US7400564B2 - Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same - Google Patents

Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same Download PDF

Info

Publication number
US7400564B2
US7400564B2 US10/638,551 US63855103A US7400564B2 US 7400564 B2 US7400564 B2 US 7400564B2 US 63855103 A US63855103 A US 63855103A US 7400564 B2 US7400564 B2 US 7400564B2
Authority
US
United States
Prior art keywords
area
information
disc
temporary defect
recorded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US10/638,551
Other languages
English (en)
Other versions
US20050195716A1 (en
Inventor
Jung-Wan Ko
Kyung-geun Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020020047513A external-priority patent/KR100900969B1/ko
Priority claimed from KR1020020047514A external-priority patent/KR100667747B1/ko
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Assigned to SAMSUNG ELECTRONICS CO., LTD. reassignment SAMSUNG ELECTRONICS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KO, JUNG-WAN, LEE, KYUNG-GEUN
Publication of US20050195716A1 publication Critical patent/US20050195716A1/en
Priority to US11/430,168 priority Critical patent/US20060203684A1/en
Application granted granted Critical
Publication of US7400564B2 publication Critical patent/US7400564B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B2020/1873Temporary defect structures for write-once discs, e.g. TDDS, TDMA or TDFL
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • G11B2020/1893Methods for assignment of alternate areas for defective areas using linear replacement to relocate data from a defective block to a non-contiguous spare area, e.g. with a secondary defect list [SDL]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/21Disc-shaped record carriers characterised in that the disc is of read-only, rewritable, or recordable type
    • G11B2220/215Recordable discs
    • G11B2220/218Write-once discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs

Definitions

  • the present invention relates to disc defect management, and more particularly, to a disc in which a temporary defect management information area and a temporary management area are formed, and a method and apparatus for managing a defect in such a disc.
  • Defect management is performed to allow a user to rewrite user data of a portion of a user data area in which a defect occurs in a new portion of the user data area of a disc, thereby compensating for a loss in data caused by the defect.
  • defect management is performed using linear replacement or slipping replacement methods.
  • linear replacement method a user data area in which a defect occurs is replaced with a spare data area having no defects.
  • slipping replacement method a user data area having a defect is slipped to use the next user data area having no defects.
  • Both linear replacement and slipping replacement methods are applicable only to discs such as a DVD-RAM/RW on which data can be repeatedly recorded and recording can be performed using a random access method.
  • the conventional linear replacement and slipping replacement methods cannot be applied to write-once discs on which recording is allowed only once.
  • the presence of defects in a disc is checked by recording data on the disc and confirming whether the data can be recorded on the disc.
  • the backup operation is performed when a system is not frequently used.
  • backup operations are often performed at night when a system manager does not operate the system. In this case, it is more likely that the backup operation will be stopped because a defective area of a write-once disc is detected and the backup operation for the system will therefore not be performed in a reliable manner.
  • the present invention provides a write-once disc with a data structure which allows defect management, and a method of and apparatus for managing a defect in such a disc.
  • the present invention also provides a write-once disc with a data structure which allows defect management even if a defect occurs on the disc during recording operations, thereby rendering successful recording operations, and a method of and apparatus for managing a defect in a disc having the defect management.
  • a disc includes a defect management area in at least one of a lead-in area, a lead-out area, and an outer area; a temporary defect information area in a data area and in which temporary defect information is recorded; and a temporary defect management information area in at least one of the lead-in area, and the lead-out area.
  • a method of managing a defect in a disc includes recording defect information regarding data recorded in a recording operation, and defect information regarding data recorded in a previous recording operation as first temporary defect information in a data area of the disc; and recording the first temporary defect information and defect information regarding data recorded in a next recording operation as second temporary defect information in the data area.
  • a method of managing a defect in a disc includes recording defect information regarding data recorded in a data area of the disc according to a first recording operation, defect information regarding data recorded in the data area according to a second recording operation, defect information regarding data recorded in the data area according to an n ⁇ 1 st recording operation, and defect information regarding data recorded in the data area according to an n th recording operation, as n th temporary defect information in the data area; and recording defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area, where n is an integer.
  • the method further includes recording a last recorded temporary defect information and temporary defect management information in a defect management area during finalization of the disc.
  • the recording n th temporary defect information includes recording the data in a predetermined unit; verifying the recorded data to detect an area of the disc in which a defect exists; storing in a memory information for designating an area covering the area having the defect and data recorded after the area having the defect as a defective area; recording the data in a predetermined unit after the defective area; repeating verifying and storing at least once; and reading the information from the memory and recording the read information in an n th temporary defect information area of the data area when an n th recording operation is to end.
  • the recording the n th temporary defect information further includes recording information for designating the n th temporary defect information area as a defective area in the n th temporary defect information area.
  • a recording apparatus includes a recording unit that records data in a data area of a disc according to a recording operation; and a controller that controls the recording unit to record defect information regarding data, which is recorded in a data area according to a recording operation, as temporary defect information in the data area and record temporary defect management information for managing the temporary defect information in a temporary defect management information area in at least one of a lead-in area and a lead-out area of the disc.
  • a recording apparatus includes a recording unit that records data on a disc; and a controller that controls the recording unit to record defect information regarding data recorded in a data area of the disc according to a first recording operation through an n th recording operation as n th temporary defect information in the data area; and controls the recording unit to record defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area where n is an integer.
  • a disc includes a defect management area in at least one of a lead-in area and a lead-out area; a temporary defect information area that is in a data area and in which temporary defect information is recorded; a temporary defect management information area that is in at least one of the lead-in area and the lead-out area and in which temporary defect management information for managing the temporary defect information is recorded; and a defect management area that is formed in at least one of the lead-in area and the lead-out area and in which are recorded temporary defect information last recorded in the temporary defect information area and temporary defect management information last recorded in the temporary defect management information area.
  • a disc includes a defect management area in at least one of a lead-in area, a lead-out area, and an outer area; a temporary defect information area that is in a data area and in which temporary defect information is recorded; a temporary defect management information area that is in the lead-in area, the lead-out area, and an outer area and in which is recorded temporary defect management information; and a defect management area that is in the lead-in area, the lead-out area, and the outer area and in which temporary defect information last recorded in the temporary defect information area and temporary defect management information last recorded in the temporary defect management information area are recorded.
  • a method of managing a defect in a disc includes recording defect information regarding data recorded in a data area for every recording operation as temporary defect information in the data area; recording defect management information for managing the temporary defect information as temporary defect management information in a temporary defect management information area in at least one of a lead-in area and a lead-out area; and recording the temporary defect information and the temporary defect management information in a defect management area formed in at least one of the lead-in area and the lead-out area, during finalization of the disc.
  • a method of managing a defect in a disc includes recording as n th temporary defect information in the data area defect information regarding data recorded in a data area of the disc according to a first recording operation, defect information regarding data recorded in the data area according to a second recording operation, defect information regarding data recorded in the data area according to an n ⁇ 1 st recording operation, and defect information regarding data recorded in the data area according to an n th recording operation; recording defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area, where n is an integer, and recording a last recorded temporary defect information and temporary defect management information in a defect management area during finalization of the disc.
  • a recording apparatus includes a recording unit that records data in a data area of a disc according to a recording operation; and a controller that controls the recording unit to record defect information regarding the recorded data as temporary defect information in the data area; controls the recording unit to record defect management information for managing the temporary defect information as temporary defect management information in a temporary defect management information area that is in at least one of a lead-in area and a lead-out area of the disc; and controls the recording unit to record the temporary defect information and temporary defect management information in a defect management area that is formed in at least one of the lead-in area and the lead-out area.
  • a recording apparatus includes a recording unit that records data in a data area of a disc according to first through n th recording operations; and a controller that controls the recording unit to record defect information regarding the data recorded according to the first recording through n th recording operations as n th temporary defect information in the data area; controls the recording unit to record defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area; and controls the recording unit to record a last recorded temporary defect information and temporary defect management information in a defect management area, where n is an integer.
  • a disc includes a defect management area in at least one of a lead-in area and a lead-out area; a temporary defect information area that is in a data area and in which temporary defect information is recorded; and a temporary defect management information area that is formed in at least one of the lead-in area and the lead-out area and in which temporary defect management information for managing the temporary defect information is recorded, and wherein the temporary defect information and the temporary defect management information are recorded again when a disc defect is detected using a verify-after-write method.
  • a disc includes a defect management area in at least one of a lead-in area and a lead-out area; a temporary defect information area that is in a data area and in which is recorded temporary defect information; and a temporary defect management information area that is in at least one of the lead-in area, the lead-out area, and the outer area and in which is recorded temporary defect management information is recorded, where the last recorded temporary defect information that was last recorded in the temporary defect information area and the last recorded temporary defect management information that was last recorded in the temporary defect management information area are recorded in the defect management area during finalization of the disc, and the temporary defect information and the temporary defect management information are recorded again in the temporary defect information area and the temporary defect management information area, respectively, when a disc defect is detected using the verify-after-write method.
  • a method of managing a defect in a disc includes recording as temporary defect information in a data area defect information regarding data recorded in the data area for every recording operation; recording defect management information for managing the temporary defect information in a temporary defect management information area in at least one of a lead-in area and a lead-out area; and performing a verify-after-write method on at least one of the temporary defect information and the temporary defect management information and recording the temporary defect information and the temporary defect management information again when a disc defect is detected.
  • the method further includes recording the temporary defect information and the temporary defect management information in a defect management area in the lead-in area and the lead-out area.
  • a method of managing a defect in a disc includes recording as n th temporary defect information in a data area defect information regarding data recorded in the data area of the disc according to a first recording operation, defect information regarding data recorded in the data area according to a second recording operation, defect information regarding data recorded in the data area according to an n ⁇ 1 st recording operation, and defect information regarding data recorded in the data area according to an n th recording operation; recording defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area; and performing a verify-after-write method on at least one of the n th temporary defect information and the n th temporary defect management information and recording the n th temporary defect information and the n th temporary defect management information again when a disc defect is detected, where n is an integer.
  • the method further includes recording a last recorded temporary defect information and temporary defect management information in a defect management area during finalization of the disc.
  • a recording apparatus includes a recording/reading unit which records data on or reads data from a data area of a disc; and a controller which controls the recording/reading unit to record as temporary defect information in the data area defect information regarding the data recorded on the disc according to a recording operation and to record defect management information for managing the temporary defect information as temporary defect management information in a temporary defect management information area in at least one of a lead-in area and a lead-out area; performs a verify-after-write method on at least one of the temporary defect information and temporary defect management information; and controls the recording/reading unit to record the temporary defect information and temporary defect management information when a disc defect is detected.
  • a recording apparatus includes a recording unit that records data on a data area of a disc; and a controller that controls the recording unit to record as n th temporary defect information in the data area defect information regarding the data recorded in the data area of the disc according to first through n th recording operations as n th temporary defect information in the data area; controls the recording unit to record defect management information for managing the n th temporary defect information as n th temporary defect management information in a temporary defect management information area; performs a verify-after-write method on at least one of the n th temporary defect information and the n th temporary defect management information; and controls the recording unit to record the n th temporary defect information and the n th temporary defect management information again when a disc defect is detected, where n is an integer.
  • FIG. 1 is a block diagram of a recording and/or reproducing apparatus according to an embodiment of the present invention
  • FIGS. 2A and 2B illustrate structures of discs according to embodiments of the present invention
  • FIG. 3 illustrates an embodiment of a structure of the discs shown in FIGS. 2A and 2B ;
  • FIG. 4 illustrates an embodiment of the structure of the disc shown in FIG. 3 ;
  • FIG. 5 is a diagram illustrating a process of recording a temporary defect list (TDFL) of the structure shown in FIG. 4 according to an embodiment of the present invention
  • FIGS. 6A and 6B illustrate data structures of a TDFL according to an embodiment of the present invention
  • FIGS. 7A and 7B illustrate the data structure of defect #i contained in a TDFL and the data structure of the TDFL shown in FIG. 4 according to an embodiment of the present invention
  • FIG. 8 illustrates the data structure of a temporary disc definition structure (TDDS) #i shown in FIG. 4 ;
  • FIG. 9 illustrates the data structure of the TDFL #i shown in FIG. 8 ;
  • FIG. 10 illustrates a data structure of a disc definition structure (DDS) according to an embodiment of the invention for use in a disc shown in FIG. 3 ;
  • DDS disc definition structure
  • FIG. 11 illustrates a data structure of a defect list (DFL) according to an embodiment of the invention for use in a disc shown in FIG. 3 ;
  • DFL defect list
  • FIG. 12 is a flowchart illustrating a method of managing a defect in a disc according to an embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating a method of managing a defect in a disc according to another embodiment of the present invention.
  • FIG. 14 is a flowchart illustrating a method of managing a defect in a disc according to yet another embodiment of the present invention.
  • FIG. 1 is a block diagram of a recording and/or reproducing apparatus according to an embodiment of the present invention.
  • the recording apparatus includes a recording/reading unit 1 , a controller 2 , and a memory 3 .
  • the recording/reading unit 1 records and/or reproduces data with respect to a disc 100 , which is an embodiment of an information storage medium.
  • the recording/reading unit 1 reads the data from the disc 100 so as to verify the accuracy of the recorded data.
  • the controller 2 performs defect management according to an embodiment of the present invention.
  • the controller 2 uses a verify-after-write method in which the data is recorded on the disc 100 in predetermined units and a defect on the disc 100 is detected by verifying the accuracy of the recorded data.
  • the controller 2 After recording of the data in the predetermined units, the controller 2 records information which indicates the position of a defective area of the disc 100 . The information is recorded as temporary defect information on the disc 100 . Also, the controller 2 records on the disc 100 management information, which is information used to manage the temporary defect information. The management information is recorded as temporary defect management information.
  • the predetermined recording unit may be a recording operation that is a unit of work determined according to user's intention or a type of recording work to be performed. According to this embodiment, a recording operation indicates a process in which the disc 100 is loaded into the recording apparatus, data is recorded on the disc 100 , and the disc 100 is taken out from the recording apparatus.
  • the recording operation can be otherwise defined. For instance, the recording operation can be defined according to a recording time or an amount of data that is recorded as opposed to or in addition to when a user inserts or removes a disc.
  • the controller 2 During the recording operation, data is recorded and verified at least once.
  • the controller 2 when a user presses an eject button (not shown) of the recording apparatus in order to bring out the disc 100 after recording the data, the controller 2 expects the recording operation to be terminated.
  • the controller 2 creates the temporary defect information and temporary defect management information and provides the information to the recording/reading unit 1 to be recorded on the disc 100 .
  • the temporary defect information which is obtained as a result of the recording and verifying by the controller 2 , is stored in the memory 3 .
  • the verification can be performed at other times during recording.
  • the controller 2 records the temporary defect information and the temporary defect management information in a defect management area (DMA) of the disc 100 .
  • DMA defect management area
  • FIGS. 2A and 2B illustrate structures of the disc 100 according to embodiments of the present invention.
  • FIG. 2A illustrates a disc 100 that is a single record layer disc having a record layer L 0 .
  • the disc 100 includes a lead-in area, a data area, and a lead-out area.
  • the lead-in area is located in an inner part of the disc 100 and the lead-out area is located in an outer part of the disc 100 .
  • the data area is present between the lead-in area and the lead-out area and is divided into a user data area and a spare area.
  • the user data area is an area in which the user data is recorded.
  • the spare area is a substitute area for a portion of the user data area having a defect in order to compensate for a loss in a recording area due to the defect.
  • the spare area includes 5% of the entire data capacity of the disc 100 , so that a greater amount of data can be recorded on the disc 100 on the assumption that defects may occur therein. Also, it is preferable, but not required, that the spare area is present at an end of a recording area of the disc 100 . Especially, in the case of a write-once disc 100 , the spare area must be located at an end of a recording area of the disc 100 so that slipping replacement can be performed while the spare area data is recorded starting from an inner part of the disc 100 continuing toward the outer part.
  • the spare area is present only between the user data area and the lead-out area. If necessary, a portion of the user data area may be used as another spare area. Specifically, according to another embodiment, more than one spare area may be formed between the user data area and the lead-out area.
  • FIG. 2B illustrates a disc 100 that has two record layers L 0 and L 1 .
  • a lead-in area, a data area, and an outer area are sequentially formed from an inner part of the first record layer L 0 to its outer part.
  • an outer area, a data area, and a lead-out area are sequentially formed from an outer part of the second record layer L 1 to its inner part.
  • the lead-out area of the second record layer L 1 is present in the inner part of the second record layer L 1 of the disc 100 of FIG. 2B . That is, the disc 100 of FIG. 2B has an opposite track path (OTP) in which data is recorded starting from the lead-in area at an inner part of the first record layer L 0 toward the outer area and continuing from the outer area of the second record layer L 1 to the lead-out area at the inner part.
  • OTP opposite track path
  • FIG. 3 illustrates an example of the structure of the disc 100 embodiments shown in FIGS. 2A and 2B .
  • a DMA is present in at least one of the lead-in area, the lead-out area, and the outer area of the disc 100 .
  • a temporary defect management area (TDMA) is formed in at least one of the lead-in area and the lead-out area.
  • a temporary defect information area is formed in the data area in predetermined recording units.
  • information which relates to managing defects on the disc 100 is recorded in the DMA.
  • Such information includes a structure of the disc 100 for defect management, the position of the defect information, whether the defect management is performed, and the position and size of the spare area.
  • new data is recorded after previously recorded data when the previously recorded data changes.
  • the apparatus reads data from the lead-in area and the lead-out area of the disc 100 to determine how to manage the disc 100 and record or read data on or from the disc 100 .
  • an embodiment of the present invention proposes temporary defect management information and temporary defect information.
  • the temporary defect management information which is comparatively more important than the temporary defect information, is recorded in the lead-in area.
  • the temporary defect information is recorded in the data area. It is preferable, but not required, that new information is added to the previously recorded information in the temporary defect information so that all recorded information is accumulated therein.
  • the recording/reproducing apparatus reads last recorded temporary defect information and detects defects throughout the disc 100 based on the read result. Thus, information regarding the location of the last recorded temporary defect information is recorded in temporary defect management information area, where the temporary defect management information is recorded.
  • the information regarding a defect occurring in a recording unit # 0 and information regarding a defect occurring in a recording unit # 1 are recorded in the temporary defect management information area # 0 and the temporary defect management information area # 1 , respectively.
  • Defect management information for managing the temporary defect information areas # 0 , # 1 is recorded in the temporary defect management information area. If no more data can be recorded on the disc 100 or if a user does not want to record more data on the disc 100 (i.e., the disc 100 needs to be finalized), the temporary defect information recorded in the temporary defect information area and the temporary defect management information recorded in the temporary defect management information area are recorded in the DMA.
  • the defect information recorded in the temporary defect information areas # 0 through #i ⁇ 1 is again recorded in temporary defect information area #i. Therefore, it is sufficient to read the defect information from the last temporary defect information area and to again record the read information in the DMA during the finalization of the disc 100 .
  • FIG. 4 illustrates structures of the disc 100 shown in FIG. 3 .
  • the DMA is formed in at least one of the lead-in area, the lead-out area, and the outer area of the disc 100 .
  • the disc 100 is the single record layer disc 100 as shown in FIG. 2A
  • the DMA is formed in at least of one of the lead-in area and the lead-out area.
  • the disc 100 is the double record layer disc 100 as shown in FIG. 2B
  • the DMA is formed in at least one of the lead-in area, the lead-out area, and the outer area of the disc 100 .
  • DMAs are formed in both the lead-in area and the lead-out area
  • the disc 100 has two record layers L 1 , L 0
  • DMAs are formed in the lead-in area, the lead-out area, and the outer area.
  • a temporary defect list (TDFL) # 0 which is a temporary defect information area corresponding to the recording operation # 0 , is disposed in the data area.
  • Information regarding a defect occurring in the user data recorded according to the recording operation # 0 is recorded in the TDFL # 0 .
  • the user data according to recording operation # 1 is recorded in the data area, and a TDFL # 1 , which corresponds to the recording operation # 1 , is disposed in the data area.
  • a TDFL # 2 which corresponds to recording operation # 2 , is also disposed in the data area.
  • Temporary disc definition structure which is the temporary defect management information for managing the TDFLs # 0 through #n, is recorded in the temporary defect management information area.
  • the TDDSs # 0 through #n correspond to the TDFL # 0 through #n, respectively.
  • TDDSs # 0 through #n it is possible to record whether a defect is managed, the size of the spare area, and information for managing TDFL #i in TDDS #i. Also, it is possible to record information regarding the position of a defective area and the corresponding position of the spare area, which is a substitute for the defective area, in a TDFL #i.
  • a cluster is allocated to each TDDS #i, and four to eight clusters are allocated to the TDFL #i.
  • This allocation is because it is preferable to record new information in units of clusters in order to update information when a minimum physical unit of record is a cluster, although the amount of TDDS#i, which is temporary defect management information, is just several K bytes. Meanwhile, it is preferable, but not required, that a total amount of defects allowed in the disc 100 is about 5 percent of the disc recording capacity.
  • the TDFL #i includes about four to eight clusters considering that information of about 8 bytes is required to record information regarding a defect and the size of a cluster is 64 Kbytes.
  • the verify-after-write method can be performed in the TDDS #i and the TDFL #i. In this case, when a defect is detected, information is recorded again in the corresponding adjacent areas.
  • FIG. 5 is a diagram illustrating a process of recording a TDFL according to an embodiment of the present invention.
  • a unit of data may be processed in units of sectors or clusters.
  • a sector denotes a minimum unit of data that is managed in a file system of a computer or an application
  • a cluster denotes a minimum unit of data that can be physically recorded on a disc at once.
  • one or more sectors constitute a cluster.
  • the physical sector is an area where a sector of data is to be recorded on the disc 100 .
  • An address for detecting the physical sector is called a physical sector number (PSN).
  • the logical sector is a unit of sector for managing data in a file system or an application.
  • An address for detecting the logical sector is called a logical sector number (LSN).
  • a disc recording/reproducing apparatus such as that shown in FIG. 1 detects the position of the data to be recorded on the disc 100 using the PSN, and the whole part of data is managed in units of the LSNs in a computer or an application in order to record data on the disc 100 .
  • the relationship between the LSN and the PSN is changed by the controller 2 of the recording/reproducing apparatus, based on whether the disc contains a defect and an initial position of recording data.
  • A denotes a data area in which the PSNs are allocated to a plurality of sectors (not shown) in ascending order.
  • each LSN corresponds to at least one of the PSNs, respectively.
  • the LSNs are allocated to sectors, except for a defective sector, in ascending order, the correspondence between the PSNs and the LSNs is not maintained when the disc 100 has a defective area, even if the size of a physical sector is the same as that of a logical sector.
  • 1010 through 1090 denote units of data by which a verifying work is performed after a recording work.
  • a recording apparatus records user data in section 1010 , returns to the start of the section 1010 , and starts checking if the user data is appropriately recorded or a defect occurs in the section 1010 . If a defect is detected, an area covering the defect and data recorded after the defect in the section 1010 is designated as defect # 1 .
  • the recording apparatus records the user data in section 1020 , returns to the start of the section 1020 , and checks if the user data is appropriately recorded or a defect occurs in the start. If a defect is detected, an area covering the defect and data recorded after the defect in the section 1020 is designated as defect # 2 .
  • defect # 3 is determined in section 1030 . However, since a defect is not detected in section 1040 , a defective area is not determined in section 1040 .
  • the disc 100 according to an embodiment of the present invention is a write-once disc 100 , it is desirable, but not required, that data recorded after an area having a defect is not used and an area covering data recorded after the defect is determined to be a defective area as well as the area covering the defect.
  • an area in which data is recorded after the area having the LSN i must be denoted as the LSN i ⁇ 1 for data reproduction.
  • the LSN i ⁇ 1 for data reproduction.
  • all of data areas after a defective area are also regarded as being defective areas, thereby increasing the efficiency of managing the logic sectors.
  • TDFL # 0 is recorded in section 1050 when the recording operation # 0 is expected to end after the recording and verifying of the data in the section 1040 (i.e., when a user presses an eject button of a recording apparatus or recording of user data allocated in a recording operation is completed).
  • the TDFL # 0 contains information regarding the defects # 1 through # 3 occurring in the sections 1010 through 1040 .
  • TDFL # 1 is recorded in sector 1090 to correspond to recording operation # 1 to contain information regarding defects # 4 and # 5 in sectors 1060 through 1080 .
  • the TDFL # 0 also contains information regarding a part of an area in which a user data is recorded according to the recording operation # 0 , where the part having a defect and thus being designated as a defective area.
  • the TDFL # 1 contains information regarding a part of an area in which the user data recorded according to the recording operation # 1 , where the part having a defect is designated as another defective area. While not required in all aspect, the TDFL # 1 further contains the information recorded in the TDFL # 0 according to an aspect of the invention.
  • FIGS. 6A and 6B illustrate data structures of a TDFL according to an embodiment of the present invention.
  • information regarding defects # 1 through # 3 is recorded in TDFL # 0 .
  • the information regarding the defect # 1 describes the position of the defect # 1
  • the information regarding the defect # 2 describes the position of the defect # 2
  • the information regarding the defect # 3 describes the position of the defect # 3 .
  • information regarding TDFL # 0 which indicates the position of the TDFL # 0 , is further recorded in the TDFL # 0 .
  • the TDFL # 0 contains the information regarding its position and thus can be used as useful information, for example, to indicate during the reproduction of the user data that the user data is not recorded in the TDFL # 0 .
  • the TDFL # 1 contains information regarding defects # 4 and # 5 , in addition to the information recorded in the TDFL # 0 .
  • the TDFL # 1 also contains information regarding the position of the TDFL # 1 for the same reason that the position is indicated in the TDFL # 0 .
  • FIGS. 7A and 7B illustrate the data structures of information regarding defect #i contained a TDFL and information regarding TDFL #i.
  • the information regarding the defect #i includes information regarding the state, the start, reserved, and end positions of the defect #i.
  • the state information is flag information that indicates whether a present area is a defective area in which a defect occurs or is a TDFL in which is recorded temporary defect information.
  • the state information is the flag information which indicates that the present area is a defective area.
  • the start information represents the start of the present area (i.e., the start of the defect #i).
  • the end information represents the end of the present area (i.e., the end of the defect #i).
  • the reserved is referred to as an area in which recording is pending to record other information therein.
  • the information regarding the TDFL #i includes information regarding the state of and the start, reserved, and end positions of the TDFL #i.
  • the state information is flag information that indicates whether a present area is a defective area in which a defect occurs or is a TDFL in which is recorded temporary defect information.
  • the state information is the flag information which indicates that the present area is a TDFL in which is recorded temporary defect information.
  • FIG. 8 illustrates the data structure of temporary disc definition structure (TDDS) #i.
  • the TDDS #i includes an identifier, defect management mode information, a drive information pointer, a TDFL #i pointer, which points out the position of the corresponding TDFL #i, a user data physical area pointer, a user data logical area pointer, an optimal power control (OPC) pointer, and disc usage information.
  • OPC optimal power control
  • the defect management mode information indicates whether defect management is performed on the disc 100 .
  • the information describes a spare area when defect management is performed and does not describe the spare area otherwise. If defect management is not required, the information provides this fact so that more user data can be recorded in the spare area, which otherwise uses about 5% of the disc recording capacity according to an aspect of the invention.
  • the drive information pointer describes the location (e.g., the number of a first physical sector) of a drive information area (not shown) of the disc 100 according to an aspect of the present invention.
  • Drive information is obtained by conducting a test on the disc 100 with a certain disc drive, allowing the test to be skipped when data is read from the disc 100 , thereby rendering fast reading operations.
  • the drive information is created to use a certain drive without testing the drive.
  • the drive information includes recording conditions, such as an identifier of a used drive and the optimum record power.
  • data is recorded in a new cluster whenever drive information is updated.
  • the TDFL #i pointer indicates the position of an area of the disc 100 where the TDFL #i is recorded (e.g., the number of a first physical sector of TDFL #i).
  • the user data physical area pointer indicates the end (e.g., the number of the last physical sector) of a data area in which user data is physically recorded.
  • the user data logical area pointer indicates the end part (e.g., the number of the last logical sector) of the data area in which user data is logically recorded. It is possible to detect the start of the data area where recording of the user data begins during a next recording operation, using the user data physical area pointer and the user data logical area pointer.
  • the OPC pointer describes the location of a test area for detecting the optimum power control.
  • the OPC pointer can also be used as information that provides a next area available when different types of drives are driven by different OPCs.
  • the disc usage information specifies whether the disc 100 is finalized (i.e., whether user data
  • FIG. 9 illustrates an embodiment of the data structure of TDFL #i.
  • the TDFL #i includes an identifier, a TDDS #i pointer, information regarding defect #n, information regarding defect #n+1, and so on.
  • the information regarding defect #n includes information regarding start and end positions of defect #n in state information.
  • the TDDS #i pointer indicates the position of an area in which is recorded a corresponding TDDS #i.
  • the TDDS #i pointer can indicate the number of a first physical sector of the TDDS #i.
  • Information regarding the position of the TDFL #i included in the TDDS #i and information regarding the position of the TDDS #i included in the TDDS #i specify the positions of the TDFL #i and the TDDS #i which are a pair of information.
  • the above two different information can be used to verify the availability of information recorded in the TDFL #i and the TDDS #i.
  • the state information which is the information regarding defect #n, describes whether a certain area is an actual defective area or an area where defect management information is recorded.
  • the inclusion of the information regarding the defect #n into the state information is optional.
  • the information regarding the start and end positions of the defect #n may be recorded with the number of a first physical sector and the number of the last physical sector of the defective area, respectively.
  • the information regarding defect #n+1 is also recorded using the method of recording the information regarding the defect #n.
  • the verify-after-write method is performed for every several clusters. If the verify-after-write method is performed for every single cluster, the size of an area, which is designated as a defective area, is determined to be a cluster, and thus, the number of the last physical sector of the area need not be recorded.
  • FIG. 10 illustrates the data structure of a disc definition structure (DDS) to be recorded in the DMA shown in FIGS. 3 and 4 .
  • the DDS includes an identifier, defect management mode information, a drive information pointer, a DFL pointer which specifies the position of a corresponding DFL, a user data physical area pointer, a user data logical area pointer, an OPC pointer, and disc usage information.
  • the defect management mode information indicates whether defect management is performed. This information describes that a spare area is not formed in the disc 100 according to the present invention when the defect management is not performed, and describes that a spare area is formed otherwise.
  • the drive information pointer specifies the position of a drive information area (not shown) of the disc 100 . For example, the drive information pointer can specify the number of a first physical sector of the drive information area.
  • Drive information is obtained by conducting a test on the disc 100 with a certain drive, allowing the test to be skipped when data is read from the disc 100 , thereby rendering fast reading operations.
  • the drive information is created to use a certain drive without testing the drive.
  • the drive information includes recording conditions such as an identifier of a used drive and the optimum record power.
  • data is recorded in a new cluster whenever drive information is updated.
  • the DFL pointer specifies the position of an area in which DFL is recorded (e.g., the number of a first physical sector of the DFL).
  • the user data physical area pointer indicates the end position of an area of a data area in which user data is physically recorded (e.g., the number of the last physical sector of the area in which the user data is recorded).
  • the user data logical area pointer indicates the end position of an area of a data area in which user data is physically recorded (e.g., the number of the last physical sector of the area in which the user data is recorded).
  • the OPC pointer specifies the position of a test area for detecting the optimum power control.
  • the OPC pointer can also be used as information that provides a next area available when different types of drives are driven by different OPCs.
  • the disc usage information specifies whether the disc 100 is finalized (i.e., whether user data can be further recorded in the data area).
  • FIG. 11 illustrates an embodiment of the data structure of a defect list (DFL) to be recorded in the DMA shown in FIGS. 3 and 4 .
  • the DFL includes an identifier, a DDS pointer, information regarding defect #n, and information regarding defect #n+1.
  • the information regarding defect #n includes information regarding the start and end positions of defect #n in state information.
  • information regarding defect #i may be information regarding the aforementioned TDFL #i.
  • the DDS pointer points out the position of an area in which a corresponding DDS is recorded (e.g., the number of a first physical sector of the DDS).
  • the above two different information can be used to verify the availability of information recorded in the DFL and the DDS.
  • the state information which is the information regarding defect #n, describes whether a certain area is an actual defective area or an area where defect management information is recorded.
  • the inclusion of the information regarding the defect #n into the state information is optional.
  • the information regarding the start and end positions of the defect #n may be recorded with the number of a first physical sector and the number of the last physical sector of the defective area, respectively.
  • the information regarding defect #n+1 is also recorded using the method of recording the information regarding the defect #n.
  • the verify-after-write method is performed for every several clusters. If the verify-after-write method is performed for every single cluster, the size of an area, which is designated as a defective area, is determined to be a cluster, and thus, the number of the last physical sector of the area need not be recorded.
  • FIG. 12 is a flowchart illustrating a disc defect management method according to an embodiment of the present invention.
  • a recording apparatus records defect information regarding data, which is recorded according to a first recording operation, as first temporary defect information in a data area of a disc, so as to perform disc defect management.
  • the recording apparatus records the first temporary defect information and defect information regarding data, which is recorded according to a second recording operation, as second temporary defect information in the data area.
  • the recording apparatus records defect management information for managing the first and second temporary defect information in a temporary defect management information area.
  • action 1203 is performed by sequentially recording the first temporary defect information, the defect management information for managing the first temporary defect information, the first temporary defect management information, the second temporary defect information, the defect management information for managing the second temporary defect information, and the second temporary defect management information.
  • the method only records two temporary defect information and two temporary defect management information for the sake convenience. However, it is understood there is no limit to the number of temporary defect information and defect management information which can be recorded. If the number is increased, temporary defect information is accumulatively recorded in the temporary defect management information area (i.e., all of previously recorded temporary defect information are recorded together with newly recorded temporary defect information).
  • a last recorded temporary defect information and temporary defect management information may be either moved from the temporary defect management information area to a defect management area (DMA), or be maintained to be recorded in the temporary defect management information area. If the latter location is selected, a disc drive accesses the temporary defect management information area and reads the last recorded temporary defect information therefrom so as to detect a defective area of the disc.
  • DMA defect management area
  • FIG. 13 is a flowchart illustrating a disc defect management method according to another embodiment of the present invention.
  • a recording apparatus records defect information regarding data, which is recorded according to a first recording operation, as first temporary defect information in a data area of a disc, so as to perform disc defect management.
  • the recording apparatus records defect management information for managing the first temporary defect information as first temporary defect management information in a temporary defect management information area which is present in at least one of a lead-in area and a lead-out area of the disc.
  • the recording apparatus records the temporary defect information and defect information regarding data, which is recorded according to a second recording operation, as second temporary defect information in the data area.
  • the recording apparatus records management information for managing the second temporary defect information as second temporary defect management information in the temporary defect management information area.
  • it is checked whether finalization of the disc is required is checked.
  • actions 1301 through 1304 are repeated while increasing indexes given to the recording operation, the temporary defect information, and the temporary defect management information by 1. It is understood that the indexing could be numbers other than 1 or non-integers so long as the index changes so as to reflect different recording operations being performed. While not required in all aspects, all of previously recorded temporary defect information are accumulatively recorded whenever new temporary defect information is recorded.
  • a last recorded one of temporary defect management information and temporary defect information which have been recorded until action 1305 , are recorded in a defect management area (DMA).
  • DMA defect management area
  • the last recorded temporary defect management information and temporary defect information are recorded as final defect management information and defect information in the DMA.
  • the final defect management information and defect information may be repeatedly recorded to increase the reliability of data detection.
  • the verify-after-write method may be performed on the final defect management information and defect information according to an embodiment of the invention. If a defect is detected from these information, an area of the disc in which the defect occurs and data recorded after the area having the defect may be regarded as being unavailable (i.e., they are designated as a defective area), and the final defect management information and defect information may be again recorded after the defective area.
  • FIG. 14 is a flowchart illustrating a method of managing a defect in a disc according to yet another embodiment of the present invention. Referring to FIG. 14 , a recording apparatus records user data on a data area of a disc in units of data to facilitate the verify-after-write method, in action 1401 .
  • action 1402 the data recorded in action 1401 is verified to detect an area of the disc in which a defect exists.
  • the controller 2 of FIG. 1 creates information for designating an area covering the area having the defect and data recorded after the area having the defect, as a defective area.
  • action 1404 the controller 2 stores the created information as first temporary defect information in the memory 3 of FIG. 1 .
  • action 1405 it is checked whether a recording operation is expected to end. If it is determined in action 1405 that the recording operation is not likely to end, actions 1401 through 1404 are repeated before the end of the recording operation.
  • action 1406 if it is determined in action 1405 that the recording operation is likely to end (i.e., when the recording of the user data is complete by a user input or according to the recording operation), the controller 2 reads the first temporary defect information from the memory 3 and records the first temporary defect information in a first temporary defect information area TDFL # 0 of the data area.
  • action 1407 information for designating the first temporary defect information area TDFL # 0 as a defective area is further recorded in the first temporary defect information area TDFL # 0 .
  • action 1408 the controller 2 records management information for managing the first temporary defect information area TDFL # 0 as first temporary defect management information TDDS # 0 in a temporary defect management information area.
  • action 1409 it is checked whether the disc is to be finalized.
  • actions 1401 through 1408 are repeated before the finalization while increasing indexes given to the temporary defect information, the temporary defect information area, and the temporary defect management information by 1.
  • all of previously recorded temporary defect information are accumulatively recorded whenever new temporary defect information is recorded. It is understood that other numbers (including non-integers) could be used for the index so long as the index changes reflect different recording operations being performed.
  • a last recorded temporary defect information TDFL #i and temporary defect management information TDDS #i are recorded as final defect information DFL and defect management information DDS, respectively, in a defect management area (DMA).
  • the final defect information (DFL) and defect management information (DDS) may be repeatedly recorded in the DMA several times so as to increase the reliability of data detection.
  • the verify-after-write method may be performed on the final defect information (DFL) and final defect management information (DDS) according to an aspect of the invention. If a defect is detected from the DFL and DDS, an area covering an area of the disc in which the defect occurs and data recorded after the area having the defect, may be regarded as being unavailable (i.e., be designated as a defective area), and the DFL and DDS may be again recorded after the defective area.
  • DFL final defect information
  • DDS final defect management information
  • the aforementioned defect management may be embodied as a computer program that can be run by a computer. Codes and code segments, which constitute the computer program, can be easily reasoned by a computer programmer in the art.
  • the program is stored in a computer readable medium. When the program is read and run by a computer such as the controller 2 shown in FIG. 1 , the defect management is performed.
  • the computer-readable medium may be on a magnetic recording medium, an optical recording medium, a carrier wave medium or any other medium from which a computer can recognize a program.
  • the computer can be a general or special purpose computer and can utilize the program encoded on firmware.
  • the present invention provides a defect management method that is applicable to a recordable disc, such as a write-once disc.
  • a temporary defect information area is included in a data area of a disc, and therefore, defect information is accumulatively recorded in the temporary defect information area regardless of the disc recording capacity.
  • only temporary defect information is read from the last temporary defect information area and the read information is recorded in a DMA, thereby enabling efficient use of the DMA whose recording capacity is limited. Accordingly, it is possible to record user data even on a write-once disc while performing defect management thereon, thereby backup operations can be more stably performed without interruptions.
  • a pointer which specifies the position of a corresponding TDDS #i
  • a pointer which specifies the position of TDFL #i
  • a pointer which specifies the position of TDFL #i
  • a pointer which specifies the position of TDFL #i
  • TDDS #i is recorded in the TDDS #i. Therefore, it is possible to crosscheck the relationship between the TDFL #i and the TDDS #i. For the same reason, it is possible to crosscheck the relationship between a DDS and a DFL.
  • defect management mode information is contained in the TDDS #i and the DDS and allows selective defect management, thereby successfully performing recording operations irrespective of recording environment conditions.
  • the recording and/or reproducing unit 1 shown in FIG. 1 could include a low wavelength, high numerical aperture type unit usable to record dozens of gigabytes of data on the disc 100 .
  • Examples of such units include, but are not limited to, those units using light wavelengths of 405 nm and having numerical apertures of 0.85, those units compatible with Blu-ray discs, and/or those units compatible with Advanced Optical Discs (AOD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Management Or Editing Of Information On Record Carriers (AREA)
US10/638,551 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same Active 2024-11-01 US7400564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/430,168 US20060203684A1 (en) 2002-08-12 2006-05-09 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020020047513A KR100900969B1 (ko) 2002-08-12 2002-08-12 임시 결함 정보 영역과 임시 결함 정보 관리 영역을 사용한 결함 관리 방법, 및 그 디스크
KR2002-47513 2002-08-12
KR2002-47514 2002-08-12
KR1020020047514A KR100667747B1 (ko) 2002-08-12 2002-08-12 임시 결함 관리 정보 영역과 결함 관리 영역이 마련된디스크,그 결함 관리방법 및 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/430,168 Continuation US20060203684A1 (en) 2002-08-12 2006-05-09 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same

Publications (2)

Publication Number Publication Date
US20050195716A1 US20050195716A1 (en) 2005-09-08
US7400564B2 true US7400564B2 (en) 2008-07-15

Family

ID=36970726

Family Applications (10)

Application Number Title Priority Date Filing Date
US10/638,551 Active 2024-11-01 US7400564B2 (en) 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US10/638,555 Active 2024-12-19 US7379402B2 (en) 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US10/638,481 Active 2024-09-14 US7423946B2 (en) 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/430,168 Abandoned US20060203684A1 (en) 2002-08-12 2006-05-09 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/430,877 Active 2025-04-21 US7558174B2 (en) 2002-08-12 2006-05-10 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,556 Abandoned US20060203670A1 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,474 Active 2025-08-03 US7746743B2 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,469 Abandoned US20060203638A1 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,475 Active 2025-07-24 US7646688B2 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US12/173,282 Active 2024-07-31 US7911903B2 (en) 2002-08-12 2008-07-15 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same

Family Applications After (9)

Application Number Title Priority Date Filing Date
US10/638,555 Active 2024-12-19 US7379402B2 (en) 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US10/638,481 Active 2024-09-14 US7423946B2 (en) 2002-08-12 2003-08-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/430,168 Abandoned US20060203684A1 (en) 2002-08-12 2006-05-09 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/430,877 Active 2025-04-21 US7558174B2 (en) 2002-08-12 2006-05-10 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,556 Abandoned US20060203670A1 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,474 Active 2025-08-03 US7746743B2 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,469 Abandoned US20060203638A1 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US11/432,475 Active 2025-07-24 US7646688B2 (en) 2002-08-12 2006-05-12 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US12/173,282 Active 2024-07-31 US7911903B2 (en) 2002-08-12 2008-07-15 Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same

Country Status (14)

Country Link
US (10) US7400564B2 (ja)
EP (1) EP1540654B1 (ja)
JP (2) JP4540476B2 (ja)
CN (2) CN101064156B (ja)
AU (1) AU2003248500A1 (ja)
BR (1) BRPI0313395B1 (ja)
CA (1) CA2494148C (ja)
MX (1) MXPA05001548A (ja)
MY (1) MY135098A (ja)
PL (1) PL375343A1 (ja)
RU (1) RU2288513C2 (ja)
SG (1) SG145577A1 (ja)
TW (1) TWI294622B (ja)
WO (1) WO2004015708A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210362A1 (en) * 2004-03-19 2005-09-22 Park Yong C Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US20050207294A1 (en) * 2004-03-18 2005-09-22 Park Yong C Apparatus and method for recording and/or reproducing data to/from recording medium
US20050259560A1 (en) * 2004-03-23 2005-11-24 Park Yong C Recording medium, and method and apparatus for recording and reproducing data on/from recording medium
US20080212435A1 (en) * 2002-10-10 2008-09-04 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects in disc, and disc on which defects are managed

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100579454B1 (ko) 1999-04-13 2006-05-12 엘지전자 주식회사 기록매체 및 이에 테스트 기록을 수행하는 장치 및 방법
TWI294622B (en) * 2002-08-12 2008-03-11 Samsung Electronics Co Ltd Disc with tdds and tdfl, and method and apparatus for managing defect in the same
KR100888591B1 (ko) * 2002-09-10 2009-03-16 삼성전자주식회사 스패어 영역 할당 방법, 그 장치 및 그 디스크
TWI286744B (en) 2002-09-26 2007-09-11 Lg Electronics Inc Method for managing defective area on write-once optical recording medium, and optical recording medium using the same
JP4194559B2 (ja) * 2002-09-26 2008-12-10 エルジー エレクトロニクス インコーポレーテッド 光ディスク、追記型光ディスク上で欠陥領域を管理する方法および装置
KR20040027259A (ko) * 2002-09-26 2004-04-01 엘지전자 주식회사 1 회 기록 가능한 광디스크의 디펙트 영역 관리방법
US7233550B2 (en) 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
KR20040028469A (ko) 2002-09-30 2004-04-03 엘지전자 주식회사 1 회 기록 가능한 광디스크의 디펙트 영역 관리방법
KR100667749B1 (ko) * 2002-10-18 2007-01-11 삼성전자주식회사 임시 결함 관리 영역을 사용한 결함 관리 방법, 그 장치및 그디스크
US20060028923A1 (en) * 2002-12-05 2006-02-09 Koninklijke Philips Electronics, N.V. Method and apparatus for dynamic readout decision level adjustment for use in domain expansion reading
EP1579443A1 (en) 2002-12-11 2005-09-28 LG Electronics Inc. Method and apparatus for managing overwrite on an optical disc write once
EP1579447B1 (en) 2002-12-11 2010-03-24 LG Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
MXPA05006935A (es) * 2002-12-25 2005-09-30 Matsushita Electric Ind Co Ltd Medio de grabacion de informacion de una escritura y varias lecturas, metodo de grabacion de informacion, metodo de reproduccion de informacion, aparato para grabacion de informacion y aparato para reproduccion de informacion.
US7372788B2 (en) * 2003-01-14 2008-05-13 Lg Electronics Inc. Method for managing defective area on write-once optical recording medium, and optical recording medium using the same
TWI314315B (en) 2003-01-27 2009-09-01 Lg Electronics Inc Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7672204B2 (en) * 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
US20040160799A1 (en) * 2003-02-17 2004-08-19 Park Yong Cheol Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc
TWI335587B (en) * 2003-02-21 2011-01-01 Lg Electronics Inc Write-once optical recording medium and defect management information management method thereof
US7499383B2 (en) * 2003-02-21 2009-03-03 Lg Electronics Inc. Write-once optical disc and method for managing spare area thereof
CN100380456C (zh) * 2003-02-25 2008-04-09 Lg电子有限公司 一次性写入光盘及在其上记录管理信息的方法和装置
US7477581B2 (en) * 2003-02-25 2009-01-13 Lg Electronics Inc. Defect management method for optical recording medium and optical recording medium using the same
US7675828B2 (en) 2003-02-25 2010-03-09 Lg Electronics Inc. Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
US7188271B2 (en) * 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
KR100909042B1 (ko) * 2003-02-28 2009-07-22 파이오니아 가부시키가이샤 추기형 기록 매체, 추기형 기록 매체용의 기록 장치 및재생 장치
US7385889B2 (en) * 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS
BRPI0318160B1 (pt) 2003-03-04 2016-05-31 Lg Electronics Inc método para gravação em meio de gravação óptica, aparelho para gravação em e reprodução de um meio de gravação óptica e meio de gravação óptica
TWI328805B (en) 2003-03-13 2010-08-11 Lg Electronics Inc Write-once recording medium and defective area management method and apparatus for write-once recording medium
US8184513B2 (en) * 2003-04-15 2012-05-22 Samsung Electronics Co., Ltd. Recording/reproducing method, recording/reproducing apparatus, optical recording medium, and computer readable recording medium having recorded thereon program for the recording/reproducing method
KR100739674B1 (ko) 2003-05-01 2007-07-13 삼성전자주식회사 결함 관리 방법, 그 장치 및 그 디스크
US7522501B2 (en) * 2003-05-09 2009-04-21 Lg Electronics Inc. Recording, reproducing and product for management of data having a temporary defect management area containing at least one pointer
TWI405191B (zh) 2003-05-09 2013-08-11 Lg Electronics Inc 單寫型光碟及由單寫型光碟回復碟片管理資訊的方法與裝置
MXPA05012044A (es) * 2003-05-09 2006-02-03 Lg Electronics Inc Disco optico de una sola escritura, metodo y aparato par recuperacion de informacion de administracion de disco del disco optico de una sola escritura.
BRPI0410197A (pt) * 2003-05-09 2006-06-06 Lg Electronics Inc meio fìsico de gravação do tipo gravação única, método de formatação, método de gravar informação de gerenciamento no mesmo, método de gravar dados de gerenciamento no mesmo, método de reproduzir dados do mesmo e aparelho para gravar dados de gerenciamento no mesmo
WO2005004123A1 (en) 2003-07-04 2005-01-13 Lg Electronics Inc. Method and apparatus for managing a overwrite recording on optical disc write once
KR101014703B1 (ko) * 2003-07-15 2011-02-21 엘지전자 주식회사 광디스크의 결함영역 관리방법 및 광디스크의 기록방법과기록재생장치
KR20050009031A (ko) * 2003-07-15 2005-01-24 엘지전자 주식회사 1회 기록 가능한 광디스크 및 광디스크의 관리정보 기록방법
JP4557974B2 (ja) * 2003-07-17 2010-10-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 情報記録装置及び方法
DE602004023851D1 (de) * 2003-08-05 2009-12-10 Lg Electronics Inc Einmalbeschreibbarer optischer datenträger und verfahren und vorrichtung zum aufzeichnen/wiedergeben von verwaltungsinformationen auf dem optischen datenträger bzw. daraus
US7313065B2 (en) 2003-08-05 2007-12-25 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
JP4425918B2 (ja) * 2003-08-05 2010-03-03 エルジー エレクトロニクス インコーポレイティド 追記型光ディスク、光ディスクに管理情報を記録し再生する方法及び装置
MXPA06002622A (es) * 2003-09-08 2006-06-05 Lg Electronics Inc Disco optico de una sola escritura, metodo y aparato para grabacion de informacion de administracion sobre el mismo.
CA2537889C (en) 2003-09-08 2013-10-22 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
CA2537888C (en) 2003-09-08 2015-03-03 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
KR20050027787A (ko) * 2003-09-16 2005-03-21 삼성전자주식회사 데이터 기록 상태 정보를 제공하는 광 디스크
KR100964685B1 (ko) * 2003-10-20 2010-06-21 엘지전자 주식회사 1회 기록가능한 광디스크 및 광디스크의 기록재생방법과기록재생장치
TWI381374B (zh) 2004-03-18 2013-01-01 Lg Electronics Inc 其上具有重疊區塊資訊之記錄媒體和用以形成、記錄及重製記錄媒體之設備和方法
US7710853B2 (en) 2004-03-18 2010-05-04 Lg Electronics, Inc. Recording medium with segment information thereon and apparatus and methods for forming, recording, and reproducing the recording medium
KR101113866B1 (ko) 2004-03-19 2012-03-02 엘지전자 주식회사 기록매체내에 기록되는 데이터 구조 및 데이터 기록방법과기록장치
CN101572098B (zh) * 2004-03-19 2013-02-20 Lg电子株式会社 形成、记录和再现记录介质的设备和方法
KR101024916B1 (ko) 2004-03-19 2011-03-31 엘지전자 주식회사 1회 기록 가능한 고밀도 광디스크의 데이터 기록 방법 및장치
KR101057060B1 (ko) * 2004-03-19 2011-08-16 엘지전자 주식회사 엑세스 제어정보를 포함하는 기록매체, 기록매체에 데이터를 기록/재생하는 방법 및 장치
JP4116583B2 (ja) * 2004-03-24 2008-07-09 株式会社東芝 基板処理方法
US7916582B2 (en) * 2004-05-11 2011-03-29 Samsung Electronics Co., Ltd. Optical recording medium, recording/reproducing apparatus and method, initialization method, and reinitialization method
KR101049117B1 (ko) * 2004-06-08 2011-07-14 엘지전자 주식회사 1회 기록 가능한 광디스크 및 광디스크의 관리정보 기록방법, 디스크 클로징 방법 및 기록재생 장치
KR20060046157A (ko) * 2004-06-21 2006-05-17 엘지전자 주식회사 기록매체 및 기록매체의 재포맷팅 방법 및 장치
KR101014727B1 (ko) 2004-06-23 2011-02-16 엘지전자 주식회사 1회 기록 가능한 광디스크의 중첩 기록 방법 및 장치
KR100667755B1 (ko) * 2004-06-23 2007-01-11 삼성전자주식회사 복수의 기록층을 구비한 광 디스크, 데이터 기록 방법 및그 장치
JP4285344B2 (ja) * 2004-07-08 2009-06-24 ソニー株式会社 情報記録装置および方法、プログラム格納媒体、並びにプログラム
KR101044938B1 (ko) * 2004-07-10 2011-06-28 삼성전자주식회사 복수의 기록층을 구비한 정보 저장 매체 및 기록/재생 장치
KR20060046445A (ko) * 2004-07-22 2006-05-17 엘지전자 주식회사 기록매체 및 기록매체의 기록재생 제어방법 및 데이터기록재생 방법과 장치
KR20060010431A (ko) * 2004-07-28 2006-02-02 삼성전자주식회사 정보 저장 매체, 기록/재생 장치 및 기록/재생 방법
KR100667758B1 (ko) * 2004-07-30 2007-01-11 삼성전자주식회사 정보 저장 매체, 기록/재생 장치 및 기록/재생 방법
KR101041811B1 (ko) 2004-08-02 2011-06-17 엘지전자 주식회사 광 저장매체의 기록 재생 방법 및 장치
KR101012378B1 (ko) 2004-08-16 2011-02-09 엘지전자 주식회사 광 저장매체의 기록 재생 방법 및 장치
BRPI0515049A (pt) * 2004-09-13 2008-07-01 Lg Electronics Inc meio de gravação, método e aparelho para gravar dados em meio de gravação
MX2007001243A (es) 2004-09-14 2007-04-18 Lg Electronics Inc Medio de grabacion, y metodo y aparato para grabar y reproducir datos en el mismo.
US7613874B2 (en) 2004-10-14 2009-11-03 Lg Electronics, Inc. Recording medium, and a method and apparatus for overwriting data in the same
KR20060082513A (ko) * 2005-01-12 2006-07-19 엘지전자 주식회사 기록매체 및 기록매체의 기록방법과 기록장치
JP4917888B2 (ja) * 2005-01-14 2012-04-18 パナソニック株式会社 光ディスク、記録装置、読出装置、記録方法、読出方法
KR101227485B1 (ko) 2005-11-25 2013-01-29 엘지전자 주식회사 기록매체 및 기록매체의 결함관리 정보 기록방법과기록장치
KR20070058291A (ko) 2005-12-02 2007-06-08 엘지전자 주식회사 기록매체, 기록매체의 관리정보 기록방법 및 기록장치
JP2008217856A (ja) * 2007-02-28 2008-09-18 Fujitsu Ltd 制御装置、記憶装置および制御方法
JP4544260B2 (ja) * 2007-05-01 2010-09-15 ソニー株式会社 記録媒体、記録装置、再生装置、記録方法、再生方法
JP2009009642A (ja) * 2007-06-28 2009-01-15 Hitachi Ltd 情報記録再生装置及び情報記録方法
KR101683790B1 (ko) * 2009-02-25 2016-12-09 삼성전자주식회사 정보 저장 매체, 기록 재생 장치 및 기록 재생 방법
JP5914885B2 (ja) * 2011-02-08 2016-05-11 パナソニックIpマネジメント株式会社 記録再生装置および記録再生方法

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835757A (en) 1986-08-29 1989-05-30 Kabushiki Kaisha Toshiba System for recording information onto disk medium
EP0350920A2 (en) 1988-07-13 1990-01-17 Matsushita Electric Industrial Co., Ltd. A method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
EP0353920A2 (en) 1988-08-01 1990-02-07 Texaco Development Corporation Slurry-phase process to increase yield of mixed alcohols from synthesis gas
US5548572A (en) 1995-03-31 1996-08-20 International Business Machines Corporation Spare and calibration sector management for optical WORM media
JPH1050005A (ja) 1996-07-29 1998-02-20 Nec Gumma Ltd 光ディスク欠陥管理方法および装置
EP0887732A1 (en) 1997-06-20 1998-12-30 Sony Corporation Defective management data handling method and recording medium
CN1227950A (zh) 1998-03-02 1999-09-08 Lg电子株式会社 在记录介质上建立缺陷处理信息的方法及其装置和介质
US6189118B1 (en) 1998-10-22 2001-02-13 Matsushita Electric Industrial Co., Ltd. Information recording medium, and method and apparatus for managing defect thereof
WO2001075879A1 (fr) 2000-04-05 2001-10-11 Matsushita Electric Industrial Co., Ltd. Dispositif d'enregistrement d'informations, procede d'enregistrement d'informations, et programme
CN1323032A (zh) 2000-04-08 2001-11-21 三星电子株式会社 光盘缺陷管理区信息的验证方法
TW464851B (en) 1998-11-10 2001-11-21 Samsung Electronics Co Ltd Recording medium having spare area for defect managemnt and information on defect management, and method of allocating spare area and method of managing defects
US6563776B1 (en) * 1998-07-10 2003-05-13 Fujitsu Limited Information storage apparatus for monitoring a number of defective sectors included in a zone so as to select a substitutional area from a different zone
US6606285B1 (en) * 1999-09-23 2003-08-12 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US6738341B2 (en) * 1997-12-18 2004-05-18 Mitsubishi Denki Kabushiki Kaisha Rewritable optical disk with spare area and optical disk processing apparatus
US20040223440A1 (en) * 2003-05-09 2004-11-11 Park Yong Cheol Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US20040240341A1 (en) * 2003-05-09 2004-12-02 Park Yong Cheol Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
US7000152B1 (en) * 1999-11-10 2006-02-14 Thomson Licensing Method for tracking defective sectors in re-writable disk media

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473559A (en) * 1987-09-14 1989-03-17 Pioneer Electronic Corp Controller for automatic changer for writable disk
NL9002490A (nl) * 1990-03-13 1991-10-01 Philips Nv Informatie-optekeninrichting alsmede een informatie-uitleesinrichting.
JP3585671B2 (ja) * 1995-11-14 2004-11-04 シャープ株式会社 光磁気記録媒体及びその再生方法
US6055139A (en) * 1995-12-14 2000-04-25 Fujitsu Limited Magnetic recording medium and method of forming the same and magnetic disk drive
JPH09167446A (ja) * 1995-12-14 1997-06-24 Sony Corp 記録再生装置
JPH105000A (ja) 1996-06-27 1998-01-13 Hitachi Ltd Dnaアミノ酸配列比較方法
JP2774793B2 (ja) * 1996-12-02 1998-07-09 株式会社東芝 情報記録再生方法
JPH1166751A (ja) * 1997-08-18 1999-03-09 Ricoh Co Ltd 情報記録再生装置
US6581167B1 (en) 1999-02-01 2003-06-17 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information recording/reproduction system
US6387038B1 (en) * 1999-02-05 2002-05-14 St. Croix Medical, Inc. Air cell mountable support shaft
CZ302609B6 (cs) * 1999-07-15 2011-08-03 Koninklijke Philips Electronics N. V. Zpusob a zarízení pro záznam informací
CN101281769B (zh) * 2002-01-22 2013-11-06 松下电器产业株式会社 多层信息记录媒介,信息记录设备,和记录方法
EP1512141A4 (en) 2002-06-07 2009-11-11 Lg Electronics Inc HIGH DENSITY MULTILAYER OPTICAL DISK, METHOD FOR RECORDING DATA THEREWITH LAYERED LAYER PROCESS, AND METHOD FOR MANAGING FREE AREAS OF THE DISK
KR20030094855A (ko) 2002-06-08 2003-12-18 엘지전자 주식회사 고밀도 멀티 레이어 광디스크와, 그에 따른 포맷팅관리방법
TWI294622B (en) * 2002-08-12 2008-03-11 Samsung Electronics Co Ltd Disc with tdds and tdfl, and method and apparatus for managing defect in the same
KR100739673B1 (ko) * 2002-10-10 2007-07-13 삼성전자주식회사 임시 결함 관리 영역을 사용한 결함 관리 방법
KR100667749B1 (ko) * 2002-10-18 2007-01-11 삼성전자주식회사 임시 결함 관리 영역을 사용한 결함 관리 방법, 그 장치및 그디스크
US7385889B2 (en) * 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835757A (en) 1986-08-29 1989-05-30 Kabushiki Kaisha Toshiba System for recording information onto disk medium
EP0350920A2 (en) 1988-07-13 1990-01-17 Matsushita Electric Industrial Co., Ltd. A method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
US5111444A (en) 1988-07-13 1992-05-05 Matsushita Electric Industrial Co., Ltd. Method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
EP0353920A2 (en) 1988-08-01 1990-02-07 Texaco Development Corporation Slurry-phase process to increase yield of mixed alcohols from synthesis gas
US5548572A (en) 1995-03-31 1996-08-20 International Business Machines Corporation Spare and calibration sector management for optical WORM media
JPH1050005A (ja) 1996-07-29 1998-02-20 Nec Gumma Ltd 光ディスク欠陥管理方法および装置
EP0887732A1 (en) 1997-06-20 1998-12-30 Sony Corporation Defective management data handling method and recording medium
US6738341B2 (en) * 1997-12-18 2004-05-18 Mitsubishi Denki Kabushiki Kaisha Rewritable optical disk with spare area and optical disk processing apparatus
US6564345B1 (en) * 1998-03-02 2003-05-13 Lg Electronics, Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
CN1227950A (zh) 1998-03-02 1999-09-08 Lg电子株式会社 在记录介质上建立缺陷处理信息的方法及其装置和介质
US6754860B2 (en) * 1998-03-02 2004-06-22 Lg Electronics, Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6563776B1 (en) * 1998-07-10 2003-05-13 Fujitsu Limited Information storage apparatus for monitoring a number of defective sectors included in a zone so as to select a substitutional area from a different zone
TW463156B (en) 1998-10-22 2001-11-11 Matsushita Electric Ind Co Ltd Information recording medium, and method and apparatus for managing defect thereof
US6189118B1 (en) 1998-10-22 2001-02-13 Matsushita Electric Industrial Co., Ltd. Information recording medium, and method and apparatus for managing defect thereof
TW464851B (en) 1998-11-10 2001-11-21 Samsung Electronics Co Ltd Recording medium having spare area for defect managemnt and information on defect management, and method of allocating spare area and method of managing defects
US6367038B1 (en) 1998-11-10 2002-04-02 Samsung Electronics Co., Ltd. Recording medium having spare area for defect management and information on defect management, and method of allocating spare area and method of managing defects
US6606285B1 (en) * 1999-09-23 2003-08-12 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US7000152B1 (en) * 1999-11-10 2006-02-14 Thomson Licensing Method for tracking defective sectors in re-writable disk media
WO2001075879A1 (fr) 2000-04-05 2001-10-11 Matsushita Electric Industrial Co., Ltd. Dispositif d'enregistrement d'informations, procede d'enregistrement d'informations, et programme
CN1323032A (zh) 2000-04-08 2001-11-21 三星电子株式会社 光盘缺陷管理区信息的验证方法
US20040223440A1 (en) * 2003-05-09 2004-11-11 Park Yong Cheol Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US20040240341A1 (en) * 2003-05-09 2004-12-02 Park Yong Cheol Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Office Action issued in Chinese Patent Application No. 038189933 on Dec. 7, 2007.
Preliminary Notice of the First Office Action issued Jul. 2, 2007 re: Taiwanese Patent Application No. 92121766 (6 pp).
U.S. Appl. No. 10/638,481, filed Aug. 12, 2003, Ko et al., Samsung Electronics Co., Ltd.
U.S. Appl. No. 10/638,555, filed Aug. 12, 2003, Ko et al, Samsung Electronics Co., Ltd.

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080212435A1 (en) * 2002-10-10 2008-09-04 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US8064305B2 (en) 2002-10-10 2011-11-22 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US20050207294A1 (en) * 2004-03-18 2005-09-22 Park Yong C Apparatus and method for recording and/or reproducing data to/from recording medium
US20070263504A1 (en) * 2004-03-18 2007-11-15 Park Yong C Apparatus and method for recording and/or reproducing data to/from recording medium
US8094524B2 (en) 2004-03-18 2012-01-10 Lg Electronics Inc. Apparatus and method for recording and/or reproducing data to/from recording medium
US8125879B2 (en) 2004-03-18 2012-02-28 Lg Electronics Inc. Apparatus and method for recording and/or reproducing data to/from recording medium
US20050210362A1 (en) * 2004-03-19 2005-09-22 Park Yong C Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US20070226234A1 (en) * 2004-03-19 2007-09-27 Park Yong C Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US7970988B2 (en) 2004-03-19 2011-06-28 Lg Electronics Inc. Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US7975098B2 (en) 2004-03-19 2011-07-05 Lg Electronics Inc. Recording medium with status information thereon which changes upon reformatting and apparatus and methods for forming, recording, and reproducing the recording medium
US20050259560A1 (en) * 2004-03-23 2005-11-24 Park Yong C Recording medium, and method and apparatus for recording and reproducing data on/from recording medium
US7965616B2 (en) * 2004-03-23 2011-06-21 Lg Electronics Inc. Recording medium, and method and apparatus for recording and reproducing data on/from recording medium

Also Published As

Publication number Publication date
EP1540654B1 (en) 2017-10-04
US20040109378A1 (en) 2004-06-10
US20060203668A1 (en) 2006-09-14
US7558174B2 (en) 2009-07-07
US20060203684A1 (en) 2006-09-14
RU2005103626A (ru) 2005-09-10
TWI294622B (en) 2008-03-11
US20060203670A1 (en) 2006-09-14
TW200402705A (en) 2004-02-16
WO2004015708A1 (en) 2004-02-19
RU2288513C2 (ru) 2006-11-27
BR0313395A (pt) 2005-06-21
EP1540654A1 (en) 2005-06-15
CN1675708A (zh) 2005-09-28
JP4540476B2 (ja) 2010-09-08
JP2005535993A (ja) 2005-11-24
CA2494148A1 (en) 2004-02-19
AU2003248500A1 (en) 2004-02-25
US20060203669A1 (en) 2006-09-14
US7646688B2 (en) 2010-01-12
JP4712899B2 (ja) 2011-06-29
BRPI0313395B1 (pt) 2016-12-06
SG145577A1 (en) 2008-09-29
US7746743B2 (en) 2010-06-29
US7379402B2 (en) 2008-05-27
MY135098A (en) 2008-02-29
CA2494148C (en) 2012-10-02
US20060203638A1 (en) 2006-09-14
MXPA05001548A (es) 2005-05-05
US20040105363A1 (en) 2004-06-03
PL375343A1 (en) 2005-11-28
US20090185465A1 (en) 2009-07-23
US7911903B2 (en) 2011-03-22
US7423946B2 (en) 2008-09-09
US20060203635A1 (en) 2006-09-14
CN1675708B (zh) 2011-04-13
JP2010192103A (ja) 2010-09-02
EP1540654A4 (en) 2010-11-17
CN101064156B (zh) 2010-09-22
US20050195716A1 (en) 2005-09-08
CN101064156A (zh) 2007-10-31

Similar Documents

Publication Publication Date Title
US7400564B2 (en) Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US7463564B2 (en) Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US7414939B2 (en) Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KO, JUNG-WAN;LEE, KYUNG-GEUN;REEL/FRAME:014942/0941

Effective date: 20040127

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12