ;
  • R 9 is a fully unsaturated 5- or 6-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • each W independently, is CH, CF, CCl, CCH 3 or N.
  • the invention provides compounds according to embodiment 40, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each of R a , R b , R 1 and R 2 , independently, is H.
  • the invention provides compounds according to any one of embodiments 41 and 42, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 3 , CH 2 F or CHF 2 .
  • the invention provides compounds according to any one of embodiments 41-43, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F or CHF 2 .
  • the invention provides compounds according to any one of embodiments 41-44, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F.
  • the invention provides compounds according to any one of embodiments 41-44, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 .
  • the invention provides compounds according to any one of embodiments 41-46, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CF or CCl;
  • a 5 is CH, CF, CH 3 or N;
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 41-47, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CF;
  • a 5 is CH, CF or N
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 41-47, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 4 is CCl;
  • a 5 is CH or CF
  • a 6 is CH
  • a 8 is CH.
  • the invention provides compounds according to any one of embodiments 41-49 or a stereoisomer or pharmaceutically acceptable salt thereof, wherein
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy; 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds, including stereoisomers, tautomers, hydrates, solvates and pharmaceutically acceptable salts thereof, which are generally defined by Formula III:
  • a 4 is CR 4 ;
  • a 5 is CR 5 or N
  • a 6 is CR 6 ;
  • a 8 is CR 8 or N, provided that no more than two of A 5 and A 8 is N;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is CH 3 , CF 3 , CH 2 F or CHF 2 ;
  • R 4 is F or Cl
  • R 5 is H, F, Cl or CH 3 ;
  • each of R 6 and R 8 is H or F;
  • R 7 is —NH—C( ⁇ O)—R 9 , or
  • R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 ; and each R 10 , independently, is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-
  • the invention provides compounds including stereoisomers, tautomers, hydrates, solvates and pharmaceutically acceptable salts thereof, according to embodiment 51, which are generally defined by Formula III-A:
  • a 4 is CR 4 , wherein R 4 is H, F or Cl;
  • a 5 is CR 5 or N, wherein R 5 is H, F, Cl or CH 3 ;
  • a 6 is CH
  • a 8 is CR 8 or N, wherein R 8 is H or F, provided that no more than one of A 5 and A 8 is N;
  • each of R a and R b is H or F;
  • each of R 1 and R 2 is H, CH 2 OCH 3 or F;
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds according to any one of embodiments 51-52 or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 9 is
  • each R 10 is H, F, Cl, Br, CF 3 , CHF 2 , CH 2 F, CN, OH, —C(O)NHCH 3 , cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkoxyl or C 1-6 thioalkoxyl, wherein each of the cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkoxyl and C 1-6 thioalkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, CN, NO 2 , NH 2 , OH, oxo, CF 3 , CHF 2
  • the invention provides compounds according to any one of embodiments 51-53, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 ; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 51-53, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 51-53 or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 ; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 51-53, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F; and R 9 is
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds, including stereoisomers, tautomers, hydrates, solvates and pharmaceutically acceptable salts thereof, which are generally defined by Formula III-B:
  • a 4 is CR 4 , wherein R 4 is H, F or Cl;
  • a 5 is CR 5 or N, wherein R 5 is H, F, Cl or CH 3 ;
  • a 6 is CH
  • a 8 is CR 8 or N, wherein R 8 is H or F, provided that no more than one of A 5 and A 8 is N;
  • each of R a and R b is H or F;
  • each of R 1 and R 2 is H, CH 2 OCH 3 or F;
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy; 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds of formula III-A-1, or a pharmaceutically acceptable salt or tautomer thereof,
  • a 4 is CF
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • a 6 is CH
  • a 8 is CH or N, provided that no more than one of A 5 and A 8 is N;
  • each of R a and R b is H;
  • each of R 1 and R 2 is H, CH 2 OCH 3 or F;
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • W is CR 10 or N
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds of formula III-A-2, or a pharmaceutically acceptable salt or tautomer thereof,
  • a 4 is CF or CCl
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • a 8 is CH or N, provided no more than one of A 5 and A 8 is N;
  • R 1 is H, CH 2 OCH 3 or F
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • W is CH or N
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 59-60, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 .
  • the invention provides compounds according to any one of embodiments 59-60, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F.
  • the invention provides compounds according to any one of embodiments 59-62, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein W is CH.
  • the invention provides compounds according to any one of embodiments 59-62, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein W is N.
  • the invention provides compounds according to any one of embodiments 59-64, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each R 10 , independently, is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 59-65, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each R 10 , independently, is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy, —OCHF 2 or —OCH 3 .
  • the invention provides compounds according to any one of embodiments 59-66, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 8 is CH.
  • the invention provides compounds according to any one of embodiments 59-67, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH, CF, CCl or CCH 3 .
  • the invention provides compounds according to any one of embodiments 59-67, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH, CF or CCH 3 .
  • the invention provides compounds according to any one of embodiments 59-67, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH or N.
  • the invention provides compounds of formula III-A-3, or a pharmaceutically acceptable salt or tautomer thereof,
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • W is CH or N
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy; 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiment 69, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CHF 2 .
  • the invention provides compounds according to any one of embodiment 69, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein R 3 is CH 2 F.
  • the invention provides compounds according to any one of embodiments 69-71, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein W is CH.
  • the invention provides compounds according to any one of embodiments 69-71, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein W is N.
  • the invention provides compounds according to any one of embodiments 69-74, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each R 10 , independently, is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, oxazolyl or thiazolyl.
  • the invention provides compounds according to any one of embodiments 69-75, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein each R 10 , independently, is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy, —OCHF 2 or —OCH 3 .
  • the invention provides compounds according to any one of embodiments 69-76, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH, CF, CCH 3 or N.
  • the invention provides compounds according to any one of embodiments 69-77, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH, CF or N.
  • the invention provides compounds according to any one of embodiments 69-78, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH or N.
  • the invention provides compounds according to any one of embodiments 69-79, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is CH.
  • the invention provides compounds according to any one of embodiments 69-79, or a stereoisomer or pharmaceutically acceptable salt thereof, wherein A 5 is N.
  • the invention provides compounds of formula III-B-1, or a pharmaceutically acceptable salt or tautomer thereof,
  • a 4 is CF
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • a 6 is CH
  • a 8 is CH or N, provided that no more than one of A 5 and A 8 is N;
  • R 1 is H, CH 2 OCH 3 or F
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • each W independently, is CR 10 or N, provided no more than 2 W's are N;
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention provides compounds of formula III-B-2, or a pharmaceutically acceptable salt or tautomer thereof,
  • a 5 is CH, CF, CCl, CCH 3 or N;
  • a 8 is CH or N, provided no more than one of A 5 and A 8 is N;
  • R 3 is CH 3 , CH 2 F or CHF 2 ;
  • each W independently, is CR 10 or N, provided no more than 1 W is N;
  • each R 10 is H, F, Cl, Br, CH 3 , CHF 2 , CH 2 F, CN, 2-propynyloxy, 2-butynyloxy or C 1-2 alkoxyl, wherein the C 1-2 alkoxyl is optionally substituted independently with 1-5 substituents of F, Cl, methyl, methoxy, ethyl, ethoxy, oxazolyl or thiazolyl.
  • the invention provides compounds of sub-formulas III-C, III-D, III-E and III-F, respectively, as described below,
  • the present invention contemplates that the various different embodiments of Formulas I, II and III, and sub-Formulas I-A, I-B, I-C and III-A through III-F thereof, described herein, may comprise the following embodiments with respect to individual variables of A 4 , A 5 , A 6 , A 8 , R 1 , R 2 , R 3 , R 7 , V and W, where applicable, as described below.
  • the term “in conjunction with any of the above or below embodiments” includes embodiments A, A-1 to A-4, B, B-1 to B10, C, C-1 to C-10, D, D-1 to D-6, E, E-1 to E-5, F, F-1 to F-4, G, G-1 to G-4, H, H-1 to H-4, I, I-1 to I-9, J, J-1 to J-8, K, K-1 to K-2, L, M, N-1 to N-2, O-1 to O-2, P-1 to P-2, Q and Q-1 to Q-2 described herein, as it applies to general Formulas I, II and III, and sub-formulas I-A, I-B and I-C and III-A through III-F, also described herein.
  • the invention includes compounds wherein each of R a and R b , independently, is H, F, Cl, C 1-6 alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein each of R a and R b , independently, is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 or CH 2 OCHF 2 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein each of R a and R b , independently, is H, F, CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is each
  • R 1 and R 2 independently, is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —C(O)NH 2 , —CH ⁇ CHC(O) NHC 1-6 -alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH, C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, —C(O)C 1-6 -alkyl or —C(O)C 1-6 -alkenyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 alkyl, NHC 1-6 -alkyl,
  • the invention includes compounds wherein R 1 is H, F, C 2-4 alkenyl, C 2-4 alkynyl, CN, —OC 1-3 -alkyl and —C(O)OC 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl and C 1-3 -alkyl portion of —CH 2 OC 1-3 -alkyl, —C(O)OC 1-6 -alkyl and —OC 1-3 -alkyl are optionally substituted with 1-4 substituents of F and OH, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 , CF 3 , —C(O)NH 2 , —CH ⁇ CHC(O)NHC 1-6 alkyl, —CH ⁇ CHC(O) 2 H, —CH ⁇ CHCH 2 OH or C 1-6 -alkyl-C(O)NHC 1-6 -alkyl, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, F, CH 3 , C 2 H 5 , CF 2 H, CH 2 F, or CH 2 OCH 3 , CH 2 OCH 2 F, CH 2 OCF 2 H or CH 2 OCF 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, F, Cl, CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, F, CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, F, CH 2 OCH 3 or CH 2 OH, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 1 is H, CH 2 OCH 3 or CH 2 OH, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F, Cl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl or —C(O)C 1-6 -alkyl, wherein each of the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl, and C 1-6 -alkyl portion of —CH 2 OC 1-6 -alkyl, —OC 1-6 -alkyl, —S(O) o C 1-6 -alkyl, —NHC 1-6 -alkyl and —C(O)C 1-6 -alkyl are optionally substituted with 1-4 substituents of F, oxo or OH, in conjunction with any of
  • the invention includes compounds wherein R 2 is H, F, Cl, C 2-4 alkenyl, C 2-4 alkynyl, CN, —CH 2 OC 1-3 -alkyl, —OC 1-3 -alkyl, wherein each of the C 2-4 alkenyl, C 2-4 alkynyl and C 1-3 -alkyl portion of —CH 2 OC 1-3 -alkyl and —OC 1-3 -alkyl are optionally substituted with 1-4 substituents of F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 or CH 2 OCHF 2 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F, CH 3 , C 2 H 5 , CF 2 H, CH 2 F, CH 2 OCH 2 F, CH 2 OCF 2 H or CH 2 OCF 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F, Cl, CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F, CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, F or CF 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is H, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 2 is CF 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is C 1-4 alkyl, CH 2 OC 1-4 alkyl, CH 2 OH, C 1-4 haloalkyl or cyclopropyl, wherein each of the C 1-4 alkyl, CH 2 OC 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is C 1-4 alkyl, C 1-4 haloalkyl, CH 2 OH, CH 2 OCHF 2 or cyclopropyl, wherein each of the C 1-4 alkyl, C 1-4 haloalkyl and cyclopropyl is optionally substituted with 1-4 F atoms, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is C 1-4 alkyl, CH 2 OH, CH 2 OCH 2 F, CH 2 OCF 2 H, or cyclopropyl, wherein each of the C 1-4 alkyl and cyclopropyl is optionally substituted with 1-2 F atoms, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is CH 3 , CF 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is CH 3 or CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 3 is CH 2 F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 wherein R 4 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 wherein R 4 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 wherein R 4 is H, F, CF 3 , CF 2 H, CH 2 F or CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 wherein R 4 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 wherein R 4 is F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 5 is CR 5 and R 5 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 5 is CR 5 wherein R 5 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 5 is CR 5 and R 5 is H, F, Cl, CF 3 , CF 2 H, CH 2 F, CH 3 or N in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 5 is CR 5 and R 5 is H, F, Cl or CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 5 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 6 is CR 6 wherein R 6 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 6 is CR 6 wherein R 6 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 6 is CR 6 wherein R 6 is H, F, CF 3 , CF 2 H, CH 2 F or CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 6 is CR 6 wherein R 6 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 6 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 8 is CR 8 wherein R 8 is H, halo, haloalkyl, haloalkoxyl, C 1-4 -alkyl, CN, OH, OC 1-4 -alkyl, S(O) o C 1-4 -alkyl, NHC 1-4 -alkyl or C(O)C 1-4 -alkyl, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 8 is CR 8 wherein R 8 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 8 is CR 8 wherein R 8 is H, F, CF 3 , CF 2 H, CH 2 F or CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 8 is CR 8 wherein R 8 is H or F, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 8 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein no more than two of A 4 , A 5 , A 6 and A 8 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein no more than one of A 4 , A 5 , A 6 and A 8 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 , A 5 is CR 5 or N, A 6 is CR 6 and A 8 is CR 8 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 or N, A 5 is CR 5 , A 6 is CR 6 and A 8 is CR 8 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is N, A 5 is CR 5 , A 6 is CR 6 and A 8 is CR 8 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 , A 5 is N, A 6 is CR 6 , and A 8 is CR 8 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 4 , A 5 is CR 5 , A 6 is N, and A 8 is CR 8 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein A 4 is CR 5 , A 5 is CR 5 , A 6 is CR 6 , and A 8 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided that no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 or CH 2 OCHF 2 ;
  • each of R 1 and R 2 is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 , C(O)CH 3 , C(O)OC 1-3 alkyl, CH 2 OCH 3 or CH 2 OCHF 2 ;
  • R 3 is C 1-4 alkyl, C 1-4 haloalkyl, CH 2 OH, CH 2 OCHF 2 or cyclopropyl;
  • each of R 4 , R 5 , R 6 and R 8 is H, F, Cl, CF 2 H, CH 2 F, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein
  • a 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, CF 3 , CF 2 H, CH 2 F or CH 3 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein A 4 is CH, CF or N, A 5 is CH, CF or N, A 6 is CH, CF or N, A 8 is CH, CF or N, one of A 4 , A 5 , A 6 and A 8 is N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein R 7 is —NH—R 9 or —NH—C( ⁇ O)—R 9 ; or R 7 is
  • the invention includes compounds of Formulas I, II or III, wherein R 7 is —NH—R 9 , —NH—C( ⁇ O)—R 9 or
  • V is NR 10 , O or S;
  • each W independently, is CH, CF, CCl, CCH 3 or N;
  • each R 10 is as defined herein, in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein R 7 is —NH—C( ⁇ O)—R 9 or
  • V is NR 10 , O or S;
  • each W independently, is CH, CF, CCl or N;
  • each R 10 is as defined herein, in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein R 7 is —NH—C( ⁇ O)—R 9 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II or III, wherein R 7 is —NH—R 9 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 7 is
  • J-6 the invention includes compounds wherein R 7 is
  • V is NR 10 , O or S;
  • each W independently, is CH, CF, CCl, CCH 3 or N, in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 7 is —NH—R 9 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein R 7 is —NH—R 9 or —NH—C( ⁇ O)—R 9 , wherein R 9 is a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the ring is optionally substituted, independently, with 1-5 substituents of R 10 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds wherein each R 9 , independently, is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, isoxazolyl, thiazolyl, naphthyl, quinolinyl, isoquinolinyl, quinazolinyl, naphthyridinyl, phthalazinyl, pyranyl, dihydropyranyl, tetrahydropyranyl, furanyl, dihydrofuranyl, tetrahydrofuranyl, thienyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperidinyl, piperazinyl, morpholinyl, azetidinyl, 8-oxo-3-aza-bicyclo[3.2.1]oct-3-yl, aza-bicyclo[
  • the invention includes compounds wherein each R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, pyrazolo[3,4-c]pyridinyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl or thienyl, wherein the ring is optionally substituted with 1-5 substituents of R 10 , in conjunction with any of the above or below embodiments.
  • the invention includes compounds of Formulas I, II, and III, and any sub-formula thereof as described herein, wherein R 9 is a ring selected from the group consisting of phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, isoxazolyl, thiazolyl, thienyl, furanyl and pyrrolyl, wherein the ring is optionally substituted, independently, with 1-3 substituents of R 10 , wherein each R 10 , independently, is F, Cl, CN, NO 2 , NH 2 , OH, CF 3 , CHF 2 , CH 2 F, CH 3 , —OCH 3 , C 2 H 5 , —OC 2 H 5 , —CH 2 CF 3 , —CH 2 CHF 2 , propyl, propoxy, isopropyl, isopropoxy, cyclopropyl, but
  • the present invention provides compounds, and solvates, tautomers, hydrates, stereoisomers and pharmaceutically acceptable salts thereof, as defined by Formulas I, I-A, I-B, I-C or II, wherein
  • a 4 is CR 4 or N
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, provided no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is C 1-4 alkyl, C 1-4 haloalkyl, CH 2 OH, CH 2 OCHF 2 or cyclopropyl;
  • each of R 4 , R 5 , R 6 and R 8 is H, F, Cl, CF 2 H, CH 2 F, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 , in conjunction with any of the above or below embodiments.
  • the present invention provides compounds, and solvates, tautomers, hydrates, stereoisomers and pharmaceutically acceptable salts thereof, as defined by Formulas I and II, wherein
  • R 7 is —NH—R 9 , —NH—C( ⁇ O)—R 9 or
  • each W independently, is CH, CF, CCl, CCH 3 or N, in conjunction with any of the above or below embodiments.
  • N-1 the invention includes compounds of Formula I-A wherein A 4 is CR 4 ;
  • a 5 is CR 5 or N
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 ;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 1 is H, F, CH 3 , CH 2 OCH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 2 is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is CH 3 , C 2 H 5 , CF 2 H or CH 2 F;
  • R 9 is acetyl, C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl or a fully or partially unsaturated 3-, 4-, 5-, 6- or 7-membered monocyclic or 8-, 9- or 10-membered bicyclic ring formed of carbon atoms, said ring optionally including 1-4 heteroatoms if monocyclic or 1-5 heteroatoms if bicyclic, said heteroatoms selected from O, N or S, wherein the C 1-6 -alkyl, C 2-4 alkenyl, C 2-4 alkynyl and ring are optionally substituted, independently, with 1-5 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C
  • N-2 the invention includes compounds of Formula I-A
  • a 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, CF 3 , OCF 3 , methyl, ethyl, CN or OCH 3 ;
  • each of R a and R b is H or F;
  • R 1 is H, F, CH 2 OCH 3 or CF 3 ;
  • R 2 is H, F or CF 3 ;
  • R 3 is CF 3 , CH 3 , CF 2 H or CH 2 F;
  • R 9 is a ring selected from phenyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, pyrazolyl, isoxazolyl, thiazolyl, furanyl, thienyl and pyrrolyl, wherein the ring is optionally substituted, independently, with 1-3 substituents of R 10 ; and
  • each R 10 is H, halo, haloalkyl, CN, OH, NO 2 , NH 2 , SF 5 , acetyl, —C(O)NHCH 3 , oxo, cyclopropylmethoxy, 2-propynyloxy, 2-butynyloxy, C 1-6 alkyl, C 2-6 alkenyl, C 2-6 alkynyl, C 3-6 cycloalkyl, C 1-6 alkylamino-, C 1-6 dialkylamino-, C 1-6 alkoxyl, C 1-6 thioalkoxyl, morpholinyl, pyrazolyl, isoxazolyl, dihydropyranyl, pyrrolyl, pyrrolidinyl, tetrahydropyrrolyl, piperazinyl, oxetan-3-yl, imidazo-pyridinyl or dioxolyl, wherein each of the cyclo
  • the invention includes compounds of Formula I-B
  • a 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 ;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is CH 3 , C 2 H 5 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments with respect to Formula I-B.
  • the invention includes compounds of Formula I-B wherein A 4 is CR 4 or N;
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H or F and provided no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R 1 and R 2 is H, F or CF 3 ;
  • each of R a and R b independently, is H or F;
  • R 3 is CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments with respect to Formula I-B.
  • the invention includes compounds of Formula I-C wherein A 4 is CR 4 ;
  • a 5 is CR 5 ;
  • a 6 is CR 6 ;
  • a 8 is CR 8 ; wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H, F, Cl, CF 3 , OCF 3 , methyl, ethyl, CN, OH, OCH 3 , SCH 3 , NHCH 3 or C(O)CH 3 ;
  • each of R a and R b is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • each of R 1 and R 2 is H, F, CH 3 , CH 2 F, CHF 2 or CF 3 ;
  • R 3 is CH 3 , C 2 H 5 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments with respect to Formula I-C.
  • the invention includes compounds of Formula I-C wherein A 4 is CR 4 or N;
  • a 5 is CR 5 or N
  • a 6 is CR 6 or N
  • a 8 is CR 8 or N, wherein each of R 4 , R 5 , R 6 and R 8 , independently, is H or F and provided no more than one of A 4 , A 5 , A 6 and A 8 is N;
  • each of R 1 and R 2 is H, F or CF 3 ;
  • each of R a and R b independently, is H or F;
  • R 3 is CF 3 , CH 3 , CF 2 H or CH 2 F, in conjunction with any of the above or below embodiments with respect to Formula I-C.
  • the invention provides one or more of the compounds, or a pharmaceutically acceptable salt thereof, of Formulas I, II and III, and sub-formulas thereof, as taught and described herein.
  • the invention provides the compound of Formula I, II or III, or a stereoisomer or pharmaceutically acceptable salt thereof, selected from
  • the invention provides the compound of Formula I or a tautomer, stereoisomer, or pharmaceutically acceptable salt thereof selected from
  • the invention provides the compound of Formula I or a tautomer, stereoisomer, or pharmaceutically acceptable salt thereof selected from
  • the invention provides a compound, or a pharmaceutically acceptable salt or tautomer thereof, selected from:
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides a compound, or a pharmaceutically acceptable salt or tautomer thereof, selected from:
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides a compound, or a pharmaceutically acceptable salt or tautomer thereof, selected from:
  • the invention provides each individual compound according to embodiments 82-84, or a pharmaceutically acceptable salt or tautomer thereof.
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • the invention provides the compound
  • an “—N” in the 1,3-oxazine head group is intended to be an —NH 2 (an amine groups); the “—N” in the amide linker is intended to be an —NH and lines ending without an atom are understood by persons of ordinary skill in the art to be a —CH 3 group.
  • the invention provides each of the Examplary compounds, and stereoisomers, tautomers, solvates, pharmaceutically acceptable salts, derivatives or prodrugs thereof, and related intermediates, described herein.
  • the invention provides the exemplified compounds described herein, and pharmaceutically acceptable salt forms of each thereof.
  • the compounds of the invention may contain unnatural proportions of atomic isotopes at one or more of the atoms that constitute such compounds.
  • the compounds may be radiolabeled with radioactive isotopes, such as for example tritium ( 3 H), iodine-125 ( 125 I) or carbon-14 ( 14 C).
  • Radiolabeled compounds are useful as therapeutic or prophylactic agents, research reagents, e.g., assay reagents, and diagnostic agents, e.g., in vivo imaging agents. All isotopic variations of the compounds of the invention, whether radioactive or not, are intended to be encompassed within the scope of the invention.
  • variable may also be deuterium (D) or tritium (T).
  • D deuterium
  • T tritium
  • C ⁇ - ⁇ alkyl when used either alone or within other terms such as “haloalkyl” and “alkylamino”, embraces linear or branched radicals having ⁇ to ⁇ number of carbon atoms (such as C 1 -C 10 ; C 1 -C 6 ; or C 1 -C 4 ). Unless otherwise specified, one or more carbon atoms of the “alkyl” radical may be substituted, such as with a cycloalkyl moiety.
  • alkyl radicals include methyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, ethyl, cyclopropylethyl, cyclobutylethyl, cyclopentylethyl, n-propyl, isopropyl, n-butyl, cyclopropylbutyl, isobutyl, sec-butyl, tert-butyl, pentyl, isoamyl, hexyl and the like.
  • C ⁇ - ⁇ alkenyl when used alone or in combination, embraces linear or branched radicals having at least one carbon-carbon double bond in a moiety having a number of carbon atoms in the range from ⁇ and ⁇ . Included within alkenyl radicals are “lower alkenyl” radicals having two to about six carbon atoms and, for example, those radicals having two to about four carbon atoms. Examples of alkenyl radicals include, without limitation, ethenyl, propenyl, allyl, propenyl, butenyl and 4-methylbutenyl.
  • alkenyl and “lower alkenyl” embrace radicals having “cis” and “trans” orientations, or alternatively, “E” and “Z” orientations, as appreciated by those of ordinary skill in the art.
  • C ⁇ - ⁇ alkynyl when used alone or in combination, denotes linear or branched radicals having at least one carbon-carbon triple bond in a moiety having a number of carbon atoms in the range from ⁇ and ⁇ .
  • alkynyl radicals include “lower alkynyl” radicals having two to about six carbon atoms and, for example, lower alkynyl radicals having two to about four carbon atoms.
  • examples of such radicals include, without limitation, ethynyl, propynyl (propargyl), butynyl, and the like.
  • C ⁇ - ⁇ -alkyl when used with other terms such as “wherein 1, 2 or 3 carbon atoms of said C ⁇ - ⁇ -alkyl, C ⁇ - ⁇ -alkenyl or C 2 ⁇ - ⁇ -alkynyl is optionally replaced with a heteroatom selected from O, S, S(O), S(O) 2 and N” embraces linear or branched radicals wherein one or more of the carbon atoms may be replaced with a heteroatom.
  • radicals examples include —O-methyl, —O— ethyl, —CH 2 —O—CH 3 , —CH 2 CH 2 —O—CH 3 , —NH—CH 2 , —CH 2 CH 2 —N(CH 3 )—CH 3 , —S—(CH 2 ) 3 CH 2 , —CH 2 CH 2 —S—CH 3 and the like. Accordingly, such radicals also include radicals encompassed by —OR 7 where R 7 may be defined as a C ⁇ - ⁇ -alkyl. Examples of such “alkenyl” radicals include —NH—CH 2 CH ⁇ CH 2 , —S—CH 2 CH 2 CH ⁇ CHCH 3 and the like. Similar examples exist for such “alkynyl” radicals, as appreciated by those skilled in the art.
  • C ⁇ - ⁇ alkoxyl or “—OC ⁇ - ⁇ alkyl” when used alone or in combination, embraces linear or branched oxygen-containing alkyl radicals each having ⁇ to ⁇ number of carbon atoms (such as C 1 -C 10 ).
  • alkoxy and alkoxyl when used alone or in combination, embraces linear or branched oxygen-containing radicals each having alkyl and substituted alkyl portions of one or more carbon atoms. Examples of such radicals include methoxy, ethoxy, propoxy, butoxy, tert-butoxy and neopentoxy.
  • Alkoxy radicals may be further substituted with one or more halo atoms, such as fluoro, chloro or bromo, to provide “haloalkoxy” radicals or with other substitution.
  • halo atoms such as fluoro, chloro or bromo
  • examples of such radicals include fluoromethoxy, chloromethoxy, trifluoromethoxy, trifluoroethoxy, fluoroethoxy and fluoropropoxy.
  • aryl when used alone or in combination, means a carbocyclic aromatic moiety containing one, two or even three rings wherein such rings may be attached together in a fused manner. Every ring of an “aryl” multi-ring system need not be aromatic, and the ring(s) fused to the aromatic ring may be partially or fully unsaturated and include one or more heteroatoms selected from nitrogen, oxygen and sulfur.
  • aryl embraces aromatic radicals such as phenyl, naphthyl, indenyl, tetrahydronaphthyl, dihydrobenzafuranyl, anthracenyl, indanyl, benzodioxazinyl, and the like.
  • the “aryl” group may be substituted, such as with 1 to 5 substituents including lower alkyl, hydroxyl, halo, haloalkyl, nitro, cyano, alkoxy and lower alkylamino, and the like. Phenyl substituted with —O—CH 2 —O— or —O—CH 2 —CH 2 —O— forms an aryl benzodioxolyl substituent.
  • C ⁇ - ⁇ -cycloalkyl also referred to herein as “carbocyclic”, when used alone or in combination, denotes a partially or fully saturated ring radical having a number of carbon atoms in the range from ⁇ and ⁇ .
  • the “cycloalkyl” may contain one (“monocyclic”), two (“bicyclic”) or even three (“tricyclic”) rings wherein such rings may be attached together in a fused manner and each formed from carbon atoms.
  • saturated carbocyclic radicals include saturated 3 to 6-membered monocyclic groups such as cyclopropane, cyclobutane, cyclopentane and cyclohexane. Cycloalkyls may be substituted as described herein.
  • ring and “ring system” refer to a ring comprising the delineated number of atoms, the atoms being carbon or, where indicated, a heteroatom such as nitrogen, oxygen or sulfur. Where the number of atoms is not delineated, such as a “monocyclic ring system” or a “bicyclic ring system”, the numbers of atoms are 3-8 for a monocyclic and 6-12 for a bicyclic ring. The ring itself, as well as any substitutents thereon, may be attached at any atom that allows a stable compound to be formed.
  • nonaromatic ring or ring system refers to the fact that at least one, but not necessarily all, rings in a bicyclic or tricyclic ring system is nonaromatic.
  • each ring refers to the ring either as fully aromatic (fully unsaturated), partially aromatic (or partially saturated) or fully saturated (containing no double or triple bonds therein). If not specified as such, then it is contemplated that each ring (monocyclic) in a ring system (if bicyclic or tricyclic) may either be fully aromatic, partially aromatic or fully saturated, and optionally substituted with up to 5 substituents. This includes carbocyclics, heterocyclics, aryl and heteroaryl rings.
  • halo when used alone or in combination, means halogens such as fluorine, chlorine, bromine or iodine atoms.
  • haloalkyl when used alone or in combination, embraces radicals wherein any one or more of the alkyl carbon atoms is substituted with halo as defined above.
  • this term includes monohaloalkyl, dihaloalkyl and polyhaloalkyl radicals such as a perhaloalkyl.
  • a monohaloalkyl radical for example, may have either an iodo, bromo, chloro or fluoro atom within the radical.
  • Dihalo and polyhaloalkyl radicals may have two or more of the same halo atoms or a combination of different halo radicals.
  • haloalkyl radicals include fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, pentafluoroethyl, heptafluoropropyl, difluorochloromethyl, dichlorofluoromethyl, difluoroethyl, difluoropropyl, dichloroethyl and dichloropropyl.
  • Perfluoroalkyl refers to alkyl radicals having all hydrogen atoms replaced with fluoro atoms. Examples include trifluoromethyl and pentafluoroethyl.
  • heteroaryl means a fully unsaturated (aromatic) ring moiety formed from carbon atoms and having one or more heteroatoms selected from nitrogen, oxygen and sulfur.
  • the ring moiety or ring system may contain one (“monocyclic”), two (“bicyclic”) or even three (“tricyclic”) rings wherein such rings are attached together in a fused manner. Every ring of a “heteroaryl” ring system need not be aromatic, and the ring(s) fused thereto (to the heteroaromatic ring) may be partially or fully saturated and optionally include one or more heteroatoms selected from nitrogen, oxygen and sulfur.
  • heteroaryl does not include rings having ring members of —O—O—, —O—S— or —S—S—.
  • unsaturated heteroaryl radicals include unsaturated 5- to 6-membered heteromonocyclyl groups containing 1 to 4 nitrogen atoms, including for example, pyrrolyl, imidazolyl, pyrazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, triazolyl [e.g., 4H-1,2,4-triazolyl, 1H-1,2,3-triazolyl, 2H-1,2,3-triazolyl] and tetrazole; unsaturated 7- to 10-membered heterobicyclyl groups containing 1 to 4 nitrogen atoms, including for example, quinolinyl, isoquinolinyl, quinazolinyl, isoquinazolinyl, aza-quinazolinyl, and the like; unsaturated 5- to 6-membered heteromonocyclic group containing an oxygen
  • heterocycle when used alone or in combination, means a partially or fully saturated ring moiety containing one, two or even three rings wherein such rings may be attached together in a fused manner, formed from carbon atoms and including one or more heteroatoms selected from N, O or S.
  • saturated heterocyclic radicals include saturated 3 to 6-membered heteromonocyclic groups containing 1 to 4 nitrogen atoms [e.g. pyrrolidinyl, imidazolidinyl, piperidinyl, pyrrolinyl, piperazinyl]; saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g.
  • morpholinyl saturated 3 to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms [e.g., thiazolidinyl].
  • partially saturated heterocyclyl radicals include dihydrothienyl, dihydropyranyl, dihydrofuryl and dihydrothiazolyl.
  • heterocycle also embraces radicals where heterocyclic radicals are fused/condensed with aryl radicals: unsaturated condensed heterocyclic group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyl, indolizinyl, benzimidazolyl, quinolyl, isoquinolyl, indazolyl, benzotriazolyl, tetrazolopyridazinyl [e.g., tetrazolo[1,5-b]pyridazinyl]; unsaturated condensed heterocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms [e.g.
  • heterocyclic radicals include five to ten membered fused or unfused radicals.
  • Examples of partially saturated and fully saturated heterocyclyls include, without limitation, pyrrolidinyl, imidazolidinyl, piperidinyl, pyrrolinyl, pyrazolidinyl, piperazinyl, morpholinyl, tetrahydropyranyl, thiazolidinyl, dihydrothienyl, 2,3-dihydro-benzo[1,4]dioxanyl, indolinyl, isoindolinyl, dihydrobenzothienyl, dihydrobenzofuryl, isochromanyl, chromanyl, 1,2-dihydroquinolyl, 1,2,3,4-tetrahydro-isoquinolyl, 1,2,3,4-tetrahydro-quinolyl, 2,3,4,4a,9,9a-hexahydro-1H-3-aza-fluorenyl, 5,6,7-trihydro-1,2,4-triazolo[3,4-a]isoquinoly
  • a 3-8 membered monocyclic or 6-12 membered bicyclic ring system said ring system formed of carbon atoms optionally including 1-3 heteroatoms if monocyclic or 1-6 heteroatoms if bicyclic, said heteroatoms selected from O, N, or S, wherein said ring system is optionally substituted” refers to a single ring of 3-, 4-, 5-, 6-, 7- or 8-atom membered or a 6-, 7-, 8-, 9-, 10-, 11 or 12-atom membered bicyclic ring system comprising the delineated number of atoms, the atoms being carbon or, where indicated, a heteroatom such as nitrogen (N), oxygen (O) or sulfur (S).
  • N nitrogen
  • O oxygen
  • S sulfur
  • the numbers of atoms are 3-8 for a monocyclic and 6-12 for a bicyclic ring.
  • the ring or ring system may contain substitutents thereon, attached at any atom that allows a stable compound to be formed.
  • a bicyclic ring is intended to include fused ring systems as well as spiro-fused rings. This phrase encompasses carbocyclics, heterocyclics, aryl and heteroaryl rings.
  • alkylamino includes “N-alkylamino” where amino radicals are independently substituted with one alkyl radical.
  • Preferred alkylamino radicals are “lower alkylamino” radicals having one to six carbon atoms. Even more preferred are lower alkylamino radicals having one to three carbon atoms. Examples of such lower alkylamino radicals include N-methylamino, and N-ethylamino, N-propylamino, N-isopropylamino and the like.
  • dialkylamino includes “N, N-dialkylamino” where amino radicals are independently substituted with two alkyl radicals.
  • Preferred alkylamino radicals are “lower alkylamino” radicals having one to six carbon atoms. Even more preferred are lower alkylamino radicals having one to three carbon atoms. Examples of such lower alkylamino radicals include N,N-dimethylamino, N,N-diethylamino, and the like.
  • carbonyl whether used alone or with other terms, such as “aminocarbonyl”, denotes —(C ⁇ O)—. “Carbonyl” is also used herein synonymously with the term “oxo”.
  • alkylthio or “thioalkoxy” embraces radicals containing a linear or branched alkyl radical, of one to ten carbon atoms, attached to a divalent sulfur atom.
  • An example of “alkylthio” or “thioalkoxy” is methylthio, (CH 3 S—).
  • Form I includes any sub formulas, such as Formulas II and III. Similar with Formulas II and III, in that they include sub-formulas where described.
  • stereoisomer or “stereomerically pure” means one stereoisomer of a compound that is substantially free of other stereoisomers of that compound.
  • a stereomerically pure compound having one chiral center will be substantially free of the opposite enantiomer of the compound.
  • a stereomerically pure compound having two chiral centers will be substantially free of other diastereomers of the compound.
  • a typical stereomerically pure compound comprises greater than about 80% by weight of one stereoisomer of the compound and less than about 20% by weight of other stereoisomers of the compound, more preferably greater than about 90% by weight of one stereoisomer of the compound and less than about 10% by weight of the other stereoisomers of the compound, even more preferably greater than about 95% by weight of one stereoisomer of the compound and less than about 5% by weight of the other stereoisomers of the compound, and most preferably greater than about 97% by weight of one stereoisomer of the compound and less than about 3% by weight of the other stereoisomers of the compound.
  • stereochemistry of a structure or a portion of a structure is not indicated with, for example, bold or dashed lines, the structure or portion of the structure is to be interpreted as encompassing all stereoisomers of it.
  • a bond drawn with a wavy line indicates that both stereoisomers are encompassed.
  • Various compounds of the invention contain one or more chiral centers, and can exist as racemic mixtures of enantiomers, mixtures of diastereomers or enantiomerically or optically pure compounds.
  • This invention encompasses the use of stereomerically pure forms of such compounds, as well as the use of mixtures of those forms.
  • mixtures comprising equal or unequal amounts of the enantiomers of a particular compound of the invention may be used in methods and compositions of the invention.
  • These isomers may be asymmetrically synthesized or resolved using standard techniques such as chiral columns or chiral resolving agents.
  • the present invention also includes tautomeric forms of compounds of the invention.
  • the invention comprises compounds of formula I as well as their tautomers, as shown:
  • pharmaceutically-acceptable when used with reference to a compound of Formulas I-III is intended to refer to a form of the compound that is safe for administration.
  • a salt form, a solvate, a hydrate, a prodrug or derivative form of a compound of Formulas I-III which has been approved for mammalian use, via oral ingestion or other routes of administration, by a governing body or regulatory agency, such as the Food and Drug Administration (FDA) of the United States, is pharmaceutically acceptable.
  • FDA Food and Drug Administration
  • salts include the pharmaceutically acceptable salt forms of the free-base compounds.
  • pharmaceutically-acceptable salts embraces salts commonly used to form alkali metal salts and to form addition salts of free acids or free bases.
  • salts may be formed from ionic associations, charge-charge interactions, covalent bonding, complexation, coordination, etc.
  • the nature of the salt is not critical, provided that it is pharmaceutically acceptable.
  • Suitable pharmaceutically acceptable acid addition salts of compounds of Formulas I-III may be prepared from an inorganic acid or from an organic acid.
  • inorganic acids are hydrochloric, hydrobromic, hydroiodic, hydrofluoric, nitric, carbonic, sulfuric and phosphoric acid.
  • Appropriate organic acids may be selected from aliphatic, cycloaliphatic, aromatic, arylaliphatic, heterocyclic, carboxylic and sulfonic classes of organic acids, examples of which include, without limitation, formic, acetic, adipic, butyric, propionic, succinic, glycolic, gluconic, lactic, malic, tartaric, citric, ascorbic, glucuronic, maleic, fumaric, pyruvic, aspartic, glutamic, benzoic, anthranilic, mesylic, 4-hydroxybenzoic, phenylacetic, mandelic, embonic (pamoic), methanesulfonic, ethanesulfonic, ethanedisulfonic, benzenesulfonic, pantothenic, 2-hydroxyethanesulfonic, toluenesulfonic, sulfanilic, cyclohexylaminosulfonic, camphoric
  • Suitable pharmaceutically-acceptable base addition salts of compounds of Formulas I-III include metallic salts, such as salts made from aluminum, calcium, lithium, magnesium, potassium, sodium and zinc, or salts made from organic bases including, without limitation, primary, secondary and tertiary amines, substituted amines including cyclic amines, such as caffeine, arginine, diethylamine, N-ethyl piperidine, histidine, glucamine, isopropylamine, lysine, morpholine, N-ethyl morpholine, piperazine, piperidine, TEA, disopropylethylamine and trimethylamine. All of these salts may be prepared by conventional means from the corresponding compound of the invention by reacting, for example, the appropriate acid or base with the compound of Formulas I-III.
  • the basic nitrogen-containing groups can be quaternized with such agents as lower alkyl halides, such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides; dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates, long chain halides such as decyl, lauryl, myristyl and stearyl chlorides, bromides and iodides, aralkyl halides like benzyl and phenethyl bromides, and others. Water or oil-soluble or dispersible products are thereby obtained.
  • lower alkyl halides such as methyl, ethyl, propyl, and butyl chloride, bromides and iodides
  • dialkyl sulfates like dimethyl, diethyl, dibutyl, and diamyl sulfates
  • long chain halides such as de
  • a phosphate salt of a compound of the invention may be made by combining the desired compound free base in a desired solvent, or combination of solvents, with phosphoric acid in a desired stoichiometric amount, at a desired temperature, typically under heat (depending upon the boiling point of the solvent).
  • the salt can be precipitated upon cooling (slow or fast) and may crystallize (i.e., if crystalline in nature), as appreciated by those of ordinary skill in the art.
  • hemi-, mono-, di, tri- and poly-salt forms of the compounds of the present invention are also contemplated herein.
  • hemi-, mono-, di, tri- and poly-hydrated forms of the compounds, salts and derivatives thereof, are also contemplated herein.
  • pharmaceutically-acceptable derivative denotes a derivative which is pharmaceutically acceptable.
  • the compound(s) of Formulas I-III may be used to treat a subject by administering the compound(s) as a pharmaceutical composition.
  • the compound(s) can be combined with one or more excipients, including without limitation, carriers, diluents or adjuvants to form a suitable composition, which is described in more detail herein.
  • excipient denotes any pharmaceutically acceptable additive, carrier, adjuvant, or other suitable ingredient, other than the active pharmaceutical ingredient (API), which is typically included for formulation and/or administration purposes.
  • API active pharmaceutical ingredient
  • treat refers to therapy, including without limitation, curative therapy, prophylactic therapy, and preventative therapy.
  • Prophylactic treatment generally constitutes either preventing the onset of disorders altogether or delaying the onset of a pre-clinically evident stage of disorders in individuals.
  • an effective dosage amount is intended to quantify the amount of each agent, which will achieve the goal of improvement in disorder severity and the frequency of incidence over treatment of each agent by itself, while avoiding adverse side effects typically associated with alternative therapies. Accordingly, this term is not limited to a single dose, but may comprise multiple dosages required to bring about a therapeutic or prophylactic response in the subject.
  • “effective dosage amount” is not limited to a single capsule or tablet, but may include more than one capsule or tablet, which is the dose prescribed by a qualified physician or medical care giver to the subject.
  • LG generally refers to groups that are displaceable by a nucleophile.
  • Such leaving groups are known in the art. Examples of leaving groups include, but are not limited to, halides (e.g., I, Br, F, Cl), sulfonates (e.g., mesylate, tosylate), sulfides (e.g., SCH 3 ), N-hydroxsuccinimide, N-hydroxybenzotriazole, and the like.
  • Nucleophiles are species that are capable of attacking a molecule at the point of attachment of the leaving group causing displacement of the leaving group. Nucleophiles are known in the art. Examples of nucleophilic groups include, but are not limited to, amines, thiols, alcohols, Grignard reagents, anionic species (e.g., alkoxides, amides, carbanions) and the like.
  • the present invention further comprises procedures for the preparation of compounds of Formulas I-III.
  • the compounds of Formulas I-III can be synthesized according to the procedures described in the following Schemes 1, 2, 3a, 3b, 4 and 5, wherein the substituents are as defined for Formulas I-III above, except where further noted.
  • the synthetic methods described below are merely exemplary, and the compounds of the invention may also be synthesized by alternate routes utilizing alternative synthetic strategies, as appreciated by persons of ordinary skill in the art.
  • crude product-containing residues were purified by passing the crude material or concentrate through either a Biotage or Isco brand silica gel column (pre-packed or individually packed with SiO 2 ) and eluting the product off the column with a solvent gradient as indicated.
  • a description of (330 g SiO 2 , 0-40% EtOAc/Hexane) means the product was obtained by elution from the column packed with 330 gms of silica, with a solvent gradient of 0% to 40% EtOAc in Hexanes.
  • the compounds described herein were purified via reverse phase HPLC using one of the following instruments: Shimadzu, Varian, Gilson; utilizing one of the following two HPLC columns: (a) a Phenomenex Luna or (b) a Gemini column (5 micron or 10 micron, C18, 150 ⁇ 50 mm)
  • General Synthetic Scheme 1 describes an exemplary method for preparing the key intermediate, aniline 1m.
  • ketimine was converted to the corresponding sulfinamide using (2-(tert-butoxy)-2-oxoethyl)zinc (II) chloride under suitable conditions.
  • the ester of Compound 1b was transformed to aldehyde by either a two-step procedure (treatment with LiBH 4 followed by SO 3 -Pyridine) or reduction using DIBAL-H, to afford intermediate 1c.
  • the chiral auxiliary in 1c was removed with PTSA/MeOH and the aldehyde converted to dimethyl acetal using HCl/MeOH to give 1d.
  • Ester 1h was converted to aldehyde 1j (via treatment with LiBH 4 followed by SO 3 -Pyridine), which was treated with chlorotris(triphenylphosphine)rhodium(I) (Wilkinson's) to afford intermediate 1k.
  • Aniline 1m was derived from 1k (R 4 ⁇ H) via nitration followed by nitro group reduction. In other cases, aniline 1m was obtained from 1k (R 4 ⁇ Br) by a three-step procedure: conversion of bromide to azide, azide reduction with trimethylphosphine followed by removal of protecting groups with TFA.
  • N,N-Diisopropylethylamine (16.1 mL, 93 mmol) was added to a stirred solution of (R)—N—((S)-2-(2,3-difluorophenyl)-1-fluoro-4-hydroxybutan-2-yl)-2-methylpropane-2-sulfinamide (10.00 g, 30.9 mmol, crude from reaction above) in DCM (100 mL) and dimethyl sulfoxide (50.0 mL) at ⁇ 10° C. Sulfur trioxide pyridine complex (7.38 g, 46.4 mmol) was added in 4 portions over 8 min. The reaction mixture was stirred at ⁇ 10° C.
  • reaction mixture was stirred RT for 50 min, was partially concentrated in vacuo, and then was quenched with saturated aqueous sodium bicarbonate solution.
  • the mixture was extracted with EtOAc (2 ⁇ ), the combined organic extracts were washed with saturated aqueous sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo.
  • reaction mixture was then quenched with saturated aqueous ammonium chloride solution and then extracted with EtOAc.
  • the organic extracts were washed with water, saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to give an oil.
  • TEA tert-butyl((1S,5S,6S)-5-(2,3-difluorophenyl)-5-(fluoromethyl)-1-(hydroxymethyl)-2-thia-4-azabicyclo[4.1.0]hept-3-en-3-yl)((2-(trimethylsilyl)ethoxy)methyl)carbamate (5.93 g, obtained from above reaction) in DCM (20 mL) and dimethyl sulfoxide (20 mL).
  • the reaction mixture was concentrated in vacuo and the resulting reddish-brown sludge was triturated in heptane and then filtered through Celite® filter aid.
  • the filter cake was washed multiple times with 9:1 EtOAc/heptane, then with DCM.
  • the filtrate was concentrated in vacuo, slurried in DCM, and filtered.
  • the yellow solid that was collected was discarded, and the filtrate was again concentrated in vacuo to give a brown oil. Heptane was added, the resulting suspension was filtered, and the collected solid was discarded.
  • reaction mixture was poured into ice and diluted with DCM.
  • K 3 PO 4 (20 g) was added in portions over 15 min, and the mixture was then brought to pH 7-8 with aqueous NaOH solution (10 N).
  • the resulting biphasic mixture was separated, and the aqueous layer was extracted DCM (2 ⁇ ).
  • the combined organic extracts were dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo to give an oil.
  • the filtrate was diluted with EtOAc and treated with saturate sodium bicarbonate solution, and then the mixture was taken to pH ⁇ 7 w/aqueous sodium NaOH (10 N).
  • the organic layer was separated, and the aqueous layer was extracted once more with EtOAc.
  • the combined organic extracts were washed with saturated sodium chloride solution, dried over anhydrous magnesium sulfate, filtered, and concentrated in vacuo.
  • the resulting crude product was purified via silica gel chromatography, eluting with 0 to 10% MeOH/DCM gradient. The collected product was then dissolved in EtOAc and then washed two times with saturated sodium carbonate solution.
  • N,N-diisopropylethylamine (21.6 mL, 124 mmol) was added dropwise via a syringe to a solution of (R)—N—((S)-2-(2,3-difluorophenyl)-4-hydroxybutan-2-yl)-2-methylpropane-2-sulfinamide (9.7 g crude from above reaction) in DCM (60 mL) and DMSO (30 mL) in 1000 mL RBF at ⁇ 10° C. Pyridine sulfur trioxide (7.9 g, 49.6 mmol) was added in three portions over 1 min. The mixture was stirred for 5 min, and then the cooling bath was replaced with an ice bath.
  • reaction mixture was stirred at RT for 3 h, it was concentrated in-vacuo, then diluted with 300 mL of chloroform and treated with 50 mL of sat. aq. NaHCO 3 . The layers were separated and the aqueous layer was extracted with chloroform (2 ⁇ 100 mL). The combined organic extracts were washed with 10 mL of brine, dried over magnesium sulfate, filtered and concentrated in-vacuo to give light yellow oil.
  • the reaction was then exposed to a gentle stream of carbon dioxide from a lecture bottle in the head space of the stirring solution (not submerged). The internal temp slowly climbed to ⁇ 60° C. After 7 min the carbon dioxide stream was removed and internal temp was ⁇ 65° C. The reaction was then slowly quenched with sat. NH 4 Cl (10 mL). Once the suspension reached 5° C., 1 M KH 2 PO 4 (100 mL) was added. After the bubbling subsided, the reaction was partitioned between EtOAc (400 mL) and 1 M KH 2 PO 4 (100 mL). The organic layer was separated, washed with brine (2 ⁇ 100 mL), dried over MgSO 4 , filtered and concentrated under reduced pressure to afford the acid as colorless oil.
  • the reaction was stirred for 30 min at 0° C.
  • the ice bath was removed and reaction stirred at 20° C. for 15 min.
  • the mixture was added to ice (100 g) via a pipet.
  • the acidic solution was cooled with an ice bath and deluted with CH 2 Cl 2 (50 mL).
  • potassium phosphate tribasic (16.95 g, 80 mmol) over 20 min, and the mixture was then brought to pH ⁇ 8 with 1 M NaOH.
  • the organic layer was separated, and the aqueous layer was extracted with DCM (2 ⁇ 50 mL). The combined organic layers were dried over MgSO 4 , filtered, concentrated under reduced pressure.
  • N,N-diisopropylethylamine (21 mL, 121 mmol) was added dropwise via a syringe followed by portion-wise addition of pyridine sulfur trioxide (9.51 g, 59.7 mmol) keeping the internal temperature below ⁇ 5° C.
  • the mixture was stirred for 5 min, and then the cooling bath was replaced with an ice bath.
  • the mixture was stirred for 1 h at ⁇ 0° C.
  • the mixture was poured into water (500 mL) and EtOAc (300 mL) was added. The layers were separated and the aqueous phase was extracted with EtOAc (3 ⁇ 150 mL).
  • TEA t-butyl((1S,5S,6S)-5-(5-bromo-2-fluorophenyl)-5-(fluoromethyl)-1-(hydroxymethyl)-2-thia-4-azabicyclo[4.1.0]hept-3-en-3-yl)((2-(trimethylsilyl)ethoxy)methyl)carbamate (3.62 g, 6.12 mmol) in DCM (20 mL) and DMSO (20 mL) in 100 mL RBF. Pyridine sulfur trioxide (4.33 g, 12.23 mmol) was added and the mixture was stirred for 2 h.
  • the reaction mixture was degassed by bubbling nitrogen through the solution for 5 min and N,N′′-dimethylcyclohexane-1,2-diamine (0.200 mL, 1.27 mmol) was added.
  • the reaction mixture was heated to 70° C. for 1.5 h and cooled to room temperature.
  • the mixture was poured into 10:1 saturated NH 4 Cl/ammonium hydroxide, and diluted with EtOAc.
  • the aqueous phase was extracted with EtOAc (3 ⁇ ) and the combined organic extracts were washed with brine (1 ⁇ ), dried over MgSO 4 , filtered, concentrated to give a dark yellow oil.
  • reaction was cooled with an ice bath and treated with sodium nitrate (0.35 g, 4.16 mmol) in one portion. After 10 min, the reaction was poured onto wet ice (100 mL) contained in a 500 mL Erylmeyer flask. That flask was then jacketed with a wet ice cooling bath. To the mixture was added CH 2 Cl 2 (50 mL) followed by dropwise addition of NaOH (4 M, 150 mL) at a rate that did not exceed an internal temp of 5° C. until pH 14 was achieved. To the flask was added 9:1 CHCl 3 /IPA (50 mL). The mixture was transferred to a separatory funnel and the layers were separated.
  • reaction mixture (A) 20 mL of reaction mixture (A) was added to a solution of (S)-methyl 4-(5-bromo-2-fluorophenyl)-2-((tert-butoxycarbonyl)((2-(trimethylsilyl)ethoxy)methyl)amino)-4-(fluoromethyl)-4H-1,3-thiazine-6-carboxylate (210A, 12.06 g, 19.85 mmol) in DMSO (50 mL) dropwise. After addition, the mixture was then stirred RT for 1 h. LCMS showed some starting material. It was treated with additional 2 mL of the mixture A and stirred at RT for overnight. LCMS showed some starting material.
  • the addition funnel was charged with LiBH 4 (2.0 M in THF, 186 mL, 372 mmol, Sigma Aldrich) via cannula.
  • the LiBH 4 was added to the stirring solution at room temperature.
  • the addition funnel was removed and replaced with a 125 mL addition funnel which was subsequently charged with MeOH (30.1 mL, 744 mmol).
  • MeOH was added dropwise to the stirring solution at RT via addition funnel. Evolution of gas observed and the internal temperature of the reaction rose to 47.5° C. over the course of the reaction and then began to subside.
  • a 250 mL addition funnel was attached to the reaction flask and charged with an additional portion of LiBH 4 (186 mL of 2.0M in THF, 372 mmol, Sigma Aldrich) via cannula.
  • the LiBH 4 was added to the reaction.
  • the addition funnel was removed and replaced with a 125 mL addition funnel which was then with MeOH (30.1 mL, 744 mmol).
  • MeOH was added dropwise to the stirring solution. Evolution of gas was observed and the internal temperature increased to 35° C. and then subsided. After 20 min, the flask was placed in an ice/water bath and carefully quenched with saturated ammonium chloride (aq.) solution.
  • Tetrabutylammonium bromide (0.07 g, 0.21 mmol, Sigma Aldrich) was added followed by (bromodifluoromethyl)trimethylsilane (2.11 g, 10.38 mmol, Synquest Laboratories). The vial was sealed and heated to 65° C. in an oil bath overnight. The reaction was diluted with water and EtOAc. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure.
  • a sealable glass vial was charged with (1R,5S,6R)-5-(5-bromo-2-fluorophenyl)-7,7-difluoro-5-methyl-2-thia-4-azabicyclo[4.1.0]hept-3-en-3-amine (0.48 g, 1.37 mmol, 213H), (+)-sodium L-ascorbate (0.054 g, 0.275 mmol, Sigma Aldrich), copper(I) iodide (79 mg, 0.413 mmol, Sigma Aldrich), and sodium azide (0.268 g, 4.13 mmol, Sigma Aldrich). The vial was sealed and evacuated/backfilled with Nitrogen (3 ⁇ ).
  • the reaction was flushed with nitrogen and then stirred in a pre-heated 85° C. oil bath for an additional 1.5 h.
  • the reaction was cooled to RT and poured into a separatory funnel containing a solution of 9:1 aqueous saturated ammonium chloride to aqueous saturated ammonium hydroxide.
  • EtOAc was added and the organic phase was separated and washed sequentially with 9:1 saturated aqueous ammonium chloride to saturated aqueous ammonium hydroxide solution and brine.
  • the organic layer was dried over magnesium sulfate and concentrated under reduced pressure.
  • the crude residue was taken up in THF (5.2 ml) and water (1.7 mL).
  • Trimethylphosphine (1.0 M in THF, 1.376 mL, 1.376 mmol, Sigma Aldrich) was added at RT. The reaction was stirred for 5 min. The reaction was diluted with water and EtOAc. The organic layer was separated, washed with brine, dried over magnesium sulfate and concentrated under reduced pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Neurology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Hospice & Palliative Care (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
US14/819,256 2014-08-08 2015-08-05 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use Active US9550762B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/819,256 US9550762B2 (en) 2014-08-08 2015-08-05 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
US15/354,877 US20170267673A1 (en) 2014-08-08 2016-11-17 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201462035269P 2014-08-08 2014-08-08
US14/819,256 US9550762B2 (en) 2014-08-08 2015-08-05 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/354,877 Continuation US20170267673A1 (en) 2014-08-08 2016-11-17 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Publications (2)

Publication Number Publication Date
US20160046618A1 US20160046618A1 (en) 2016-02-18
US9550762B2 true US9550762B2 (en) 2017-01-24

Family

ID=54150645

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/819,256 Active US9550762B2 (en) 2014-08-08 2015-08-05 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
US15/354,877 Abandoned US20170267673A1 (en) 2014-08-08 2016-11-17 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/354,877 Abandoned US20170267673A1 (en) 2014-08-08 2016-11-17 Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Country Status (12)

Country Link
US (2) US9550762B2 (ru)
EP (1) EP3177618A1 (ru)
JP (1) JP6576433B2 (ru)
CN (1) CN106795147B (ru)
AR (1) AR101483A1 (ru)
AU (1) AU2015301028B2 (ru)
CA (1) CA2957544C (ru)
JO (1) JO3569B1 (ru)
MX (1) MX2017001794A (ru)
TW (1) TWI614250B (ru)
UY (1) UY36263A (ru)
WO (1) WO2016022724A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246429B2 (en) 2015-08-06 2019-04-02 Amgen Inc. Vinyl fluoride cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085576B2 (en) 2013-03-08 2015-07-21 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
AU2015301028B2 (en) 2014-08-08 2019-09-26 Amgen Inc. Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
ES2910367T3 (es) 2016-12-15 2022-05-12 Amgen Inc Derivados de tiazina y oxazina bicíclicos como inhibidores de beta-secretasa y métodos de uso
JP7149272B2 (ja) 2016-12-15 2022-10-06 アムジエン・インコーポレーテツド β-セクレターゼ阻害剤としてのチアジン誘導体および使用方法
US10889581B2 (en) 2016-12-15 2021-01-12 Amgen Inc. Cyclopropyl fused thiazine derivatives as beta-secretase inhibitors and methods of use
MA50007A (fr) 2016-12-15 2021-04-07 Amgen Inc Dérivés de dioxyde de 1,4-thiazine et de dioxyde de 1,2,4-thiadiazine en tant qu'inhibiteurs de bêta-sécrétase et procédés d'utilisation
AU2017376441B2 (en) 2016-12-15 2021-10-14 Amgen Inc. Oxazine derivatives as beta-secretase inhibitors and methods of use
WO2018224455A1 (en) 2017-06-07 2018-12-13 Basf Se Substituted cyclopropyl derivatives
CN113087669B (zh) * 2019-12-23 2023-11-17 南京药石科技股份有限公司 一种4-氰基-5-溴嘧啶的制备方法
CN115684413A (zh) * 2022-11-01 2023-02-03 重庆市涪陵食品药品检验所 一种硫酸羟氯喹中硫酸二甲酯和硫酸二乙酯的检测方法

Citations (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441870A (en) 1992-04-15 1995-08-15 Athena Neurosciences, Inc. Methods for monitoring cellular processing of β-amyloid precursor protein
US5712130A (en) 1993-06-08 1998-01-27 Krka Tovarna Zdravil, P.O Process for the isolation of lovastatin
US5942400A (en) 1995-06-07 1999-08-24 Elan Pharmaceuticals, Inc. Assays for detecting β-secretase
WO2000017369A2 (en) 1998-09-24 2000-03-30 Pharmacia & Upjohn Company Alzheimer's disease secretase
WO2005058311A1 (en) 2003-12-15 2005-06-30 Schering Corporation Heterocyclic aspartyl protease inhibitors
US20060111370A1 (en) 2003-12-15 2006-05-25 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2006065277A2 (en) 2004-12-13 2006-06-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2007049532A1 (ja) 2005-10-25 2007-05-03 Shionogi & Co., Ltd. アミノジヒドロチアジン誘導体
WO2008103351A2 (en) 2007-02-23 2008-08-28 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2008133273A1 (ja) 2007-04-24 2008-11-06 Shionogi & Co., Ltd. アルツハイマー症治療用医薬組成物
US20090209755A1 (en) 2008-01-18 2009-08-20 Yuichi Suzuki Fused aminodihydrothiazine derivatives
WO2009134617A1 (en) 2008-05-02 2009-11-05 Eli Lilly And Company Aminodihydrothiazine derivatives as bace inhibitors for the treatment of alzheimer's disease
WO2009151098A1 (ja) 2008-06-13 2009-12-17 塩野義製薬株式会社 βセクレターゼ阻害作用を有する含硫黄複素環誘導体
WO2010013794A1 (en) 2008-07-28 2010-02-04 Eisai R&D Management Co., Ltd. Spiroaminodihydrothiazine derivatives
WO2010013302A1 (ja) 2008-07-28 2010-02-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 スピロアミノジヒドロチアジン誘導体
US20100075957A1 (en) 2007-04-24 2010-03-25 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives substituted with a cyclic group
WO2010128058A1 (en) 2009-05-08 2010-11-11 F. Hoffmann-La Roche Ag Dihydropyrimidinones for use as bace2 inhibitors
WO2011005738A1 (en) 2009-07-09 2011-01-13 Eli Lilly And Company Bace inhibitors
WO2011009898A1 (en) 2009-07-22 2011-01-27 Eisai R&D Management Co., Ltd Fused aminodihydro-oxazine derivatives
WO2011020806A1 (en) 2009-08-19 2011-02-24 F. Hoffmann-La Roche Ag 3-amino-5-phenyl-5,6-dihydro-2h-[1,4]oxazine derivatives
WO2011029803A1 (en) 2009-09-11 2011-03-17 F. Hoffmann-La Roche Ag 2 -aminodihydro [1, 3] thiazines as bace 2 inhibitors for the treatment of diabetes
WO2011044181A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2011058763A1 (ja) 2009-11-13 2011-05-19 塩野義製薬株式会社 アミノリンカーを有するアミノチアジンまたはアミノオキサジン誘導体
WO2011069934A1 (en) 2009-12-11 2011-06-16 F. Hoffmann-La Roche Ag 2-amino-5, 5-difluoro-5, 6-dihydro-4h-oxazines as bace 1 and/or bace 2 inhibitors
WO2011071135A1 (ja) 2009-12-11 2011-06-16 塩野義製薬株式会社 オキサジン誘導体
WO2011070781A1 (ja) 2009-12-09 2011-06-16 塩野義製薬株式会社 置換アミノチアジン誘導体
WO2011071057A1 (ja) 2009-12-09 2011-06-16 塩野義製薬株式会社 含硫黄複素環誘導体を含有するアルツハイマー症の治療用または予防用医薬組成物
WO2011070029A1 (en) 2009-12-10 2011-06-16 F. Hoffmann-La Roche Ag Amino oxazine derivatives
WO2011071109A1 (ja) 2009-12-11 2011-06-16 塩野義製薬株式会社 アミノ基を有する縮合ヘテロ環化合物
US20110294149A1 (en) 1998-09-24 2011-12-01 Elan Pharmaceuticals, Inc. Alzheimer's Disease Secretase, APP Substrates Therefor, and Uses Therefor
WO2012039425A1 (ja) 2010-09-24 2012-03-29 株式会社クラレ ペースト及びその塗膜を電解質膜や電極膜とする高分子トランスデューサ
WO2012095463A1 (en) 2011-01-12 2012-07-19 Novartis Ag Oxazine derivatives and their use in the treatment of neurological disorders
WO2012095521A1 (en) 2011-01-13 2012-07-19 Novartis Ag Bace-2 inhibitors for the treatment of metabolic disorders
US20120202803A1 (en) 2011-02-08 2012-08-09 Hans Hilpert N-[3-(5-amino-3,3a,7,7a-tetrahydro-1h-2,4-dioxa-6-aza-inden-7-yl)-phenyl]-amides as bace1 and/or bace2 inhibitors
WO2012138734A1 (en) 2011-04-07 2012-10-11 Merck Sharp & Dohme Corp. C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
US20120258962A1 (en) 2011-04-11 2012-10-11 Hans Hilpert 1,3-oxazines as bace1 and/or bace2 inhibitors
WO2012147763A1 (ja) 2011-04-26 2012-11-01 塩野義製薬株式会社 オキサジン誘導体およびそれを含有するbace1阻害剤
WO2012147762A1 (ja) 2011-04-26 2012-11-01 塩野義製薬株式会社 ピリジン誘導体およびそれを含有するbace1阻害剤
WO2012156284A1 (en) 2011-05-16 2012-11-22 F. Hoffmann-La Roche Ag 1,3-oxazines as bace1 and/or bace2 inhibitors
WO2012162334A1 (en) 2011-05-24 2012-11-29 Bristol-Myers Squibb Company Compounds for the reduction of beta-amyloid production
US20120302549A1 (en) 2011-05-27 2012-11-29 Robert Narquizian Spiro-[1,3]-oxazines and spiro-[1,4]-oxazepines as bace1 and/or bace2 inhibitors
WO2012162330A1 (en) 2011-05-24 2012-11-29 Bristol-Myers Squibb Company Tricyclic compounds as inhibitors for the production of beta-amyloid
WO2012168175A1 (en) 2011-06-07 2012-12-13 F. Hoffmann-La Roche Ag [1,3]oxazines
WO2012168164A1 (en) 2011-06-07 2012-12-13 F. Hoffmann-La Roche Ag Halogen-alkyl-1,3 oxazines as bace1 and/or bace2 inhibitors
JP2012250933A (ja) 2011-06-03 2012-12-20 Shionogi & Co Ltd オキサジン誘導体を含有するアルツハイマー症治療用または予防用医薬組成物
WO2013004676A1 (en) 2011-07-06 2013-01-10 F. Hoffmann-La Roche Ag Cyclopropyl-fused-1,3-thiazepines as bace 1 and/or bace 2 inhibitors
WO2013027188A1 (en) 2011-08-25 2013-02-28 Novartis Ag 2 -amino-4 - (pyridin- 2 -yl) - 5, 6 -dihydro-4h- 1, 3 -oxazine derivatives and their use as bace-1 and/or bace - 2 inhibitors
WO2013028670A1 (en) 2011-08-22 2013-02-28 Merck Sharp & Dohme Corp. 2-spiro-substituted iminothiazines and their mono-and dioxides as bace inhibitors, compositions and their use
WO2013030713A1 (en) 2011-08-31 2013-03-07 Pfizer Inc. Hexahydropyrano [3,4-d][1,3] thiazin-2-amine compounds
US20130072478A1 (en) 2011-09-21 2013-03-21 Hans Hilpert N-(3-(2-amino-6,6-difluoro-4,4a,5,6,7,7a-hexahydro-cyclopenta[e][1,3]oxazin-4-yl)-phenyl-amides as bace1 inhibitors
WO2013054291A1 (en) 2011-10-13 2013-04-18 Novartis Ag Novel oxazine derivatives and their use in the treatment of disease
WO2013061962A1 (ja) 2011-10-24 2013-05-02 武田薬品工業株式会社 二環性化合物
WO2013110622A1 (en) 2012-01-26 2013-08-01 F. Hoffmann-La Roche Ag Fluoromethyl-5,6-dihydro-4h-[1,3]oxazines
WO2013142613A1 (en) 2012-03-20 2013-09-26 Elan Pharmaceuticals, Inc. Spirocyclic dihydro-thiazine and dihydro-oxazine bace inhibitors, and compositions and uses thereof
WO2013164730A1 (en) 2012-05-04 2013-11-07 Pfizer Inc. Heterocyclic substituted hexahydropyrano [3,4-d] [1,3] thiazin- 2 -amine compounds as inhibitors of app, bace1 and bace 2.
WO2013182638A1 (en) 2012-06-08 2013-12-12 H. Lundbeck A/S 2 -aminothiazinylheteroaryls as bace1 inhibitors for the treatment alzheimer's disease
WO2014001228A1 (en) 2012-06-26 2014-01-03 F. Hoffmann-La Roche Ag Difluoro-hexahydro-cyclopentaoxazinyls and difluoro-hexahydro-benzooxazinyls as bace1 inhibitors
AR086653A1 (es) 2011-06-03 2014-01-15 Bristol Myers Squibb Co COMPUESTOS PARA LA REDUCCION DE PRODUCCION DE b-AMILOIDE
WO2014013076A1 (en) 2012-07-20 2014-01-23 Eisai R&D Management Co., Ltd. Hexahydropyrrolothiazine compounds
WO2014045162A1 (en) 2012-09-20 2014-03-27 Pfizer Inc. ALKYL-SUBSTITUTED HEXAHYDROPYRANO[3,4-d] [1,3]THIAZIN-2-ANIME COMPOUNDS
WO2014059185A1 (en) 2012-10-12 2014-04-17 Amgen Inc. Amino - dihydrothiazine and amino - dioxido dihydrothiazine compounds as beta-secretase antagonists and methods of use
WO2014062553A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014062549A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014066132A1 (en) 2012-10-26 2014-05-01 Eli Lilly And Company Bace inhibitors
WO2014065434A1 (en) 2012-10-24 2014-05-01 Shionogi & Co., Ltd. Dihydrooxazine or oxazepine derivatives having bace1 inhibitory activity
WO2014093190A1 (en) 2012-12-14 2014-06-19 Merck Sharp & Dohme Corp. Bace inhibitors of iminothiadiazine dioxides
WO2014097038A1 (en) 2012-12-19 2014-06-26 Pfizer Inc. CARBOCYCLIC- AND HETEROCYCLIC-SUBSTITUTED HEXAHYDROPYRANO[3,4-d][1,3]THIAZIN-2-AMINE COMPOUNDS
WO2014099788A1 (en) 2012-12-21 2014-06-26 Merck Sharp & Dohme Corp. C5-spiro iminothiadiazine dioxides as bace inhibitors
WO2014098831A1 (en) 2012-12-19 2014-06-26 Bristol-Myers Squibb Company 4,6-diarylaminothiazines as bace1 inhibitors and their use for the reduction of beta-amyloid production
WO2014099794A1 (en) 2012-12-20 2014-06-26 Merck Sharp & Dohme Corp. C5, c6 oxacyclic-fused iminothiazine dioxide compounds as bace inhibitors
WO2014114532A1 (en) 2013-01-22 2014-07-31 F. Hoffmann-La Roche Ag Fluoro-[1,3]oxazines as bace1 inhibitors
US20140249104A1 (en) 2013-03-01 2014-09-04 Amgen Inc. Perfluorinated 5,6-dihydro-4h-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2014138484A1 (en) 2013-03-08 2014-09-12 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2014166906A1 (en) 2013-04-11 2014-10-16 F. Hoffmann-La Roche Ag Bace1 inhibitors
WO2014173917A1 (en) 2013-04-26 2014-10-30 F. Hoffmann-La Roche Ag Synthesis of bace1 inhibitors
WO2015156421A1 (en) 2014-04-11 2015-10-15 Shionogi & Co., Ltd. Dihydrothiazine and dihydrooxazine derivatives having bace1 inhibitory activity
WO2016001266A1 (en) 2014-07-04 2016-01-07 F. Hoffmann-La Roche Ag Fluoro-[1,3]oxazines as bace1 inhibitors
WO2016022724A1 (en) 2014-08-08 2016-02-11 Amgen Inc. Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090264415A2 (en) 2004-12-30 2009-10-22 Steven De Jonghe Pyrido(3,2-d)pyrimidines and pharmaceutical compositions useful for medical treatment
EA201000113A1 (ru) 2007-08-01 2010-08-30 Пфайзер Инк. Пиразольные соединения
EP2517898A1 (de) 2011-04-29 2012-10-31 Lanxess Deutschland GmbH Kieselsäurehaltige Kautschukmischungen mit schwefelhaltigen Additiven
DE102012005803A1 (de) 2012-03-21 2013-09-26 Wacker Neuson Produktion GmbH & Co. KG Bohr-und/oder Schlaghammer mit belastungsabhängiger Anpassung der Schlagzahl

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441870A (en) 1992-04-15 1995-08-15 Athena Neurosciences, Inc. Methods for monitoring cellular processing of β-amyloid precursor protein
US5712130A (en) 1993-06-08 1998-01-27 Krka Tovarna Zdravil, P.O Process for the isolation of lovastatin
US5942400A (en) 1995-06-07 1999-08-24 Elan Pharmaceuticals, Inc. Assays for detecting β-secretase
US20110294149A1 (en) 1998-09-24 2011-12-01 Elan Pharmaceuticals, Inc. Alzheimer's Disease Secretase, APP Substrates Therefor, and Uses Therefor
WO2000017369A2 (en) 1998-09-24 2000-03-30 Pharmacia & Upjohn Company Alzheimer's disease secretase
WO2005058311A1 (en) 2003-12-15 2005-06-30 Schering Corporation Heterocyclic aspartyl protease inhibitors
US20060111370A1 (en) 2003-12-15 2006-05-25 Schering Corporation Heterocyclic aspartyl protease inhibitors
WO2006065277A2 (en) 2004-12-13 2006-06-22 Schering Corporation Heterocyclic aspartyl protease inhibitors
US20090082560A1 (en) 2005-10-25 2009-03-26 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives
WO2007049532A1 (ja) 2005-10-25 2007-05-03 Shionogi & Co., Ltd. アミノジヒドロチアジン誘導体
EP1942105B1 (en) 2005-10-25 2014-04-16 Shionogi Co., Ltd. Aminodihydrothiazine derivative
US8173642B2 (en) 2005-10-25 2012-05-08 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives
WO2008103351A2 (en) 2007-02-23 2008-08-28 Schering Corporation Heterocyclic aspartyl protease inhibitors
US8168630B2 (en) 2007-04-24 2012-05-01 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives substituted with a cyclic group
WO2008133273A1 (ja) 2007-04-24 2008-11-06 Shionogi & Co., Ltd. アルツハイマー症治療用医薬組成物
US20100075957A1 (en) 2007-04-24 2010-03-25 Shionogi & Co., Ltd. Aminodihydrothiazine derivatives substituted with a cyclic group
US20100160290A1 (en) 2007-04-24 2010-06-24 Shionogi & Co., Ltd. Pharmaceutical composition for treating alzheimer's disease
US8653067B2 (en) 2007-04-24 2014-02-18 Shionogi & Co., Ltd. Pharmaceutical composition for treating Alzheimer's disease
US20090209755A1 (en) 2008-01-18 2009-08-20 Yuichi Suzuki Fused aminodihydrothiazine derivatives
WO2009134617A1 (en) 2008-05-02 2009-11-05 Eli Lilly And Company Aminodihydrothiazine derivatives as bace inhibitors for the treatment of alzheimer's disease
WO2009151098A1 (ja) 2008-06-13 2009-12-17 塩野義製薬株式会社 βセクレターゼ阻害作用を有する含硫黄複素環誘導体
US8637504B2 (en) 2008-06-13 2014-01-28 Shionogi & Co., Ltd. Sulfur-containing heterocyclic derivative having beta secretase inhibitory activity
WO2010013794A1 (en) 2008-07-28 2010-02-04 Eisai R&D Management Co., Ltd. Spiroaminodihydrothiazine derivatives
WO2010013302A1 (ja) 2008-07-28 2010-02-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 スピロアミノジヒドロチアジン誘導体
US20110152253A1 (en) 2008-07-28 2011-06-23 Eisai R&D Management Co., Ltd Spiroaminodihydrothiazine derivatives
WO2010128058A1 (en) 2009-05-08 2010-11-11 F. Hoffmann-La Roche Ag Dihydropyrimidinones for use as bace2 inhibitors
WO2011005738A1 (en) 2009-07-09 2011-01-13 Eli Lilly And Company Bace inhibitors
WO2011009898A1 (en) 2009-07-22 2011-01-27 Eisai R&D Management Co., Ltd Fused aminodihydro-oxazine derivatives
WO2011020806A1 (en) 2009-08-19 2011-02-24 F. Hoffmann-La Roche Ag 3-amino-5-phenyl-5,6-dihydro-2h-[1,4]oxazine derivatives
WO2011029803A1 (en) 2009-09-11 2011-03-17 F. Hoffmann-La Roche Ag 2 -aminodihydro [1, 3] thiazines as bace 2 inhibitors for the treatment of diabetes
WO2011044181A1 (en) 2009-10-08 2011-04-14 Schering Corporation Iminothiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2011058763A1 (ja) 2009-11-13 2011-05-19 塩野義製薬株式会社 アミノリンカーを有するアミノチアジンまたはアミノオキサジン誘導体
EP2500344A1 (en) 2009-11-13 2012-09-19 Shionogi&Co., Ltd. Aminothiazine or aminooxazine derivative having amino linker
US20120238557A1 (en) 2009-11-13 2012-09-20 Shionogi & Co., Ltd. Aminothiazine or aminooxazine derivative having amino linker
US20120245154A1 (en) 2009-12-09 2012-09-27 Shionogi & Co., Ltd. Substituted aminothiazine derivative
WO2011071057A1 (ja) 2009-12-09 2011-06-16 塩野義製薬株式会社 含硫黄複素環誘導体を含有するアルツハイマー症の治療用または予防用医薬組成物
WO2011070781A1 (ja) 2009-12-09 2011-06-16 塩野義製薬株式会社 置換アミノチアジン誘導体
EP2514747A1 (en) 2009-12-09 2012-10-24 Shionogi&Co., Ltd. Substituted aminothiazine derivative
WO2011070029A1 (en) 2009-12-10 2011-06-16 F. Hoffmann-La Roche Ag Amino oxazine derivatives
WO2011071109A1 (ja) 2009-12-11 2011-06-16 塩野義製薬株式会社 アミノ基を有する縮合ヘテロ環化合物
WO2011069934A1 (en) 2009-12-11 2011-06-16 F. Hoffmann-La Roche Ag 2-amino-5, 5-difluoro-5, 6-dihydro-4h-oxazines as bace 1 and/or bace 2 inhibitors
WO2011071135A1 (ja) 2009-12-11 2011-06-16 塩野義製薬株式会社 オキサジン誘導体
EP2511268A1 (en) 2009-12-11 2012-10-17 Shionogi & Co., Ltd. Oxazine derivative
US20120245157A1 (en) 2009-12-11 2012-09-27 Shionogi & Co., Ltd. Oxazine derivatives
WO2012039425A1 (ja) 2010-09-24 2012-03-29 株式会社クラレ ペースト及びその塗膜を電解質膜や電極膜とする高分子トランスデューサ
WO2012095463A1 (en) 2011-01-12 2012-07-19 Novartis Ag Oxazine derivatives and their use in the treatment of neurological disorders
WO2012095521A1 (en) 2011-01-13 2012-07-19 Novartis Ag Bace-2 inhibitors for the treatment of metabolic disorders
US20120202803A1 (en) 2011-02-08 2012-08-09 Hans Hilpert N-[3-(5-amino-3,3a,7,7a-tetrahydro-1h-2,4-dioxa-6-aza-inden-7-yl)-phenyl]-amides as bace1 and/or bace2 inhibitors
WO2012138734A1 (en) 2011-04-07 2012-10-11 Merck Sharp & Dohme Corp. C5-c6 oxacyclic-fused thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2012139993A1 (en) 2011-04-11 2012-10-18 F. Hoffmann-La Roche Ag 1,3 oxazines as bace1 and/or bace2 inhibitors
US20120258962A1 (en) 2011-04-11 2012-10-11 Hans Hilpert 1,3-oxazines as bace1 and/or bace2 inhibitors
EP2703401A1 (en) 2011-04-26 2014-03-05 Shionogi & Co., Ltd. Pyridine derivative and bace-1 inhibitor containing same
US20140235626A1 (en) 2011-04-26 2014-08-21 Shionogi & Co., Ltd. Pyridine derivatives and a pharmaceutical composition for inhibiting bace1 containing them
WO2012147763A1 (ja) 2011-04-26 2012-11-01 塩野義製薬株式会社 オキサジン誘導体およびそれを含有するbace1阻害剤
WO2012147762A1 (ja) 2011-04-26 2012-11-01 塩野義製薬株式会社 ピリジン誘導体およびそれを含有するbace1阻害剤
US20140051691A1 (en) 2011-04-26 2014-02-20 Shionogi & Co., Ltd. Oxazine derivatives and a pharmaceutical composition for inhibiting bace1 containing them
WO2012156284A1 (en) 2011-05-16 2012-11-22 F. Hoffmann-La Roche Ag 1,3-oxazines as bace1 and/or bace2 inhibitors
WO2012162334A1 (en) 2011-05-24 2012-11-29 Bristol-Myers Squibb Company Compounds for the reduction of beta-amyloid production
WO2012162330A1 (en) 2011-05-24 2012-11-29 Bristol-Myers Squibb Company Tricyclic compounds as inhibitors for the production of beta-amyloid
US20120302549A1 (en) 2011-05-27 2012-11-29 Robert Narquizian Spiro-[1,3]-oxazines and spiro-[1,4]-oxazepines as bace1 and/or bace2 inhibitors
AR086653A1 (es) 2011-06-03 2014-01-15 Bristol Myers Squibb Co COMPUESTOS PARA LA REDUCCION DE PRODUCCION DE b-AMILOIDE
JP2012250933A (ja) 2011-06-03 2012-12-20 Shionogi & Co Ltd オキサジン誘導体を含有するアルツハイマー症治療用または予防用医薬組成物
WO2012168175A1 (en) 2011-06-07 2012-12-13 F. Hoffmann-La Roche Ag [1,3]oxazines
WO2012168164A1 (en) 2011-06-07 2012-12-13 F. Hoffmann-La Roche Ag Halogen-alkyl-1,3 oxazines as bace1 and/or bace2 inhibitors
WO2013004676A1 (en) 2011-07-06 2013-01-10 F. Hoffmann-La Roche Ag Cyclopropyl-fused-1,3-thiazepines as bace 1 and/or bace 2 inhibitors
WO2013028670A1 (en) 2011-08-22 2013-02-28 Merck Sharp & Dohme Corp. 2-spiro-substituted iminothiazines and their mono-and dioxides as bace inhibitors, compositions and their use
WO2013027188A1 (en) 2011-08-25 2013-02-28 Novartis Ag 2 -amino-4 - (pyridin- 2 -yl) - 5, 6 -dihydro-4h- 1, 3 -oxazine derivatives and their use as bace-1 and/or bace - 2 inhibitors
WO2013030713A1 (en) 2011-08-31 2013-03-07 Pfizer Inc. Hexahydropyrano [3,4-d][1,3] thiazin-2-amine compounds
US20130072478A1 (en) 2011-09-21 2013-03-21 Hans Hilpert N-(3-(2-amino-6,6-difluoro-4,4a,5,6,7,7a-hexahydro-cyclopenta[e][1,3]oxazin-4-yl)-phenyl-amides as bace1 inhibitors
WO2013054291A1 (en) 2011-10-13 2013-04-18 Novartis Ag Novel oxazine derivatives and their use in the treatment of disease
WO2013061962A1 (ja) 2011-10-24 2013-05-02 武田薬品工業株式会社 二環性化合物
US9133129B2 (en) 2011-10-24 2015-09-15 Takeda Pharmaceutical Company Limited Bicyclic compound
WO2013110622A1 (en) 2012-01-26 2013-08-01 F. Hoffmann-La Roche Ag Fluoromethyl-5,6-dihydro-4h-[1,3]oxazines
WO2013142613A1 (en) 2012-03-20 2013-09-26 Elan Pharmaceuticals, Inc. Spirocyclic dihydro-thiazine and dihydro-oxazine bace inhibitors, and compositions and uses thereof
WO2013164730A1 (en) 2012-05-04 2013-11-07 Pfizer Inc. Heterocyclic substituted hexahydropyrano [3,4-d] [1,3] thiazin- 2 -amine compounds as inhibitors of app, bace1 and bace 2.
WO2013182638A1 (en) 2012-06-08 2013-12-12 H. Lundbeck A/S 2 -aminothiazinylheteroaryls as bace1 inhibitors for the treatment alzheimer's disease
WO2014001228A1 (en) 2012-06-26 2014-01-03 F. Hoffmann-La Roche Ag Difluoro-hexahydro-cyclopentaoxazinyls and difluoro-hexahydro-benzooxazinyls as bace1 inhibitors
WO2014013076A1 (en) 2012-07-20 2014-01-23 Eisai R&D Management Co., Ltd. Hexahydropyrrolothiazine compounds
WO2014045162A1 (en) 2012-09-20 2014-03-27 Pfizer Inc. ALKYL-SUBSTITUTED HEXAHYDROPYRANO[3,4-d] [1,3]THIAZIN-2-ANIME COMPOUNDS
WO2014059185A1 (en) 2012-10-12 2014-04-17 Amgen Inc. Amino - dihydrothiazine and amino - dioxido dihydrothiazine compounds as beta-secretase antagonists and methods of use
WO2014062553A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014062549A1 (en) 2012-10-17 2014-04-24 Merck Sharp & Dohme Corp. Tricyclic substituted thiadiazine dioxide compounds as bace inhibitors, compositions, and their use
WO2014065434A1 (en) 2012-10-24 2014-05-01 Shionogi & Co., Ltd. Dihydrooxazine or oxazepine derivatives having bace1 inhibitory activity
WO2014066132A1 (en) 2012-10-26 2014-05-01 Eli Lilly And Company Bace inhibitors
WO2014093190A1 (en) 2012-12-14 2014-06-19 Merck Sharp & Dohme Corp. Bace inhibitors of iminothiadiazine dioxides
WO2014097038A1 (en) 2012-12-19 2014-06-26 Pfizer Inc. CARBOCYCLIC- AND HETEROCYCLIC-SUBSTITUTED HEXAHYDROPYRANO[3,4-d][1,3]THIAZIN-2-AMINE COMPOUNDS
WO2014098831A1 (en) 2012-12-19 2014-06-26 Bristol-Myers Squibb Company 4,6-diarylaminothiazines as bace1 inhibitors and their use for the reduction of beta-amyloid production
WO2014099794A1 (en) 2012-12-20 2014-06-26 Merck Sharp & Dohme Corp. C5, c6 oxacyclic-fused iminothiazine dioxide compounds as bace inhibitors
WO2014099788A1 (en) 2012-12-21 2014-06-26 Merck Sharp & Dohme Corp. C5-spiro iminothiadiazine dioxides as bace inhibitors
WO2014114532A1 (en) 2013-01-22 2014-07-31 F. Hoffmann-La Roche Ag Fluoro-[1,3]oxazines as bace1 inhibitors
US20140249104A1 (en) 2013-03-01 2014-09-04 Amgen Inc. Perfluorinated 5,6-dihydro-4h-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
US9296734B2 (en) 2013-03-01 2016-03-29 Amgen Inc. Perfluorinated 5,6-dihydro-4H-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2014138484A1 (en) 2013-03-08 2014-09-12 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
US9085576B2 (en) 2013-03-08 2015-07-21 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
US20150252011A1 (en) 2013-03-08 2015-09-10 Amgen Inc. Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
WO2014166906A1 (en) 2013-04-11 2014-10-16 F. Hoffmann-La Roche Ag Bace1 inhibitors
WO2014173917A1 (en) 2013-04-26 2014-10-30 F. Hoffmann-La Roche Ag Synthesis of bace1 inhibitors
WO2015156421A1 (en) 2014-04-11 2015-10-15 Shionogi & Co., Ltd. Dihydrothiazine and dihydrooxazine derivatives having bace1 inhibitory activity
WO2016001266A1 (en) 2014-07-04 2016-01-07 F. Hoffmann-La Roche Ag Fluoro-[1,3]oxazines as bace1 inhibitors
WO2016022724A1 (en) 2014-08-08 2016-02-11 Amgen Inc. Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
US20160046618A1 (en) 2014-08-08 2016-02-18 Amgen Inc. Cyclopropyl Fused Thiazin-2-Amine Compounds as Beta-Secretase Inhibitors and Methods of Use

Non-Patent Citations (66)

* Cited by examiner, † Cited by third party
Title
"1,9-Dioxa-3-azaspiro[5.5]undec-2-en-2-amine, 4-[2-fluoro-5-[(3-methoxy-2-pyridinyl)amino]phenyl]-4-methyl-, (4S)" CAS No. 1457976-71-4, Chemical Abstracts Service, Columbus, Ohio, USA, p. 1.
Alzforum Networking for a Cure, "Barcelona: Out of Left Field-Hit to the Eye Kills BACE Inhibitor," pp. 1-7 (Mar. 31, 2011); access online: www.alzforum.org/news/conference-coverage/barcelona-out-left-field-hit-eye-kills-bace-inhibitor (last accessed Dec. 16, 2015).
Best, J. D. et al., "Quantitative Measurement of Changes in Amyloid -beta(40) in the Rat Brain and Cerebrospinal Fluid Following Treatment with the gamma-Secretase Inhibitor LY-411575 [N2-[(2S)-2-(3,5-Difluoropheny1)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]L-alaninamide]," Journal of Pharmacology and Experimental Therapeutics 313(2):902-908 (2005).
Best, J. D. et al., "Quantitative Measurement of Changes in Amyloid -β(40) in the Rat Brain and Cerebrospinal Fluid Following Treatment with the γ-Secretase Inhibitor LY-411575 [N2-[(2S)-2-(3,5-Difluoropheny1)-2-hydroxyethanoyl]-N1-[(7S)-5-methyl-6-oxo-6,7-dihydro-5H-dibenzo[b,d]azepin-7-yl]L-alaninamide]," Journal of Pharmacology and Experimental Therapeutics 313(2):902-908 (2005).
Citron, M., "beta-Secretase inhibition for the treatment of Alzheimer's disease-promise and challenge," TRENDS in Pharmacological Sciences 25(2):92-97 (2004).
Citron, M., "β-Secretase inhibition for the treatment of Alzheimer's disease-promise and challenge," TRENDS in Pharmacological Sciences 25(2):92-97 (2004).
Cole, S.L. and Vassar, R., "The Alzheimer's disease beta-secretase enzyme, BACE1," Molecular Neurodegeneration 2(22):1-25 (2007).
Cole, S.L. and Vassar, R., "The Alzheimer's disease β-secretase enzyme, BACE1," Molecular Neurodegeneration 2(22):1-25 (2007).
De Meyer, G. et al., "Diagnosis-Independent Alzheimer Disease Biomarker Signature in Cognitively Normal Elderly People," Arch. Neurol. 67(8):949-956 (2010).
Dovey, H. F. et al., "Functional gamma-secretasae inhibitors reduce beta-amyloid peptide levels in brain," Journal of Neurochemistry 76:173-181 (2001).
Follo, C. et al., "Knock-Down of Cathepsin D Affects the Retinal Pigment Epithelium, Impairs Swim-Bladder Ontogenesis and Causes Premature Death in Zebrafish," PLoS One 6(7):e21908, pp. 1-13 (2011).
Games, D. et al., "Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein," Nature 373:523-527 (1995).
Games, D. et al., "Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein," Nature 373:523-527 (1995).
Götz, J. et al., "Transgenic animal models of Alzheimer's disease and related disorders: histopahtology, behavior and therapy," Molecular Psychiatry 9:664-683 (2004).
Gulnik, S. V. et al. "Design of sensitive fluorogenic substrates for human cathespin D," FEBS Letters 413:379-384 (1997).
Harris, J. A. et al, "Transsynaptic Progression of Amyloid-beta-Induced Neuronal Dysfunction within the Entorhinal-Hippocampal Network," Neuron 68:428-441 (2010).
Harris, J. A. et al, "Transsynaptic Progression of Amyloid-β-Induced Neuronal Dysfunction within the Entorhinal-Hippocampal Network," Neuron 68:428-441 (2010).
Henley, D. B. et al., "Development of semagacestat (LY450139), a functional gamma-secretase inhibitor, for the treatment of Alzheimer's disease," Expert Opin. Pharmacother. 10(10):1657-1664 (2009).
Henley, D. B. et al., "Development of semagacestat (LY450139), a functional γ-secretase inhibitor, for the treatment of Alzheimer's disease," Expert Opin. Pharmacother. 10(10):1657-1664 (2009).
Hilpert, H. et al., "beta-Secretase (BACE1) Inhibitors with High in Vivo Efficacy Suitable for Clinical Evaluation in Alzheimer's Disease," J. Med. Chem. 56(10):3980-3995 (2013).
Hilpert, H. et al., "β-Secretase (BACE1) Inhibitors with High in Vivo Efficacy Suitable for Clinical Evaluation in Alzheimer's Disease," J. Med. Chem. 56(10):3980-3995 (2013).
Hsia, A. Y. et al., "Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models," Proc. Natl. Acad. Sci. USA 96:3228-3233 (1999).
Hsiao, K. et al., "Correlative Memory Deficits, Abeta Elevation, and Amyloid Plaques in Transgenic Mice," Science 274:99-102 (1996).
Hsiao, K. et al., "Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice," Science 274:99-102 (1996).
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2014/019100, issued Sep. 1, 2015, pp. 1-8.
International Preliminary Report on Patentability and Written Opinion for International Patent Application No. PCT/US2014/021412, issued Sep. 8, 2015, pp. 1-7.
International Search Report for International Patent Application No. PCT/US2014/019100, mailed Aug. 5, 2014, pp. 1-6.
International Search Report for International Patent Application No. PCT/US2014/021412, mailed May 13, 2014, pp. 1-3.
International Search Report mailed Nov. 13, 2015 for International Patent Application No. PCT/US2015/043868, pp. 1-4.
Joachim, C. L. and Selkoe, D. J., "The Seminal Role of beta-Amyloid in the Pathogenesis of Alzheimer Disease," Alzheimer Disease and Associated Disorders 6(1):7-34 (1992).
Joachim, C. L. and Selkoe, D. J., "The Seminal Role of β-Amyloid in the Pathogenesis of Alzheimer Disease," Alzheimer Disease and Associated Disorders 6(1):7-34 (1992).
Karran, E. et al. "The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics," Nature Reviews Drug Discovery 10:698-712 (2011).
Koike, M. et al., "Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice," Molecular and Cellular Neuroscience 22:146-161 (2003).
Luo, Y et al., "Mice deficient in BACE1, the Alzheimer's beta-secretase, have normal phenotype and abolished beta-amyloid generation," Nature Neuroscience 4:231-232 (2001).
Luo, Y et al., "Mice deficient in BACE1, the Alzheimer's β-secretase, have normal phenotype and abolished β-amyloid generation," Nature Neuroscience 4:231-232 (2001).
May, P. C. et al., "Robust Central Reduction of Amyloid-beta in Humans with an Orally Available, Non-Peptidic beta-Secretase Inhibitor," Journal of Neuroscience 31(46):16507-16516 (2011).
May, P. C. et al., "Robust Central Reduction of Amyloid-β in Humans with an Orally Available, Non-Peptidic β-Secretase Inhibitor," Journal of Neuroscience 31(46):16507-16516 (2011).
Notice of Allowance mailed Oct. 15, 2015 for U.S. Appl. No. 14/192,710, filed Feb. 27, 2014, pp. 1-7.
Office Action mailed May 22, 2015 for U.S. Appl. No. 14/691,715, filed Apr. 21, 2015, pp. 1-5.
Palop, J. J. and Mucke, L., "Amyloid-beta-induced neuronal in Alzheimer's disease: from synapses toward neural networks," Nature Neuroscience 13(7):812-818 (2010).
Palop, J. J. and Mucke, L., "Amyloid-β-induced neuronal in Alzheimer's disease: from synapses toward neural networks," Nature Neuroscience 13(7):812-818 (2010).
Sabbagh, M. N. et al., "beta-Amyloid and Treatment Opportunities for Alzheimer's Disease," Alzheimer's Disease Review 3:1-19 (1997).
Sabbagh, M. N. et al., "β-Amyloid and Treatment Opportunities for Alzheimer's Disease," Alzheimer's Disease Review 3:1-19 (1997).
Selkoe, D. J., "Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior," Behavioural Brain Research 192:106-113 (2008).
Selkoe, D. J., "Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior," Behavioural Brain Research 192:106-113 (2008).
Selkoe, D. J., "The Molecular Pathology of Alzheimer's Disease," Neuron 6:487-498 (1991).
Seubert, P. et al., "Isolation and quantification of soluble Alzheimer's beta-peptide from biological fluids," Nature 359:325-327 (1992).
Seubert, P. et al., "Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids," Nature 359:325-327 (1992).
Shacka, J. J. and Roth, K. A., "Cathepsin D Deficiency and NCL/Batten Disease: There's More to Death than Apoptosis," Autophagy, 3(5):474-476 (2007).
Shankar, G. M. et al., "Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory," Nature Medicine 14(8):837-842 (2008).
Shankar, G. M. et al., "Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory," Nature Medicine 14(8):837-842 (2008).
Siemers, E. R. et al., "Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer's disease," Neurology 66:602-604 (2006).
Siemers, E. R. et al., "Effects of a γ-secretase inhibitor in a randomized study of patients with Alzheimer's disease," Neurology 66:602-604 (2006).
Siemers, E. R. et al., "Safety, Tolerability, and Effects on Plasma and Cerebrospinal Fluid Amyloid-beta After Inhibition of gamma-Secretase," Clin. Neuropharmacol. 30(6):317-325 (2007).
Siemers, E. R. et al., "Safety, Tolerability, and Effects on Plasma and Cerebrospinal Fluid Amyloid-β After Inhibition of γ-Secretase," Clin. Neuropharmacol. 30(6):317-325 (2007).
Sinha, S. et al., "Purification and cloning of amyloid precursor protein beta-secretase from human brain," Nature 402:537-540 (1999).
Sinha, S. et al., "Purification and cloning of amyloid precursor protein β-secretase from human brain," Nature 402:537-540 (1999).
Tanzi, R. E. and Bertram, L., "Twenty Years of the Alzheimer's Disease Amyloid Hypothesis: A Genetic Perspective," Cell 120(4): 545-555 (2005).
U.S. Appl. No. 14/932,787, filed Nov. 4, 2012, Amgen Inc.
Vassar, R. and Yan, R., "Targeting the beta secretase BACE1 for Alzheimer's disease therapy," Lancet Neurology 13:319-329 (2014).
Vassar, R. and Yan, R., "Targeting the β secretase BACE1 for Alzheimer's disease therapy," Lancet Neurology 13:319-329 (2014).
Vassar, R. et al, "The beta-Secretase Enzyme BACE in Health and Alzheimer's Disease: Regulation, Cell Biology, Function, and Therapeutic Potential," Journal of Neuroscience 29(41):12787-12794 (2009).
Vassar, R. et al, "The β-Secretase Enzyme BACE in Health and Alzheimer's Disease: Regulation, Cell Biology, Function, and Therapeutic Potential," Journal of Neuroscience 29(41):12787-12794 (2009).
Walsh, D. M. and Selkoe, D. J., "Deciphering the Molecular Basis of Memory Failure in Alzheimer's Disease," Neuron 44(1):181-193 (2004).
Written Opinion of the International Searching Authority mailed Nov. 13, 2015 for International Patent Application No. PCT/US2015/043868, pp. 1-6.
Yasuda, Y. et al., "Characterization of New Fluorogenic Substrates for the Rapid and Sensitive Assay of Cathepsin E and Cathepsin D," J. Biochem. 125(6):1137-1143 (1999).

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10246429B2 (en) 2015-08-06 2019-04-02 Amgen Inc. Vinyl fluoride cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use

Also Published As

Publication number Publication date
TWI614250B (zh) 2018-02-11
AR101483A1 (es) 2016-12-21
AU2015301028B2 (en) 2019-09-26
JP6576433B2 (ja) 2019-09-18
MX2017001794A (es) 2017-06-29
CA2957544C (en) 2023-01-24
UY36263A (es) 2016-02-29
US20160046618A1 (en) 2016-02-18
US20170267673A1 (en) 2017-09-21
CN106795147A (zh) 2017-05-31
WO2016022724A1 (en) 2016-02-11
CN106795147B (zh) 2020-09-22
CA2957544A1 (en) 2016-02-11
JP2017523223A (ja) 2017-08-17
TW201619154A (zh) 2016-06-01
JO3569B1 (ar) 2020-07-05
AU2015301028A1 (en) 2017-03-09
EP3177618A1 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
US9611261B2 (en) Perfluorinated cyclopropyl fused 1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
US9550762B2 (en) Cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
US10246429B2 (en) Vinyl fluoride cyclopropyl fused thiazin-2-amine compounds as beta-secretase inhibitors and methods of use
US9296734B2 (en) Perfluorinated 5,6-dihydro-4H-1,3-oxazin-2-amine compounds as beta-secretase inhibitors and methods of use
US9556135B2 (en) Amino-dihydrothiazine and amino-dioxido dihydrothiazine compounds as beta-secretase antagonists and methods of use
TWI781920B (zh) 化合物、組合物及方法
IL268469A (en) 2-Troaril-3-oxo-3,2-dihydropyridazine-4-carboxamides for the treatment of cancer
CA3047290A1 (en) 1,4-thiazine dioxide and 1,2,4-thiadiazine dioxide derivatives as beta-secretase inhibitors and methods of use
US9096615B2 (en) Bridged bicyclic amino thiazine dioxide compounds as inhibitors of beta-secretase and methods of use thereof
US9309263B2 (en) Fused multi-cyclic sulfone compounds as inhibitors of beta-secretase and methods of use thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMGEN INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ALLEN, JENNIFER R;AMEGADZIE, ALBERT;BOURBEAU, MATTHEW P;AND OTHERS;SIGNING DATES FROM 20150922 TO 20151031;REEL/FRAME:037185/0023

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4