US8872733B2 - Liquid crystal display device, multi-display device, method for determining light intensity, and storage medium - Google Patents

Liquid crystal display device, multi-display device, method for determining light intensity, and storage medium Download PDF

Info

Publication number
US8872733B2
US8872733B2 US13/447,408 US201213447408A US8872733B2 US 8872733 B2 US8872733 B2 US 8872733B2 US 201213447408 A US201213447408 A US 201213447408A US 8872733 B2 US8872733 B2 US 8872733B2
Authority
US
United States
Prior art keywords
liquid crystal
display device
crystal display
segments
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/447,408
Other languages
English (en)
Other versions
US20120268350A1 (en
Inventor
Hideyoshi Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Assigned to SHARP KABUSHIKI KAISHA reassignment SHARP KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOSHIMURA, HIDEYOSHI
Publication of US20120268350A1 publication Critical patent/US20120268350A1/en
Application granted granted Critical
Publication of US8872733B2 publication Critical patent/US8872733B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/026Video wall, i.e. juxtaposition of a plurality of screens to create a display screen of bigger dimensions
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a liquid crystal display device and the like for use in a multi-display device, in which a plurality of liquid crystal display devices are adjacently arranged so as to display a large screen.
  • transmissive liquid crystal display devices are known as image display means.
  • the transmissive liquid crystal display device is provided with a non-self-luminous liquid crystal panel and thus requires a backlight device.
  • a cold cathode fluorescent lamp CCFL
  • a backlight device including a LED as a light source is widely used, which is free from disadvantages of a cold cathode fluorescent lamp, such as environmental pollution caused by mercury, or slower response speed.
  • the backlight device including a LED as a light source can also achieve a partial drive such as local dimming to improve a contrast ratio of an image. The local dimming will be described below.
  • the “local dimming” is a process in which (i) a backlight device is divided into segments (blocks) each having its light source and (ii) a light intensity of each of the segments is adjusted based on a luminance component of an image to be displayed in a corresponding area of a liquid crystal panel, which corresponding area is irradiated with light emitted from the segment. That is, in the liquid crystal display device which employs local dimming, a light intensity of a segment corresponding to an area displaying a bright image can be increased, whereas a light intensity of a segment corresponding to an area displaying a dark image can be decreased.
  • the liquid crystal display device which employs local dimming can thus display an image of a higher contrast ratio in which a bright image displaying area is displayed brighter and a dark image displaying area is displayed darker.
  • the liquid crystal display device which employs local dimming has a disadvantage described below, in a case where, for example, one area displaying white and black images and another area displaying only a black image are adjacent to each other. That is, a light intensity of a segment corresponding to the area displaying white and black images is adjusted to a value in accordance with the white image (with high luminance), whereas a light intensity of a segment corresponding to the area displaying only a black image is adjusted to a value in accordance with the black image (with low luminance).
  • Patent Literature 1 discloses a technique in which a luminance is gradually changed for each of adjacent areas.
  • Patent Literature 2 discloses a technique to prevent light emitted by one of adjacent projectors from being displayed on a screen corresponding to the other of the adjacent projectors, so that adjustment between screens can be easily carried out.
  • Patent Literature 3 discloses a technique in which (i) enlarged images for respective of a plurality of displays are projected such that the enlarged images partially overlap each other, and (ii) a luminance of an overlap image area and a luminance of a non-overlap image area are controlled to be equal to each other so as to eliminate a difference in luminance in the overlap part.
  • Patent Literature 4 discloses a technique in which (i) an original image is divided into a plurality of areas and (ii) a projection image corresponding to the original image is obtained on a single screen by combining images of the respective plurality of areas while partially overlapping adjacent images.
  • the technique based on the local dimming in which light intensities are determined by calculating light intensities of respective segments and by correcting the light intensities, has been directed to a device having a single liquid crystal display. Therefore, in a case where the technique based on the local dimming is used in a multi-display device including a plurality of liquid crystal display devices set in array, there occurs a problem described below.
  • each of the plurality of liquid crystal display devices determines light intensities of respective segments in the liquid crystal display device by (i) calculating light intensities of the respective segments by referring to data of an image to be displayed by the liquid crystal display device itself and then (ii) correcting the calculated light intensities of the respective segments such that light intensities of adjacent segments do not excessively differ from each other.
  • the following discusses a case where, for example, an image of a light-emitting object (which is a ball having high luminance) in the dark is displayed on a display panel of an upper left one of four liquid crystal display devices, which are arranged in a matrix of 2 ⁇ 2 and constitute a multi-display device (see FIG. 15 ).
  • the light-emitting object is displayed in the vicinity of bezels 111 (hereinafter, referred to as “panel border bezel 111 ”) corresponding to borders between display panels of the respective four liquid crystal display devices.
  • panel border bezel 111 In the upper left liquid crystal display device, light intensities of respective segments are determined (calculated and corrected) by taking into consideration the image of the light-emitting object.
  • the multi-display device which carries out the conventional local dimming has a problem that the multi-display device as a whole displays an image that appears unnatural.
  • Patent Literatures 2 through 4 are related to a multi-display device of a screen-projection type, and accordingly no local dimming is carried out. Therefore, the techniques disclosed in Patent Literatures 2 through 4 cannot solve the problem of a multi-display device having a plurality of liquid crystal display devices.
  • the present invention is accomplished in view of the problem, and an object of the present invention is to provide a liquid crystal display device for use in a multi-display device made up of a plurality of liquid crystal display devices set in array, which liquid crystal display device allows (i) suppression of electric power consumption and (ii) prevention of the multi-display device as a whole from displaying an image that appears unnatural.
  • a liquid crystal display device of the present invention is a liquid crystal display device for use in a multi-display device made up of a plurality of liquid crystal display devices set in array, the liquid crystal display device includes: a display panel for displaying an image; a backlight device which is provided in back of the display panel and is divided into segments having respective light sources, the backlight device being capable of illuminating at a light intensity adjustable for each of the segments; a receiving section for receiving image data indicative of an image to be displayed on the display panel; and a light intensity determining section for determining a light intensity at which the backlight device illuminates for each of the segments of the backlight device, in a case where the receiving section receives peripheral display image data, the light intensity determining section determining the light intensity of each of the segments based on the image data and the peripheral display image data, the peripheral display image data being indicative of an image, which (i) is contiguous to the image to be displayed on the display panel and (ii) is to be displayed on at least part of
  • the configuration allows suppression of an increase in average electric power consumption, as compared to a case where a background luminance is maintained by causing at least segments to emit light in the vicinity of panel border bezels as early described. Moreover, even in the vicinity of the panel border bezels, it is possible to cause (i) an area for displaying a bright image to be brighter and (ii) another area for displaying a dark image to be darker. It is therefore possible to display an image with a higher contrast ratio of bright and dark, as compared to the case where the background luminance in the vicinity of the panel border bezels is maintained.
  • the configuration of the present invention it is not necessary to maintain the background luminance by causing the segments to emit light in the vicinity of the panel border bezels, unlike the case where a background luminance is maintained by causing the segments to slightly emit light in the vicinity of the panel border bezels.
  • electric power can be consumed by segments (whose number is smaller than that of the segments in the vicinity of the panel border bezels) for emitting light at maximum output, instead of being consumed for maintaining the background luminance.
  • FIG. 1 is a block diagram illustrating a multi-display device of an embodiment of the present invention.
  • FIG. 2 is a plane view illustrating a liquid crystal panel and a backlight device having segments.
  • FIG. 3 is a plane view illustrating a single segment.
  • FIG. 4 is a view illustrating a flow of processes for determining light intensity and a transmittance of liquid crystal.
  • FIG. 5 is a view illustrating an example of minimum light intensities of respective of a target segment and peripheral segments, in a case where a necessary light intensity of the target segment is 255.
  • FIG. 6 is a view illustrating an example of minimum light intensities of respective of a target segment and peripheral segments, in a case where a necessary light intensity of the target segment is 64.
  • FIG. 7 is a view illustrating an example of coefficients used to carry out a convolution operation.
  • FIG. 8 is a view for explaining a case where peripheral display image data is used to determine a light intensity of a target segment.
  • FIG. 9 is a view for explaining a case where a light intensity of a target segment is determined without using peripheral non-display image data.
  • FIG. 10 ( a ) is a view for explaining a case where outermost bezel information is set when a light intensity of a target segment is determined.
  • FIG. 10 ( b ) is a view for explaining a case where virtual segments cannot be set in a received extended image, when a light intensity of a target segment is determined.
  • FIG. 11 is a view for explaining a case where virtual segments can be set in a part of a received extended image but cannot be set in another part of the received extended image, when a light intensity of a target segment is determined.
  • FIG. 12 is a view for explaining a relation between a liquid crystal panel, a display image displayed on the liquid crystal panel, and a peripheral image containing a peripheral display image and a peripheral non-display image.
  • FIG. 13 is a view illustrating an example in which an image of a light-emitting object is displayed by a multi-display device of an embodiment of the present invention.
  • FIG. 14 is a view illustrating an example of a display carried out while a background luminance is maintained.
  • FIG. 15 is a view illustrating an example in which an image of a light-emitting object is displayed by a conventional multi-display device.
  • a multi-display device 1 of the present embodiment includes four liquid crystal display devices 30 (see FIG. 1 ).
  • the four liquid crystal display devices 30 include respective liquid crystal panels 11 , and the liquid crystal panels 11 are arranged in a matrix of 2 ⁇ 2 in the multi-display device 1 .
  • the number of the liquid crystal display devices 30 is not limited to four, and therefore the present embodiment is suitably applicable to a multi-display device 1 including at least two liquid crystal display devices 30 .
  • liquid crystal display devices 30 In the descriptions below, in a case where the four liquid crystal display devices 30 are distinguishingly referred to, symbols “ 30 A”, “ 30 B”, “ 30 C”, and “ 30 D” are given to the respective four liquid crystal display devices 30 .
  • the liquid crystal display devices 30 A through 30 D have identical configurations, and therefore the same numerals are given to the same constituent members of each of the liquid crystal display devices 30 A through 30 D. Note, however, that, in a case where the same constituent members are distinguishingly referred to for each of the liquid crystal display devices 30 A through 30 D, symbols A through D are given to also the corresponding constituent members.
  • a term “liquid crystal display device 30 ” is used to mean a representative one of the four liquid crystal display devices 30 .
  • the liquid crystal display device 30 is a transmissive liquid crystal display device and includes (i) a display section 10 made up of a liquid crystal panel (display panel) 11 and a backlight device 12 and (ii) a display control section 20 for controlling the display section 10 .
  • a display control section 20 included in a liquid crystal display device 30 is configured to control a display section 10 included in the same liquid crystal display device 30 , even though not specifically described as such.
  • each block of the display control section 20 carries out a process for the liquid crystal display device 30 in which the display control section 20 is included.
  • the liquid crystal panel 11 of the present embodiment has horizontal 1368 pixels ⁇ vertical 768 pixels (see FIG. 2 ).
  • the backlight device 12 is a direct illumination device, which is provided in back of the liquid crystal panel 11 so as to irradiate the liquid crystal panel 11 with light.
  • the backlight device 12 is divided into segments 120 having respective light sources (see FIG. 2 ).
  • the backlight device 12 is divided into horizontal 24 segments ⁇ vertical 12 segments, i.e., 288 segments 120 .
  • light intensities of the respective segments 120 can be determined. That is, a light intensity control in a local dimming process is carried out for each of the segments 120 .
  • the segments 120 are arranged in a uniform matrix manner with respect to the entire liquid crystal panel 11 (see FIG. 2 ).
  • Each of the segments 120 faces (corresponds to) an area of horizontal 57 pixels ⁇ vertical 64 pixels.
  • the area of horizontal 57 pixels ⁇ vertical 64 pixels belongs to one (1) segment 120 .
  • the area of horizontal 57 pixels ⁇ vertical 64 pixels facing the one (1) segment 120 is referred to as “area 110 ”.
  • the areas 110 correspond to the respective segments 120 . That is, the liquid crystal panel 11 is divided into the areas 110 , whose number is the same as the number (i.e., 288 in the present embodiment) of the segments 120 .
  • Each of the segments 120 includes (i) a light source 12 a made up of five white LEDs (light emitting diodes) and (ii) a substrate 12 b on which the light source 12 a is mounted (see FIG. 3 ). With the configuration, each of the segments 120 serves as a backlight. In the present embodiment, one (1) segment 120 includes the five white LEDs as the light source 12 a . Note, however, that the number of the LEDs is not limited to five.
  • the light source 12 a is driven by a light source driver (not illustrated), and a light intensity of the light source 12 a is adjusted by modulating (i) a pulse width of a driving electric current and (ii) an amount of the driving electric current.
  • a light intensity of the segment 120 indicates a light intensity of the light source 12 a provided in the segment 120 .
  • a phrase “the segment 120 is turned on” means that the light source 12 a provided in the segment 120 is turned on.
  • the display control section 20 is a block for controlling the display section 10 of the liquid crystal display device 30 .
  • the display control section 20 includes a receiving section 21 , a light intensity determining section 22 , a peripheral data deleting section 23 , a transmittance determining section 24 , a detecting section 25 , and a storage section 26 (see FIG. 1 ).
  • the receiving section 21 is a block for carrying out a receiving step for receiving data of an image, which has been externally supplied and is to be displayed on the liquid crystal panel 11 of the liquid crystal display device 30 .
  • the image displayed on the liquid crystal panel 11 is referred to as “display image” and the data of the display image is referred to as “display image data”.
  • the receiving section 21 processes the received image data so that the received image data accords with a resolution of the liquid crystal panel 11 .
  • the light intensity determining section 22 is a block for carrying out a light intensity determining step for determining light intensities of the respective segments 120 of the backlight device 12 included in the liquid crystal display device 30 .
  • the light intensity determining section 22 determines light intensities of the respective segments 120 based on the display image data and the peripheral display image data.
  • the peripheral display image is a data indicative of an image (hereinafter, referred to as “peripheral display image”) to be displayed in at least part of a liquid crystal panel 11 of another liquid crystal display device 30 , which is provided in the multi-display device 1 and located around the liquid crystal display device 30 including that receiving section 21 .
  • FIG. 12 an outer frame of the multi-display device 1 is indicated by a dotted line, and outer frames of liquid crystal panels 11 A through 11 D of the respective liquid crystal display devices 30 A through 30 D are indicated by thick lines.
  • the following description will discuss a case of the liquid crystal display device 30 C.
  • the receiving section 21 C receives display image data to be displayed on the liquid crystal panel 11 C and data of a peripheral image around the display image.
  • the data of the peripheral image is referred to as “peripheral image data”
  • an image made up of the display image and the peripheral image is referred to as “extended image”.
  • the extended image is indicated as an area outlined by a thin line.
  • the peripheral image is an image contiguous to the display image displayed on the liquid crystal panel 11 C, and contains (i) peripheral display images to be displayed on the respective liquid crystal panels 11 A, 11 B, and 11 D of the liquid crystal display devices 30 A, 30 B, and 30 D located around the liquid crystal display device 30 C and (ii) a peripheral non-display image (shaded by oblique lines in FIG. 12 ) which is not displayed by the multi-display device 1 .
  • the light intensity determining section 22 C determines light intensities of respective segments 120 in the liquid crystal display device 30 C based on the display image data and the peripheral display image data.
  • the liquid crystal display device 30 determines light intensities of the respective segments 120 by the use of the display image data and the peripheral display image data.
  • the peripheral display image data is data of an image which (i) is contiguous to the display image displayed on the liquid crystal panel 11 of the liquid crystal display device 30 and (ii) is to be displayed in at least part of the other liquid crystal panels 11 of the other liquid crystal display devices 30 , which are provided in the multi-display device 1 and located around that liquid crystal display device 30 . This allows determination of the light intensities such that a difference in light intensity does not become too large (i) between adjacent segments 120 in one (1) liquid crystal display device 30 or (ii) between adjacent segments 120 across liquid crystal display devices 30 adjacent to each other.
  • a light-emitting object 3 (which is an image having high luminance) resides in a peripheral display image displayed on the liquid crystal panel 11 B of the liquid crystal display device 30 B (see FIG. 13 )
  • light intensities of segments 120 are determined based on corresponding display image data and corresponding peripheral display image data.
  • liquid crystal display device 30 of the present embodiment light can be emitted by only necessary segments 120 .
  • This allows suppression of average electric power consumption of the multi-display device 1 , as compared to a case where a background luminance is maintained by causing at least segments 120 to emit light in the vicinity of bezels (panel border bezels) 111 corresponding to borders between the liquid crystal panels 11 (see FIG. 14 ).
  • it is possible to cause (i) an area 110 for displaying a bright image to be brighter and (ii) another area 110 for displaying a dark image to be darker. It is therefore possible to display an image with a higher contrast ratio of bright and dark, as compared to the case where the background luminance in the vicinity of the panel border bezels 111 is maintained.
  • the liquid crystal display device 30 of the present embodiment it is not necessary to maintain the background luminance by causing segments to emit light in the vicinity of the panel border bezels 111 , unlike the case where a background luminance is maintained by causing the segments to slightly emit light in the vicinity of the panel border bezels 111 .
  • electric power otherwise consumed for maintaining the background luminance can be consumed by segments 120 (whose number is smaller than that of the segments in the vicinity of the panel border bezels 111 ) for emitting light at maximum output.
  • the light intensity determining section 22 determines light intensities of the respective segments 120 by (i) calculating light intensities of the respective segments 120 on the basis of a local dimming technique and then (ii) correcting the calculated light intensities such that light intensities of adjacent segments 120 do not largely differ from each other. That is, the light intensity determining section 22 corrects light intensities, with the use of the display image data and the peripheral image data, such that a difference in light intensity between the adjacent segments 120 becomes smaller by the correction. This allows the entire multi-display device 1 to display an image, in which luminance varies smoothly. Note that the process of determining light intensities will be described later in detail.
  • the peripheral data deleting section 23 is a block for deleting the peripheral display image data, after the light intensity determining section 22 calculates light intensities of the respective segments 120 .
  • the peripheral display image data is data of a peripheral image, which is located around the display image displayed by the liquid crystal panel 11 of the liquid crystal display device 30 . That is, the peripheral image is not displayed by the liquid crystal panel 11 which displays the display image. Therefore, the peripheral display image data is not needed after the light intensities of the respective segments 120 are calculated.
  • the peripheral data deleting section 23 deletes the peripheral display image data as above, and therefore the storage section 26 does not need to consistently hold the peripheral display image data. This allows a reduction in capacity of the storage section 26 . Further, in a case where the receiving section 21 receives peripheral non-display image data, the peripheral data deleting section 23 also deletes the peripheral non-display image data.
  • the peripheral display image data is not necessary for the liquid crystal panel 11 which displays the display image data. Therefore, the peripheral data deleting section 23 deletes the peripheral display image data so that only the display image data remains. Then, the display control section 20 controls the liquid crystal panel 11 to display only the display image data. Note that, in the present embodiment, the display image data and the peripheral display image data are received together by the receiving section 21 . However, the present embodiment is not limited to this, and therefore the display image data and the peripheral display image data may be received separately by the receiving section 21 .
  • the peripheral data deleting section 23 deletes the peripheral display image data and the peripheral non-display image data so that only the display image data remains.
  • the display image data, the peripheral display image data, and the peripheral non-display image data are received together by the receiving section 21 .
  • the present embodiment is not limited to this, and therefore the display image data, the peripheral display image data, and the peripheral non-display image data may be received separately by the receiving section 21 .
  • the display image data and the peripheral display image data are once stored in a volatile storage area, and then only the display image data is subjected to a conversion of video output rate and read out from the volatile storage area.
  • the display control section 20 sends, to the backlight device 12 , data indicative of the light intensities of the respective segments 120 determined by the light intensity determining section 22 .
  • the backlight device 12 controls the light sources 12 a of the respective segments 120 to emit light based on the received data indicative of the light intensities of the respective segments 120 .
  • the backlight device 12 controls the light sources 12 a such that the light emitted from the segments 120 is in sync with the display image data displayed on the liquid crystal panel 11 .
  • the display control section 20 controls the liquid crystal panel 11 to display the display image data, which has not been deleted by the peripheral data deleting section 23 .
  • the display control section 20 (i) generates, based on the display image data, a control signal and a video signal for respective of a source driver and a gate driver which drive the TFTs and then (ii) supplies the control signal and the video signal to the source driver and the gate driver, respectively.
  • TFT Thin Film Transistor
  • the transmittance determining section 24 determines transmittances for the respective plurality of pixels included in the liquid crystal panel 11 of the liquid crystal display device 30 .
  • the transmittance determining section 24 determines a transmittance of liquid crystal for a target pixel based on a light intensity, determined by the light intensity determining section 22 , of a segment 120 which faces the target pixel.
  • the display control section 20 controls liquid crystal for the plurality of pixels such that the liquid crystal for each of the plurality of pixels has a corresponding determined transmittance.
  • the detecting section 25 detects whether or not the receiving section 21 has received the peripheral display image data.
  • the light intensity determining section 22 determines light intensities of the respective segments 120 such that (i) a lowest one of light intensities of all the segments 120 of the backlight device 12 included in the liquid crystal display device 30 does not become zero or (ii) a lowest one of light intensities of segments 120 in the vicinity of the panel border bezels 111 does not become zero.
  • At least segments 120 in the vicinity of the panel border bezels 111 (slightly) emit light for maintaining a background luminance, and therefore (i) all the entire liquid crystal panels 11 are slightly brightened (see FIG. 14 ) or (ii) the vicinity of the panel border bezels 111 is slightly brightened.
  • the receiving section 21 receives, as black image data or data having no image, the peripheral non-display image data indicative of an image which is contiguous to the display image but is not displayed on any of the liquid crystal panels 11 of the respective liquid crystal display devices 30 . Therefore, even if the light intensity determining section 22 determines light intensities of the respective segments 120 with the use of the peripheral non-display image data, the peripheral non-display image data does not affect the determination of the light intensities of the respective segments 120 , since the peripheral non-display image data is the black image data or the data having no image. This makes it possible to prevent the peripheral non-display image data from being used to determine the light intensities of the respective segments 120 .
  • the peripheral non-display image data is indicative of the image outside of a bezel of the liquid crystal panel 11 , which bezel does not abut on any of the other liquid crystal panels 11 . That is, the peripheral non-display image data (i) is indicative of the image outside of a bezel (outermost bezel) 112 , which corresponds to an outer frame of the multi-display device 1 , and (ii) is not necessary for determining the light intensities of the respective segments 120 . That is, even in a case where the peripheral non-display image data contains data of an image with high luminance, this image does not need to be considered for determining the light intensities of the respective segments 120 because the image will not be displayed. Note that the peripheral non-display image data may contain image size information and information indicative of an area for displaying image, with which pieces of information the peripheral non-display image data can be recognized as data of image not to be displayed.
  • the light intensity determining section 22 may be configured to determine light intensities without using the peripheral non-display image data, even in a case where the peripheral non-display image data has been received by the receiving section 21 .
  • This configuration can be achieved by setting, in advance, each of the receiving sections 21 to recognize which sides of a corresponding liquid crystal panel 11 abut on adjacent liquid crystal panels 11 .
  • the peripheral non-display image data is not used to determine the light intensities of the respective segments 120 . This allows the light intensities of the respective segments 120 to be determined without carrying out an unnecessary process.
  • the liquid crystal display device 30 of the present embodiment is not limited to a liquid crystal display device which constitutes a part of the multi-display device 1 from the beginning. That is, the liquid crystal display device 30 of the present embodiment may be a liquid crystal display device which can be used as a part of the multi-display device 1 later. In such a case, the liquid crystal display device 30 (i) has outermost bezels 112 corresponding to four sides of the liquid crystal display device 30 , and (ii) serves as a liquid crystal display device in which ordinary local dimming for a single liquid crystal display device is carried out.
  • the liquid crystal display device 30 of the present embodiment can be used as a single liquid crystal display device which can be used to constitute a part of the multi-display device 1 later so as to attain the object of the present invention in combination with the other liquid crystal display devices 30 .
  • target segment 120 a a segment 120 whose light intensity is to be determined and (ii) for determining transmittance of liquid crystal for pixels belonging to the target segment 120 a , with reference to a flowchart illustrated in FIG. 4 .
  • a necessary light intensity of the target segment 120 a is calculated.
  • the necessary light intensity is calculated by the use of a statistic (such as an average, a median, or a largest value) of luminance components of an image displayed in an area 110 (hereinafter, referred to as “target area 110 a ”) corresponding to the target segment 120 a .
  • the necessary light intensity is calculated by the use of a largest value among the luminance components.
  • luminance means a scale of brightness (e.g., a photometric value) of an actually displayed image.
  • luminance component means a value indicative of brightness of image, which brightness is calculated based on image data.
  • each of the segments 120 faces an area 110 made up of 57 pixels ⁇ 64 pixels in the liquid crystal panel 11 .
  • a second step minimum light intensities are calculated for respective of the target segment 120 a and segments 120 (hereinafter, referred to as “peripheral segment 120 aa ”) around the target segment 120 a .
  • minimum light intensities of respective of the target segment 120 a and the peripheral segments 120 aa are defined with respect to the necessary light intensity of the target segment 120 a .
  • the peripheral segments 120 aa are a plurality of segments located around the target segment 120 a.
  • Light emitted from the light source 12 a is controlled for each of colors RGB in each pixel by controlling a corresponding transmittance of liquid crystal.
  • light-shielding property of liquid crystal is limited, and therefore light transmission cannot be completely prevented by the control of the liquid crystal. Since the light is transmitted as such, a difference in black level is caused between (i) one area 110 corresponding to a light-emitting segment 120 and (ii) another area 110 corresponding to a non-light-emitting segment 120 , even though RGB values in both the one area 110 and the another area 110 are zero.
  • a light intensity is calculated, based on the necessary light intensity, for causing the target segment 120 a and the peripheral segments 120 aa to slightly emit light so that such a difference in black level is hardly recognized.
  • the process of the step S 2 is carried out in order to complement the light intensity of the target segment 120 a by utilizing light (peripheral light) emitted by the peripheral segments 120 aa.
  • minimum light intensities of respective 7 ⁇ 7 segments i.e., the target segment 120 a and the peripheral segments 120 aa ) centered on the target segment 120 a are stored in the storage section 26 (e.g., a nonvolatile memory) in advance. Then, the minimum light intensities, corresponding to the necessary light intensity of the target segment 120 a , of respective of the target segment 120 a and the peripheral segments 120 aa are read out from the storage section 26 .
  • FIG. 5 is a view illustrating an example of minimum light intensities of respective of the target segment 120 a and the peripheral segments 120 aa , in a case where the necessary light intensity of the target segment 120 a is 255.
  • FIG. 6 is a view illustrating an example of minimum light intensities of respective of the target segment 120 a and the peripheral segments 120 aa , in a case where the necessary light intensity of the target segment 120 a is 64.
  • a value located at (x, y) indicates a minimum light intensity of the target segment 120 a
  • values located other than (x, y) indicate minimum light intensities of the respective peripheral segments 120 aa.
  • Those minimum light intensities are, in advance, (i) calculated by (a) combining the backlight device 12 with the liquid crystal panel 11 and (b) measuring luminances of surfaces of respective areas 110 with respect to light intensities of the respective segments 120 , and then (ii) stored in the storage section 26 as characteristic values.
  • the minimum light intensities are approximated to Gaussian distribution, and therefore the minimum light intensities may be calculated as needed based on coefficients of the Gaussian distribution, which have been stored in the storage section 26 as characteristic values.
  • a third step (S 3 ) the light intensity of the target segment 120 a is calculated.
  • the light intensity of the target segment 120 a is defined by a largest light intensity among the minimum light intensities assigned to respective of the target segment 120 a and the peripheral segments 120 aa . That is, a largest light intensity among the minimum light intensities assigned to a maximum of 49 segments 120 (including the target segment 120 a ) is set to the light intensity of the target segment 120 a .
  • the light intensity of the target segment 120 a is calculated for each of all the segments 120 contained in the liquid crystal display device 30 . Note that the backlight device 12 controls the light sources 12 a of the respective segments 120 so that the segments 120 have the respective light intensities which have been calculated as above described.
  • a total light intensity of the target segment 120 a is calculated.
  • the “total light intensity” is an intensity of light which is actually emitted outside through the target area 110 a corresponding to the target segment 120 a .
  • the total light intensity is calculated by carrying out a convolution operation with respect to the light intensities of the respective 7 ⁇ 7 segments (i.e., the target segment 120 a and the peripheral segments 120 aa ) centered on the target segment 120 a .
  • coefficients used in the convolution operation are, in advance, (i) calculated by (a) combining the backlight device 12 with the liquid crystal panel 11 and (b) measuring luminances of surfaces of respective areas 110 with respect to the light intensities of the respective segments 120 , and then (ii) stored in the storage section 26 as characteristic values.
  • FIG. 7 is a view illustrating an example of coefficients used to carry out the convolution operation.
  • “a” in FIG. 7 is “1275”.
  • a fifth step (S 5 ) transmittances of liquid crystal for the respective pixels are determined (calculated).
  • a transmittance for a pixel (target pixel) is calculated based on a total light intensity of a segment 120 facing the target pixel.
  • the transmittance for the target pixel is calculated, based on the total light intensity of the segment 120 to which the target pixel belongs, such that light necessary for each of the colors RGB is transmitted.
  • the display control section 20 controls the liquid crystal of the pixels so that the liquid crystal of the pixels has transmittances calculated for the respective pixels.
  • the target segment 120 a is included in the liquid crystal display device 30 A, and some of the peripheral segments 120 aa are included in the liquid crystal display device 30 B but are located next to the target segment 120 a via the panel border bezel 111 .
  • the target segment 120 a needs to slightly emit light so that a difference in black level between an area corresponding to the target segment 120 a and the area corresponding to the peripheral segments 120 aa is hardly recognized, even though a necessary light intensity of the target segment 120 a is zero.
  • This control requires information regarding an imaged to be displayed on the liquid crystal panel 11 B.
  • the receiving section 21 receives, from outside, data of an extended image (made up of a display image and a peripheral image) having a size of 1920 pixels ⁇ 1080 pixels, instead of the display image which is to be displayed on the liquid crystal panel 11 A and has a size of 1368 pixels ⁇ 768 pixels.
  • the extended image contains a partial image (peripheral display image) which is to be displayed on the liquid crystal panel 11 B.
  • the extended image is indicated as an area outlined by dotted lines. In the description below, it is assumed that the extended image, the display image, and the peripheral image have been processed by the receiving section 21 so as to accord with a resolution of the liquid crystal panel 11 .
  • virtual segment 121 segments which are not actually included in the liquid crystal panel 10 A are virtually prepared, and light intensities of the virtual segments 121 are determined.
  • a shaded grid indicates segments 120 corresponding to the display image, i.e., the segments 120 actually included in the liquid crystal panel 10 A, and blank grids indicate the virtual segments 121 . That is, the virtual segments 121 correspond to the peripheral image.
  • the virtual segments 121 include segments corresponding to segments 120 , which are actually included in the liquid crystal display device 30 B.
  • the segments corresponding to the segments 120 of the liquid crystal display device 30 B correspond to the peripheral display image contained in the peripheral image.
  • a width of the panel border bezel 111 corresponds to a length defined by 6 pixels.
  • two rows of virtual segments 121 are provided on each of upper and lower sides of the segments 120 which are actually included in the liquid crystal display device 30 A and three columns of virtual segments 121 are provided on each of right and left sides of the segments 120 (see the upper figure in FIG. 8 ). Note that a reason why only two lines of the virtual segments 121 are provided on each of upper and lower sides of the segments 120 in FIG.
  • the calculation of the light intensity of the target segment 120 a requires only (i) two lines of peripheral segments above the target segment 120 a and (ii) two lines of peripheral segments below the target segment 120 a.
  • Light intensities of respective of (i) all the segments 120 of the liquid crystal display device 30 A and (ii) the virtual segments 121 are determined (refer to the steps S 1 through S 4 ).
  • the light intensities When the light intensities are determined, effects of the peripheral segments 120 aa on the target segment 120 a vary depending on difference in distance between each of the peripheral segments 120 aa and the target segment 120 a , which difference is caused by the width of the panel border bezel 111 .
  • information regarding minimum light intensities of respective of the segments, including the virtual segments 121 is stored in the storage section 26 (e.g., a nonvolatile memory) in advance.
  • the minimum light intensities may be calculated as needed, by the used of (i) approximate Gaussian distribution coefficients stored in the storage section 26 and (ii) widths of respective four panel border bezels 111 surrounding all four sides of the liquid crystal panel 11 .
  • the following description will discuss assignment (allocation) of minimum light intensities of respective peripheral segments 120 ab to the target segment 120 a (see FIG. 9 ).
  • the peripheral segments 120 ab correspond to an image (part of a peripheral non-display image) which is not displayed on any of the liquid crystal panels 11 .
  • the peripheral image data is to contain data of a peripheral non-display image, which (i) includes the image corresponding to the peripheral segments 120 ab and (ii) is not displayed on any of the liquid crystal panels 11 , and such data of the peripheral non-display image is received as black image data.
  • a peripheral non-display image which (i) includes the image corresponding to the peripheral segments 120 ab and (ii) is not displayed on any of the liquid crystal panels 11 , and such data of the peripheral non-display image is received as black image data.
  • outermost bezel information is set for indicating that an upper side and a right side of the liquid crystal panel 11 A are outermost bezels 112 , i.e., the upper side and the right side of the liquid crystal panel 11 A are set in advance to be sides which do not abut on any of the other display panels 11 .
  • the peripheral segments 120 ab correspond to an area of a display panel which does not actually exist. Therefore, it is not necessary to consider a difference in black level from the peripheral segments 120 ab .
  • the light intensity of the target segment 120 a is determined without considering minimum light intensities assigned from virtual segments 121 (corresponding to the peripheral segments 120 ab in FIG. 9 ), which exist outer side of the outermost bezels. This makes it possible to avoid unnecessary assignments of minimum light intensities. This allows avoidance of incorrect determination of light intensities.
  • the peripheral non-display image data as the black image data
  • an image which corresponds to virtual segments existing outer side of the outermost bezel 112 , is considered as a black display (see FIG. 10 ( a )).
  • the light intensity of the target segment 120 a is to be calculated while the virtual segments, existing outer side of a side to which the outermost bezel information has been set, are considered as displaying a black image.
  • a grid surrounded by a two-dot chain line indicates the lacking virtual segments and a grid surrounded by a chain line indicates the secured virtual segments.
  • whether or not virtual segments can be set is judged after data of an extended image received by the receiving section 21 is processed to accord with the resolution of the liquid crystal panel 11 . Note, however, that, the same result can be obtained by judging, by merely taking into consideration the resolution, whether or not virtual segments can be set for a size of the received extended image.
  • virtual segments may be set as follows: that is, virtual segments corresponding to a peripheral image are set only in a case where the receiving section 21 receives data of an extended image in which necessary virtual segments (i.e., in the present embodiment, two lines of virtual segments 121 provided on each of upper and lower sides of the segments 120 actually included in the liquid crystal display device 30 and three lines of virtual segments 121 provided on each of right and left sides of the segments 120 ) can be set for determining light intensities of the respective segments 120 actually included in the liquid crystal display device 30 ; and virtual segments are not set at all in a case where sufficient virtual segments cannot be set.
  • the same process is carried out as that of a case where any peripheral image data is received, which case will be described below.
  • the liquid crystal panel 11 A of the liquid crystal display device 30 A and the liquid crystal panel 11 B of the liquid crystal display device 30 B are adjacent to each other via the panel border bezel 111 in the multi-display device 1 (see FIG. 9 ) and (ii) the receiving section 21 A of the liquid crystal display device 30 A receives, from outside, only data of an image having a size identical with that of the liquid crystal panel 11 A or it is determined from a size of the received image that no peripheral image exists.
  • the light intensity of the target segment 120 a is determined by using virtual information of light intensities of the respective peripheral segments 120 aa in the liquid crystal display device 30 B.
  • a minimum light intensity of the target segment 120 a is calculated based on the assumption that necessary light intensities of the respective peripheral segments 120 aa in the liquid crystal display device 30 B are 255.
  • a minimum light intensity of the peripheral segment 120 aa (which is a target segment for the liquid crystal display device 30 B) is calculated similarly based on the assumption that necessary light intensities of the target segments 120 a (which are peripheral segments for the liquid crystal display device 30 B) are 255.
  • an image corresponding to the virtual segments 121 is considered as a white display (see FIG. 10 ( b )).
  • the light intensity of the target segment 120 a is calculated by carrying out the convolution operation with respect to the light intensities of the respective 7 ⁇ 7 segments centered on the target segment 120 a as early described for the step S 4 , some of the 7 ⁇ 7 segments are considered as segments for the white display. Therefore, the light intensity of the target segment 120 a does not become zero. Consequently, segments adjacent to the virtual segments are to consistently emit weak light. With the configuration, a difference in black level between the adjacent liquid crystal display devices 30 is hardly recognized (see FIG. 14 ).
  • the convolution operation is carried out.
  • the total light intensity of the target segment 120 a does not become zero, even in a case where a black image is displayed in the target area 110 a corresponding to the target segment 120 a .
  • This allows the target area 110 a to be slightly brightened, even though the target area 110 a is not in the vicinity of the bezels. It is therefore possible to set a lowest one of light intensities of respective of the target segment 120 a and the peripheral segments 120 aa to be set to be higher than zero.
  • the segments 120 are controlled not to be turned off completely. This control is useful to suppress a visible difference between (i) a black display of an area 110 when a corresponding segment 120 is turned on and (ii) a black display of the area 110 when the corresponding segment 120 is turned off.
  • all the segments 120 or at least segments 120 in the vicinity of the panel border bezels 111 (slightly) emit light for maintaining a background luminance (see FIG. 14 ). This causes a difference in background in the vicinity of the panel border bezels 111 to be hardly viewed.
  • a local dimming process can be carried out by one (1) liquid crystal display device 30 .
  • the display control section 20 of the liquid crystal display device 30 above described can be configured by hardware logic or realized by software with the use of CPU as follows.
  • the display control section 20 includes a CPU (central processing unit), a ROM (read only memory), a RAM (random access memory), and a storage device (storage medium) such as a memory.
  • the CPU executes instructions of control programs for realizing the functions of the display control section 20 .
  • the ROM the programs are stored.
  • the RAM random access memory
  • storage device storage medium
  • the CPU executes instructions of control programs for realizing the functions of the display control section 20 .
  • the ROM the programs are stored.
  • the programs are loaded.
  • the storage device the programs and various data are stored.
  • the objective of the present invention can also be achieved, by (i) supplying a storage medium, in which program codes (executable programs, intermediate code programs, source programs) of programs for controlling the display control section 20 configured by software for realizing the functions, are stored so that a computer can read them, to the display control section 20 , and then (ii) causing the computer (or CPU or MPU) to read and execute the program codes stored in the storage medium.
  • program codes executable programs, intermediate code programs, source programs
  • the storage medium can be, for example, a tape, such as a magnetic tape or a cassette tape; a disk including (i) a magnetic disk such as a floppy (Registered Trademark) disk or a hard disk and (ii) an optical disk such as CD-ROM, MO, MD, DVD, or CD-R; a card such as an IC card (memory card) or an optical card; or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM.
  • a tape such as a magnetic tape or a cassette tape
  • a disk including (i) a magnetic disk such as a floppy (Registered Trademark) disk or a hard disk and (ii) an optical disk such as CD-ROM, MO, MD, DVD, or CD-R; a card such as an IC card (memory card) or an optical card; or a semiconductor memory such as a mask ROM, EPROM, EEPROM, or flash ROM.
  • the display control section 20 can be arranged to be connected to a communications network so that the program codes are delivered over the communications network.
  • the communications network is not limited to a specific one, and therefore can be, for example, the Internet, an intranet, extranet, LAN, ISDN, VAN, CATV communications network, virtual private network, telephone line network, mobile communications network, or satellite communications network.
  • the transfer medium which constitutes the communications network is not limited to a specific one, and therefore can be, for example, wired line such as IEEE 1394, USB, electric power line, cable TV line, telephone line, or ADSL line; or wireless such as infrared radiation (IrDA, remote control), Bluetooth (Registered Trademark), 802.11 wireless, HDR (high data rate), mobile telephone network, satellite line, or terrestrial digital network.
  • wired line such as IEEE 1394, USB, electric power line, cable TV line, telephone line, or ADSL line
  • wireless such as infrared radiation (IrDA, remote control), Bluetooth (Registered Trademark), 802.11 wireless, HDR (high data rate), mobile telephone network, satellite line, or terrestrial digital network.
  • the present invention can be realized by a computer data signal (i) which is realized by electronic transmission of the program code and (ii) which is embedded in a carrier wave.
  • the liquid crystal display device of the present invention is a liquid crystal display device for use in a multi-display device made up of a plurality of liquid crystal display devices set in array
  • the liquid crystal display device includes: a display panel for displaying an image; a backlight device which is provided in back of the display panel and is divided into segments having respective light sources, the backlight device being capable of illuminating at light intensity adjustable for each of the segments; a receiving section for receiving image data indicative of an image to be displayed on the display panel; and a light intensity determining section for determining a light intensity at which the backlight device illuminates for each of the segments of the backlight device, in a case where the receiving section receives peripheral display image data, the light intensity determining section determining the light intensity of each of the segments based on the image data and the peripheral display image data, the peripheral display image data being indicative of an image, which (i) is contiguous to the image to be displayed on the display panel and (ii) is to be displayed on at least part of a display panel of
  • the liquid crystal display device for use in the multi-display device determines light intensities of the respective segments with the use of the image data of the image to be displayed on the display panel of the liquid crystal display device and the peripheral display image data.
  • the peripheral display image data (i) is contiguous to the image to be displayed on the display panel and (ii) is to be displayed on at least part of the at least one display panel which is provided in the respective at least one other liquid crystal display device, which is a device for use in the multi-display device and is provided around the liquid crystal display device.
  • the “area” is provided in the display panel, and corresponds to each of the segments. That is, the display panel is divided into areas whose number is identical with that of the segments.
  • a method as follows: that is, segments in the vicinity of the bezels (panel border bezels), which correspond to boundaries between the liquid crystal display devices in the multi-display device, are caused to (slightly) emit light to maintain a background luminance (see FIG. 14 ), so that a difference in background is hardly viewed in the vicinity of the panel border bezel 111 .
  • This method can be carried out merely by causing the segments in the vicinity of the panel border bezels not to be turned off completely. Moreover, this method can be carried out by using only the image data to be displayed on the display panel. Therefore, this method can be carried out easily.
  • the liquid crystal display device of the present invention light can be emitted by only necessary segments. This allows suppression of average electric power consumption of the multi-display device, as compared to the case where the background luminance is maintained by causing at least the segments to emit light in the vicinity of the panel border bezels. Moreover, even in the vicinity of the panel border bezels, it is possible to cause (i) an area for displaying a bright image to be brighter and (ii) another area for displaying a dark image to be darker. It is therefore possible to display an image with a higher contrast ratio of bright and dark, as compared to the case where the background luminance in the vicinity of the panel border bezels is maintained.
  • the liquid crystal display device of the present invention it is not necessary to maintain the background luminance by causing segments to emit light in the vicinity of the panel border bezels, unlike the case where a background luminance is maintained by causing the segments to slightly emit light in the vicinity of the panel border bezels.
  • electric power can be consumed by segments (whose number is smaller than that of the segments in the vicinity of the panel border bezels) for emitting light at maximum output, instead of being consumed for maintaining the background luminance.
  • the light intensity determining section may determine light intensities of adjacent ones of the segments in such way that the light intensity determining section corrects the light intensities such that a difference between the light intensities of the adjacent ones of the segments becomes smaller by the correction.
  • the light intensities can be determined by correcting the light intensities such that the light intensities of adjacent segments do not excessively differ from each other. This allows the entire multi-display device to display an image, in which luminance varies smoothly.
  • the liquid crystal display device of the present invention may further include a peripheral data deleting section for deleting the peripheral display image data after the intensity determining section determines the light intensity of each of the segments.
  • the peripheral display image data is data of a peripheral image, which is located around the display image displayed by the liquid crystal panel of the liquid crystal display device. That is, the peripheral image is not displayed by the liquid crystal panel which displays the display image. Therefore, the peripheral display image data is not needed after the light intensities of the respective segments are calculated.
  • the peripheral data deleting section deletes the peripheral display image data as above, and therefore the peripheral display image data does not need to be held. This allows a reduction in capacity of the storage section, which stores data.
  • the liquid crystal display device of the present invention may further include: a transmittance determining section for determining a transmittance for each of a plurality of pixels included in the display panel of the liquid crystal display device, the transmittance determining section determining a transmittance of liquid crystal for a target pixel based on a light intensity, which has been determined by the light intensity determining section, of one of the segments which one faces the target pixel.
  • the transmittance of liquid crystal for the target pixel is determined based on the light intensity, determined by the light intensity determining section, of the segment which faces the target pixel.
  • the liquid crystal for the plurality of pixels is controlled such that the liquid crystal for each of the plurality of pixels has a corresponding determined transmittance.
  • the liquid crystal display device of the present invention may further include: a detecting section for detecting whether or not the receiving section has received the peripheral display image data, in a case where the detecting section determines that the receiving section has not received the peripheral display image data, the light intensity determining section determining the light intensity of each of the segments such that (i) a lowest one of light intensities of all the segments does not become zero or (ii) a lowest one of light intensities of some of the segments in the vicinity of a bezel does not become zero, the bezel being a border between the liquid crystal display device and a liquid crystal display device among the plurality of liquid crystal display devices for use in the multi-display device.
  • light intensities of the respective segments are determined such that (i) a lowest one of light intensities of all the segments of the backlight device included in the liquid crystal display device does not become zero or (ii) a lowest one of light intensities of segments in the vicinity of the bezel does not become zero.
  • the receiving section receives peripheral non-display image data as black image data or data having no image, the peripheral non-display image data being indicative of an image which (i) is contiguous to the image to be displayed on the display panel of the liquid crystal display device and (ii) is not to be displayed on any of the plurality of liquid crystal display devices other than said liquid crystal display device.
  • the peripheral non-display image data may contain image size information and information indicative of an area for displaying image, with which pieces of information the peripheral non-display image data can be recognized as data of image not to be displayed.
  • the peripheral non-display image data indicative of an image which is not displayed on any of the at least one other liquid crystal display device is received as black image data or data having no image. Therefore, even if the light intensity determining section determines light intensities of the respective segments with the use of the peripheral non-display image data, the peripheral non-display image data does not affect the determination of the light intensities of the respective segments, since the peripheral non-display image data is the black image data or the data having no image. This makes it possible to prevent the peripheral non-display image data from being used to determine the light intensities of the respective segments.
  • the peripheral non-display image data is indicative of the image outside of a bezel of the liquid crystal panel, which bezel does not abut on any of the other liquid crystal panels. That is, the peripheral non-display image data (i) is indicative of the image outside of a bezel (hereinafter, referred to as “outermost bezel”), which corresponds to an outer frame of the multi-display device and (ii) is not necessary for determining the light intensities of the respective segments. That is, even in a case where the peripheral non-display image data contains data of an image with high luminance, this image does not need to be considered for determining the light intensities of the respective segments because the image will not be displayed.
  • the light intensity determining section may determine the light intensity without using the peripheral non-display image data, the peripheral non-display image data being indicative of an image which (i) is contiguous to the image to be displayed on the display panel of the liquid crystal display device and (ii) is not to be displayed on any of the plurality of liquid crystal display devices other than said liquid crystal display device.
  • the peripheral non-display image data which is indicative of the image not to be displayed any of the display panels, is not used for determining the light intensities of the respective segments, even though the peripheral non-display image data is indicative of the image contiguous to the image to be displayed by the display panel.
  • the peripheral non-display image data (i) is indicative of the image outside of the outermost bezel and (ii) is not necessary for determining the light intensities of the respective segments. Therefore, by determining the light intensities of the respective segments without using the peripheral non-display image data, it is possible to determine the light intensities of the respective segments without carrying out an unnecessary process.
  • the liquid crystal display device of the present invention is not limited to a liquid crystal display device which constitutes a part of the multi-display device 1 from the beginning. That is, the liquid crystal display device of the present invention may be a liquid crystal display device which can be used as a part of the multi-display device later. In such a case, the liquid crystal display device of the present invention (i) has outermost bezels corresponding to four sides of the liquid crystal display device, and (ii) serves as a liquid crystal display device in which ordinary local dimming for a single liquid crystal display device is carried out. That is, the liquid crystal display device of the present invention can be used as a single liquid crystal display device which can be used to constitute a part of the multi-display device later so as to attain the object of the present invention in combination with the other liquid crystal display devices.
  • the multi-display device of the present invention includes, as above described, a plurality of liquid crystal display devices set in array, each of which is any of the above liquid crystal display device.
  • the multi-display device of the present invention is made up of the plurality of liquid crystal display devices of the present invention set in array, each of which is above described. This makes it possible to prevent the multi-display device as a whole from displaying an image that appears unnatural, while suppressing electric power consumption.
  • the method of the present invention for determining a light intensity is, as above described, a method for determining a light intensity for each of segments of a backlight device provided in each of a plurality of liquid crystal display devices constituting a multi-display device, a target liquid crystal display device, which is any one of the plurality of liquid crystal display devices, including (i) a display panel for displaying an image and (ii) the backlight device which is provided in back of the display panel and is divided into the segments having respective light sources, the backlight device being capable of illuminating at light intensity adjustable for each of the segments, the method includes the steps of: (a) receiving image data indicative of an image to be displayed on the display panel; and (b) determining a light intensity at which the backlight device illuminates for each of the segments of the backlight device, in a case where peripheral display image data is received in the step (a), the step (b) determining the light intensity of each of the segments based on the image data and the peripheral display image data, the peripheral display image data being indicative of
  • the liquid crystal display device which prevents, when used in a multi-display device, the multi-display device as a whole from displaying an image that appears unnatural, while suppressing electric power consumption.
  • the sections of the liquid crystal display device of the present invention may be realized by a computer.
  • a non-transitory computer-readable storage medium which stores the program are encompassed in the scope of the present invention.
  • the present invention is applicable to a multi-display device in which a plurality of liquid crystal display devices are adjacently arranged so as to display a large screen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)
US13/447,408 2011-04-20 2012-04-16 Liquid crystal display device, multi-display device, method for determining light intensity, and storage medium Active 2033-01-24 US8872733B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-094535 2011-04-20
JP2011094535A JP5335851B2 (ja) 2011-04-20 2011-04-20 液晶表示装置、マルチディスプレイ装置、発光量決定方法、プログラム、及び記録媒体

Publications (2)

Publication Number Publication Date
US20120268350A1 US20120268350A1 (en) 2012-10-25
US8872733B2 true US8872733B2 (en) 2014-10-28

Family

ID=47020908

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/447,408 Active 2033-01-24 US8872733B2 (en) 2011-04-20 2012-04-16 Liquid crystal display device, multi-display device, method for determining light intensity, and storage medium

Country Status (3)

Country Link
US (1) US8872733B2 (zh)
JP (1) JP5335851B2 (zh)
CN (1) CN102750909B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240201A1 (en) * 2013-02-28 2014-08-28 Canon Kabushiki Kaisha Image display apparatus, image output apparatus, and control methods therefor
US20150130684A1 (en) * 2013-11-12 2015-05-14 Kabushiki Kaisha Toshiba Video display device, display control method
US10410573B2 (en) 2016-04-19 2019-09-10 Boe Technology Group Co., Ltd. Method for display control, display control device and display control system

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011118232A1 (ja) * 2010-03-26 2013-07-04 パナソニック株式会社 表示装置
US9299297B2 (en) * 2011-09-05 2016-03-29 Canon Kabushiki Kaisha Image display apparatus and method for controlling the same
US9003755B2 (en) * 2013-01-12 2015-04-14 Shenzhen China Star Optoelectronics Technology Co., Ltd Method and apparatus for measuring reflective intensity of display surface
KR101489285B1 (ko) 2013-04-19 2015-02-11 에버브라이튼주식회사 곡면형 전광판의 화질보정장치 및 방법
WO2016045924A1 (en) * 2014-09-24 2016-03-31 Thomson Licensing A background light enhancing apparatus responsive to a remotely generated video signal
TW201615009A (en) * 2014-09-24 2016-04-16 Thomson Licensing A background light enhancing apparatus responsive to a local camera output video signal
US10319408B2 (en) 2015-03-30 2019-06-11 Manufacturing Resources International, Inc. Monolithic display with separately controllable sections
US10269156B2 (en) 2015-06-05 2019-04-23 Manufacturing Resources International, Inc. System and method for blending order confirmation over menu board background
CN105786431A (zh) * 2016-03-04 2016-07-20 京东方科技集团股份有限公司 拼接屏以及实现拼接屏的显示内容自动分配的方法和装置
US10319271B2 (en) 2016-03-22 2019-06-11 Manufacturing Resources International, Inc. Cyclic redundancy check for electronic displays
EP3465613A4 (en) 2016-05-31 2019-10-23 Manufacturing Resources International, Inc. METHOD AND SYSTEM FOR REMOTE IMAGE VERIFICATION ON ELECTRONIC DISPLAY UNIT
JP6951504B2 (ja) * 2016-07-14 2021-10-20 パナソニック液晶ディスプレイ株式会社 表示装置
US10510304B2 (en) * 2016-08-10 2019-12-17 Manufacturing Resources International, Inc. Dynamic dimming LED backlight for LCD array
EP3538870A4 (en) 2016-11-14 2019-11-27 Siemens Healthcare Diagnostics Inc. METHODS AND APPARATUS FOR CHARACTERIZING A SPECIMEN USING PATTERN LIGHTING
KR102584423B1 (ko) * 2016-11-17 2023-09-27 엘지전자 주식회사 디스플레이 장치
CN109920393A (zh) * 2017-12-12 2019-06-21 北京小米移动软件有限公司 背光亮度调节方法及装置
WO2020188627A1 (ja) * 2019-03-15 2020-09-24 Necディスプレイソリューションズ株式会社 表示装置及びマルチモニタシステムの映像表示方法
JP2020154102A (ja) * 2019-03-19 2020-09-24 株式会社ジャパンディスプレイ 表示装置
CN112291633B (zh) * 2019-07-24 2023-03-24 Vidaa(荷兰)国际控股有限公司 一种智能家居设备屏幕亮度的控制方法及装置
CN111372001B (zh) * 2020-03-17 2021-09-03 捷开通讯(深圳)有限公司 图像融合方法、装置、存储介质及移动终端
CN113936614B (zh) * 2020-06-29 2022-10-04 京东方科技集团股份有限公司 显示面板的驱动方法、驱动装置、显示装置和存储介质
CN113299245B (zh) * 2021-05-11 2022-07-19 深圳创维-Rgb电子有限公司 显示设备局部背光调节方法、装置、显示设备及存储介质
CN113377077B (zh) * 2021-07-08 2022-09-09 四川恒业硅业有限公司 一种智能制造数字化工厂系统
US11895362B2 (en) 2021-10-29 2024-02-06 Manufacturing Resources International, Inc. Proof of play for images displayed at electronic displays
CN117241145A (zh) * 2022-06-15 2023-12-15 荣耀终端有限公司 终端设备及创建/显示hdr图像的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273790A (ja) 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> 大画面表示装置の制御方法
JPH0695139A (ja) 1992-09-14 1994-04-08 Fujitsu Ltd マルチディスプレイ装置
JP2001188481A (ja) 1999-12-28 2001-07-10 Hitachi Ltd ディスプレイ装置及び表示システム
JP2007279395A (ja) 2006-04-06 2007-10-25 Fujifilm Corp 画像照明装置、画像表示装置及び撮像装置
JP2009169196A (ja) 2008-01-18 2009-07-30 Hitachi Ltd マルチディスプレイ装置
US20100007819A1 (en) 2008-07-09 2010-01-14 Kumasaka Taku Planar light-emitting device and liquid crystal display apparatus
US20100220048A1 (en) 2008-09-29 2010-09-02 Panasonic Corporation Backlight apparatus and display apparatus
WO2010150974A2 (ko) * 2009-06-26 2010-12-29 엘지전자 주식회사 액정표시장치 및 그 구동방법
US20100328336A1 (en) * 2009-06-29 2010-12-30 Si Bingyu Liquid Crystal Display Wall and Method for Controlling the Same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4237220B2 (ja) * 2006-11-13 2009-03-11 シャープ株式会社 透過型ディスプレイ装置
US20090167782A1 (en) * 2008-01-02 2009-07-02 Panavision International, L.P. Correction of color differences in multi-screen displays
US8917293B2 (en) * 2008-06-27 2014-12-23 Sharp Kabushiki Kaisha Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02273790A (ja) 1989-04-17 1990-11-08 Nippon Telegr & Teleph Corp <Ntt> 大画面表示装置の制御方法
JP2728494B2 (ja) 1989-04-17 1998-03-18 日本電信電話株式会社 大画面表示装置の制御方法
JPH0695139A (ja) 1992-09-14 1994-04-08 Fujitsu Ltd マルチディスプレイ装置
JP2001188481A (ja) 1999-12-28 2001-07-10 Hitachi Ltd ディスプレイ装置及び表示システム
JP2007279395A (ja) 2006-04-06 2007-10-25 Fujifilm Corp 画像照明装置、画像表示装置及び撮像装置
JP2009169196A (ja) 2008-01-18 2009-07-30 Hitachi Ltd マルチディスプレイ装置
US20100007819A1 (en) 2008-07-09 2010-01-14 Kumasaka Taku Planar light-emitting device and liquid crystal display apparatus
JP2010020961A (ja) 2008-07-09 2010-01-28 Citizen Electronics Co Ltd 面状光源及び液晶表示装置
US20100220048A1 (en) 2008-09-29 2010-09-02 Panasonic Corporation Backlight apparatus and display apparatus
WO2010150974A2 (ko) * 2009-06-26 2010-12-29 엘지전자 주식회사 액정표시장치 및 그 구동방법
US20120105507A1 (en) * 2009-06-26 2012-05-03 Lg Electronics Liquid crystal display device and drive method for same
US20100328336A1 (en) * 2009-06-29 2010-12-30 Si Bingyu Liquid Crystal Display Wall and Method for Controlling the Same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140240201A1 (en) * 2013-02-28 2014-08-28 Canon Kabushiki Kaisha Image display apparatus, image output apparatus, and control methods therefor
US9529562B2 (en) * 2013-02-28 2016-12-27 Canon Kabushiki Kaisha Image display apparatus, image output apparatus, and control methods therefor
US20150130684A1 (en) * 2013-11-12 2015-05-14 Kabushiki Kaisha Toshiba Video display device, display control method
US9383960B2 (en) * 2013-11-12 2016-07-05 Kabushiki Kaisha Toshiba Video display device, display control method
US10410573B2 (en) 2016-04-19 2019-09-10 Boe Technology Group Co., Ltd. Method for display control, display control device and display control system

Also Published As

Publication number Publication date
JP2012226179A (ja) 2012-11-15
CN102750909A (zh) 2012-10-24
CN102750909B (zh) 2015-01-14
US20120268350A1 (en) 2012-10-25
JP5335851B2 (ja) 2013-11-06

Similar Documents

Publication Publication Date Title
US8872733B2 (en) Liquid crystal display device, multi-display device, method for determining light intensity, and storage medium
US10062331B2 (en) Display device for controlling luminance and method for driving the same
JP5250339B2 (ja) 画像表示装置
US8917293B2 (en) Control device for liquid crystal display device, liquid crystal display device, method for controlling liquid crystal display device, program, and storage medium
KR101605157B1 (ko) 표시 장치 구동 방법
TWI427586B (zh) A display device, a brightness adjustment device, a backlight device, a brightness adjustment method, and a brightness adjustment program
US10466534B2 (en) Backlight device, and display apparatus including same
US20120139885A1 (en) Liquid crystal display device
KR101161522B1 (ko) 영상 표시 장치
EP2592618B1 (en) Display device and display method
US20120105507A1 (en) Liquid crystal display device and drive method for same
US8872732B2 (en) Multi-display system with backlight intensity correction
JP2008051905A (ja) 液晶表示装置、及びそのバックライト駆動方法
US10810950B2 (en) Light source control device, display device, and image processing device
US20140225943A1 (en) Image display device and image display method
JP2003140110A (ja) 液晶表示装置とその駆動回路
US20120044224A1 (en) Liquid crystal display device
JP2008070558A (ja) 透過型ディスプレイ装置、およびその表示制御方法
US20120200485A1 (en) Liquid crystal display device
US11948522B2 (en) Display device with light adjustment for divided areas using an adjustment coefficient
US20140327708A1 (en) Display device
JP2012068655A (ja) 映像表示装置
CN112543968B (zh) 显示控制装置及其确定背光区光强的方法
JP2012226178A (ja) 表示制御装置、表示システム、画像データ出力方法、プログラム、及び記録媒体
JP7481828B2 (ja) 表示装置および制御方法

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHARP KABUSHIKI KAISHA, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YOSHIMURA, HIDEYOSHI;REEL/FRAME:028050/0493

Effective date: 20120323

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551)

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8