US20040160799A1 - Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc - Google Patents

Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc Download PDF

Info

Publication number
US20040160799A1
US20040160799A1 US10/670,462 US67046203A US2004160799A1 US 20040160799 A1 US20040160799 A1 US 20040160799A1 US 67046203 A US67046203 A US 67046203A US 2004160799 A1 US2004160799 A1 US 2004160799A1
Authority
US
United States
Prior art keywords
area
size
recording medium
spare area
spare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/670,462
Inventor
Yong Park
Sung Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Electronics Inc
Original Assignee
LG Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KRP2003-09895 priority Critical
Priority to KR20030009895 priority
Priority to KR20030023876 priority
Priority to KRP2003-23876 priority
Application filed by LG Electronics Inc filed Critical LG Electronics Inc
Assigned to LG ELECTRONICS INC. reassignment LG ELECTRONICS INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIM, SUNG DAE, PARK, YONG CHEOL
Publication of US20040160799A1 publication Critical patent/US20040160799A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1883Methods for assignment of alternate areas for defective areas
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B2020/1873Temporary defect structures for write-once discs, e.g. TDDS, TDMA or TDFL
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers

Abstract

A write-once type optical disc and a method and apparatus for allocating a spare area on the write-once type optical disc are provided. The method includes allocating a data area on a recording medium of write-once type, and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.

Description

  • This application claims the priority benefit of Korean Patent Application No. P2003-009895 filed on Feb. 17, 2003, and No. 2003-023876 filed on Apr. 16, 2003, the entire contents of which are herein fully incorporated by reference. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a write-once optical disc, and more particularly, to an apparatus and method for allocating a spare area on a write-once optical disc such as a write-once blu-ray disc. [0003]
  • 2. Discussion of the Background Art [0004]
  • A new type of high density optical disc such as a Blu-ray Disc Rewritable (BD-RE) is being developed. A benefit of the BD-RE is that it has a rewritable capability where the quality video and audio data can be written, erased and rewritten thereon repeatedly. [0005]
  • FIG. 1 is a block diagram of a general optical disc device for writing/reproducing data to/from an optical disc such as a BD-RE. As shown in FIG. 1, the optical disc device includes an optical pickup [0006] 11 for recording/reproducing a signal to/from a BD-RE 10, a video disc recorder (VDR) system 12 for processing a signal from the optical pickup 11 as a reproduced signal, or demodulating and processing an external data stream into a writable signal suitable for writing onto the BD-RE 10, and an encoder 13 for encoding an external analog signal and providing the encoded signal to the VDR system 12.
  • FIG. 2 shows a structure of a general BD-RE. Referring to FIG. 2, an LIA (lead-in area), a data area and an LOA (lead-out area) are allocated on the BD-RE. An ISA (inner spare area) and an OSA (outer spare area) are allocated separately to a front and a rear end of the data area. A user data area having an LSN (Logical Sector Number) is allocated between the ISA and the OSA of the data area. [0007]
  • Referring to FIGS. 1 and 2, the VDR system [0008] 12 writes input data from an external source in a cluster unit corresponding ECC block having a predetermined recording capacity after encoding and converting the input data into a recording signal. The VDR system 12 also detects a defective area within the data area when recording the data.
  • When a defective area is detected, the VDR system [0009] 12 performs a replacement writing operation to write the cluster data from the defective area onto the ISA instead. After the data writing is finished, location information of the defective area and management information for reproducing the cluster data written on the spare area (replacement area) are written as a defect list onto the LIA.
  • FIGS. 3A and 3B illustrate a general structure of a BD-RE single layer and a BD-RE dual layer, respectively. As shown, a BD-RE may have a single recording layer (FIG. 3A) or two recording layers (FIG. 3B). [0010]
  • Referring to FIG. 3A, the recording capacity of the inner spare area ISA being allocated to the BD-RE single layer is 2048 clusters, and the recording capacity of the outer spare area OSA is N×256 (0=<N<=64) clusters with a maximum of 16384 clusters. The recording capacity of the data area of the BD-RE single layer is 355603 clusters. The recording capacity of the user data area of the BD-RE single layer is determined to be a difference between the recording capacity of the data area and the recording capacity of the spare areas. For example, when the recording capacity of the outer spare area is 16384 clusters (N=64), then the recording capacity of the user data area is 337171 clusters. As a result, the size of the inner and outer spare areas (18432=2048+16384) corresponds to 5.5% of the size of the user data area of the BD-RE single layer. [0011]
  • Referring to FIG. 3B, in the BD-RE dual layer, the recording capacity of the inner spare area (ISA[0012] 0) of a first layer (Layer 0) is 2048 clusters. The recording capacity of the outer spare area (OSA0) of the first layer is N×256 clusters (0=<N<=32) with the 8192 maximum clusters (N=32). On the other hand, the recording capacity of the inner spare area (ISA1) of a second layer (Layer 1) is L×256 clusters (0=<L<=64) with the 16384 maximum clusters (L=64). The recording capacity of the outer spare area (OSA1) of the second layer is N×256 clusters (0=<N<=32) with the 8192 maximum clusters (N=32). As a result, the total recording capacity of the spare areas of the first and second layers is calculated to be 5.1% of the total recording capacity of the user data areas of the first and second layers.
  • A Blu-ray Disc Write-Once (BD-WO) is another type of high density optical disc that is being developed where a high quality of data can be recorded and reproduced to and from the disc. As the name may suggest, data can be written only once on the BD-WO and is not rewritable on the BD-WO. But the BD-WO can be read repeatedly. As a result, the BD-WO is useful where the rewritability of data on a recording medium is not desired. [0013]
  • Recently, standardizing the size of the BD-WO is being considered. But allocating the spare areas of the BD-WO as in the BD-RE would cause a problem of wasting precious recording space due to the characteristics of the BD-WO. For instance, in the BD-RE the recording capacity of the spare areas should be allocated large enough since the BD-RE re-records data repeatedly and as a result many defective areas can surface. In contrast, BD-WO is able to write once and thus relatively less defective areas may be present. Therefore, it is not necessary and is wasteful to allocate the same amount of spare area of the BD-RE onto the BD-WO. [0014]
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to an apparatus and method for allocating a spare area of a write-once optical disc that substantially obviate one or more problems due to limitations and disadvantages of a related art. [0015]
  • An object of the present invention is to provide a write-once optical disc and a method and apparatus for optimally allocating the spare area on the write-once optical disc in consideration of the characteristics of the optical disc. [0016]
  • Additional advantages, objects, and features of the invention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objectives and other advantages of the invention may be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. [0017]
  • To achieve these objects and other advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a method for allocating a spare area on a recording medium of write-once type according to an aspect of the invention includes allocating a data area on the recording medium; and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc. [0018]
  • In accordance with another aspect of the invention, a method for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, includes allocating a data area on the at least one recording layer of the recording medium; and allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%. [0019]
  • In accordance with another aspect of the invention, an apparatus for allocating a spare area on a recording medium of write-once type, includes a combination of elements for allocating a data area on the recording medium and for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc. [0020]
  • In accordance with another aspect of the invention, an apparatus for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, includes a combination of elements for allocating a data area on the at least one recording layer of the recording medium and for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%. [0021]
  • In accordance with an aspect of the invention, a recording medium of write-once type includes a data area allocated on the recording medium, the data area including a user data area and at least one spare area, the at least one spare area having a variable size, wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc. [0022]
  • In accordance with another aspect of the invention, a recording medium of write-once type includes at least one recording layer; and a data area allocated on the at least one recording layer, the data area including a user data area and at least one spare area, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area, wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%. [0023]
  • It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.[0024]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this application, illustrate embodiments of the invention and together with the description serve to explain the principle of the invention. In the drawings: [0025]
  • FIG. 1 illustrates a general optical disc device schematically; [0026]
  • FIG. 2 illustrates a structure of a general BD-RE; [0027]
  • FIGS. 3A and 3B illustrate a structure of a BD-RE single layer and a general BD-RE dual layer, respectively; [0028]
  • FIG. 4 illustrates a structure of a BD-WO single layer and a method of allocating a spare area on the BD-WO single layer according to a first preferred embodiment of the present invention; [0029]
  • FIG. 5 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the first preferred embodiment of the present invention; [0030]
  • FIG. 6 illustrates a structure of a BD-WO single layer and a method of allocating a spare area on the BD-WO single layer according to a second preferred embodiment of the present invention; [0031]
  • FIG. 7 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the second preferred embodiment of the present invention; and [0032]
  • FIG. 8 is a block diagram of an optical disc recording/reproducing device according to an embodiment of the present invention.[0033]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. [0034]
  • Hereinafter, the embodiments of the method of allocating a spare area on a write-once type optical disc such as BD-WO are explained in details according to the present invention in reference with drawings. The present method can be applied in the process of manufacturing a write-once BD-WO single layer and a write-once BD-WO dual layer. Considering the characteristics of data recording on the BD-WO, the maximum size of the spare area can be allocated which is smaller than the maximum size of the spare areas allocated to a BD-RE. [0035]
  • In the present invention, the recording capacity of the spare area(s)/replacement area(s) of a BD-WO is kept at less than about 5% of the recording capacity of the user data area. In the present application, the recording size of an area (assuming with no defects) means the size of the area. As such, these two terms are interchangeably used herein. As an example only, an embodiment of allocating the recording capacity of the spare area(s) to about 3% of the recording capacity of the user data area on the BD-WO will be now explained as follows. [0036]
  • FIG. 4 illustrates a structure of a BD-WO single layer and a method of allocating a spare area thereon according to a first embodiment of the present invention. [0037]
  • Referring to FIG. 4, the BD-WO single layer includes a single recording layer allocated with an LIA, a data area and an LOA. The data area includes a user data area having a logical sector number (LSN), and an inner spare area and/or an outer spare area for writing data of defective areas (i.e., as a replacement area). The recording capacity of the inner spare area (ISA) is allocated to be of a predetermined fixed value (e.g., 2048 clusters), and the recording capacity of the outer spare area (OSA) is variable, e.g., N×256 clusters (0=<N<=32) with the maximum 8192 clusters (N=32). [0038]
  • The recording capacity of the data area of the BD-WO single layer is allocated to have 355603 clusters. The recording capacity of the user data area is obtained by subtracting the recording capacity of the spare areas (ISA and OSA) from the recording capacity of the data area. For example, when the recording capacity of the outer spare area OSA is at the maximum 8192 clusters (N=32), the recording capacity of the user data area is calculated to be 34563 (=355603−(2048+8192)) clusters. As a result, the recording capacity of the inner and outer spare areas (10240=2048+8192) of the BD-WO single layer according to this embodiment is about 3% of the recording capacity (size) of the user data area (34563 clusters) of the BD-WO single layer. [0039]
  • Accordingly, when the recording capacity of the inner and outer spare areas allocated to the BD-WO single layer is adjusted to be about 3% of the recording capacity of the user data area by varying the maximum recording capacity of the outer spare area, the spare areas of the BD-WO are prevented from being wasted and are efficiently allocated. [0040]
  • FIG. 5 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area thereon according to the first embodiment of the present invention. [0041]
  • Referring to FIG. 5, the BD-WO dual layer includes a first recording layer (Layer [0042] 0) and a second recording layer (Layer 1). The first recording layer (Layer 0) includes a LIA, a data area 32 a, and an outer zone area (Outer Zone 0). The data area 32 a includes an inner spare area (ISA0), a user data area 33 a, and an outer spare area (OSA0). The second recording layer (Layer 1) includes a LOA, a data area 32 b, and an outer zone area (Outer Zone 1). The data area 32 b of the second layer includes an inner spare area (ISA1), a user data area 33 b, and an outer spare area (OSA1). A data writing operation occurs generally in the direction shown with the dotted arrow A.
  • The inner spare area (ISA[0043] 0) on the first layer has a predermined fixed size, e.g., 2048 clusters. The recording capacity of the outer spare area (OSA0) on the first layer is variable and is N×256 clusters (0=<N<=16) with the maximum 4096 clusters (N=16). The recording capacity of the inner spare area (ISA1) on the second layer is variable and is L×256 clusters (0=<N<=16) with the maximum 8192 clusters (L=32). The recording capacity of the outer spare area (OSA1) on the second layer is variable and is N×256 clusters (0=<L<=32) with the maximum 4096 clusters (N=16). The total recording capacity of the first and second data areas 32 a and 32 b is 711206 (=355603×2) clusters.
  • The total recording capacity of the user data areas on the first and second layers is calculated by subtracting the total recording capacity of the spare areas from the total recording capacity of the data areas of the first and second layers. For example, if both recording capacities of the first and second outer areas (OSA[0044] 0 and OSA1) are at maximum 4096 clusters (N=16) and the recording capacity of the inner spare area (OSA1) of the second layer is at maximum 8192 clusters (L=32), then the total recording capacity of the user data areas of the first and second layers becomes 692774 clusters (=(355603×2)−(2048+4096+4096+8192)). As a result, the total capacity of the spare areas of the first and second layers (2048+4096+4096+8192 clusters) corresponds to about 3% of the total recording capacity of the user data areas on the first and second layers.
  • Accordingly, the total recording capacity of the first and second inner and outer spare areas allocated to the BD-WO dual layer becomes about 3% of the total recording capacity of the user data areas by adjusting the maximum recording capacity of the first and second outer spare areas (OSA[0045] 0, OSA1) and the maximum recording capacity of the second inner spare area (ISA1). Therefore, the spare areas are prevented from being wasted and are efficiently allocated in accordance with the data recording characteristics of the BD-WO.
  • In the first embodiment as shown in FIGS. 4 and 5, the entire spare areas (e.g., inner spare areas and outer spare areas) are used as replacement areas for storing data of defective areas according to a linear replacement scheme. For instance, if a cluster area of a user data area is found to be defective, then the data stored in that defective cluster area is also written onto a spare area functioning as a replacement area for the defective cluster area. [0046]
  • FIG. 6 shows a structure a BD-WO single layer and a method for assigning a spare area on the BD-WO single layer according to a second embodiment of the present invention. The BD-WO single layer shown in FIG. 6 includes a lead-in area, a data area, and a lead-out area. The data area has a fixed size, e.g., 355603 clusters. [0047]
  • The lead-in area includes first and second defect management areas DMA[0048] 1 and DMA2, and a temporary defect management area TDMA. TDMA is an area to temporarily record and manage defect management information of the BD-WO until the BD-WO is finalized. For instance, if during a writing operation of the user data area, if data in a defective cluster area of the user data area is written onto a part (replacement area) of a spare area according to a linear replacement scheme, then information (e.g., location information, size, etc.) of the defective cluster area and the corresponding replacement area within the spare area is temporarily stored in the TDMA as TDMA information. Then if the BD-WO is to be finalized (e.g., upon completion of the data writing onto the user data area), then the TDMA information stored in the TDMA is transferred to one or each of the DMAs allocated on the BD-WO. In this example, the TDMA provided in the lead-in area has a fixed size, for example, 2048 clusters.
  • The data area includes an inner spare area ISA, a user data area [0049] 34, and an outer spare area OSA. In this example, the entire inner spare area ISA is used as an area for linear replacement (i.e., as a replacement area). In other words, an area for temporary defect management is not allocated to the inner spare area ISA. Generally, the ISA has a fixed size (e.g., 2048 clusters) and the OSA has a variable size.
  • The outer spare area OSA includes an interim defect management area (IDMA) and a replacement area [0050] 40 for linear replacement. In one example, the IDMA is allocated adjacent to the replacement area 40. The size of the IDMA is allocated variably depending on the size of the outer spare area OSA. Since the outer spare area OSA has a variable size, the IDMA also has a variable size.
  • Here, the IDMA is distinguished from the TDMA having a fixed size in the lead-in area in that it has a variable size and may differ from the TDMA depending on a usage manner in recorded timing. However, the TDMA and the IDMA can store the same contents despite the difference between the terms. This will be described later. [0051]
  • In one example, the IDMA having a variable size is allocated within the outer spare area OSA depending on whether or not the outer spare area OSA is allocated. For instance, if the outer spare area OSA is allocated, then the IDMA is allocated therein as discussed herein. But if the outer spare area OSA is not allocated, then the IDMA may not be allocated and only the TDMA having a fixed size may be allocated as discussed herein. In another variation, the outer spare area OSA may be allocated without the allocation of the IDMA therein. However, if the outer spare area OSA is allocated, it is preferable to allocate the IDMA therein. [0052]
  • The size of the IDMA positioned at the outer track of the disc depends on the variable size of the outer spare area OSA. In one example, the size of the outer spare area OSA is Nυ256 clusters (0≦N≦64). In this case, the size of the IDMA can be Pυ256 clusters, where P is an integer determined to be P=N/4. That is, a method wherein the size of the IDMA is allocated to be a quarter of the size of the outer spare area OSA can be used in determining the size of the IDMA. For example, if N=64 is used, then the size of the outer spare area OSA is allocated to be 16384 clusters (16384=64×256) and P=N/4=16. As a result, the size of the IDMA according to the present invention is allocated to be 4096 clusters (4096=16×256). [0053]
  • Similarly, the size of the IDMA may be varied depending on the size of the outer spare area OSA considering that when the replacement area for linear replacement is allocated in the OSA, the size of the replacement area, the size of the DMA, and the size of the spare area(s) depend on one another. In contrast, the size of the disk inner track area (especially the size of the TDMA positioned in the lead-in area) has a fixed value. [0054]
  • FIG. 7 illustrates a structure of a BD-WO dual layer and a method of allocating a spare area on the BD-WO dual layer according to the second embodiment of the present invention. [0055]
  • Referring to FIG. 7, the BD-WO dual layer includes a first layer (Layer [0056] 0) and a second layer (Layer 1). The first layer (Layer 0) includes a lead-in area, a data area 35 a and an outer zone area Outer Zone 0. The second layer (Layer 1) includes a lead-out area, a data area 35 b and an outer zone area Outer Zone 1.
  • In each of the lead-in area and lead-out area, a TDMA of the present invention is provided as first and second TDMAs [0057] 37 a and 37 b, and a plurality of DMAs are provided. A plurality of DMAs are also provided in each of the Outer Zones 0 and 1. Each TDMA provided in the lead-in area and the lead-out area has a fixed size, for example, 2048 clusters.
  • The first data area [0058] 35 a of the first layer (Layer 0) includes an inner spare area ISA0, a user data area 36 a, and an outer spare area OSA0. The inner spare area ISA0 has a fixed size (e.g., 2048 clusters) and the outer spare area OSA0 has a variable size. Here, the entire ISA0 is used as a replacement area for linear replacement. The OSA0 includes a replacement area 38 d for linear replacement and a first IDMA 38 a for storing therein IDMA information for defect management. That is, an area for temporary defect management is not allocated to the inner spare area ISA0 of the first layer (Layer 0).
  • The second data area [0059] 35 b of the second layer (Layer 1) includes an inner spare area ISA1, a user data area 36 b, and an outer spare area OSA1. Each of the inner and outer spare areas ISA1 and OSA1 has a variable size. Each of the inner and outer spare areas ISA1 and OSA1 includes a replacement area 38 f or 38 g for linear replacement and an IDMA 38 b or 38 c for storing therein IDMA information for defect management. In one example, the IDMAs 38 a-38 c are each allocated to a portion adjacent to the corresponding replacement area for linear replacement. The size of the IDMAs is allocated depending on the size of the spare areas ISA1, OSA0 and OSA1 where the spare areas ISA1, OSA0 and OSA1 have a variable size.
  • Here, the IDMAs [0060] 38 a-38 c are allocated within the spare areas depending on whether or not the corresponding spare areas area allocated. For instance, if a spare area is allocated to the BD-WO, then the corresponding IDMA may be allocated therein. But if a spare area is not allocated, then the corresponding IDMA may not be allocated therein and only the TDMA(s) having a fixed size may be allocated. In one example, if the BD-WO has been allocated with the ISA0 and not with the ISA1, the OSA0 and/or the OSA1, then only the first TDMA 37 a may be allocated and the second TDMA 37 b and the IDMAs 38 a-38 c may not be allocated to the BD-WO. In another example, if the ISA0 and ISA1 (and not the OSA0 and OSA1) are allocated to the BD-WO, then the TDMAs 37 a and 37 b and the IDMA 38 b (not the IDMAs 38 a and 38 c) may be allocated. In still another example, the IDMA may not be allocated within the corresponding spare area even if the corresponding spare area is allocated to the BD-WO. For instance, even if the ISA0, OSA0 and OSA1 are allocated to the BD-WO, the corresponding IDMAs 38 a and 38 c may not be allocated therein. It should be noted that one or more of the ISA0, the OSA0 (with or without the IDMA 38 a), the OSA1 (with or without the IDMA 38 c), and the ISA1 (with or without the IDMA 38 b) may be allocated to the BD-WO with one or more of the TDMAs.
  • The size of the IDMAs may depend on the size of the spare areas ISA[0061] 1, OSA0 and OSA1. For example, the size of each of the outer spare areas OSA0 and OSA1 is allocated to be Nυ256 clusters (0≦N≦32), and the size of the inner spare area ISA1 is allocated to be Lυ256 clusters (0≦L≦64). Then the size of each of the IDMAs 38 a and 38 c is allocated to be Pυ256 clusters and the size of the IDMA 38 b is allocated to be Qυ256 clusters, where P and Q are integers determined to be P=N/4 and Q=L/4. Here a method wherein the size of the IDMA having a variable size is allocated to be a quarter of the size of the corresponding outer/inner spare area can be used.
  • As an example, if N=32 (max), then the size of the outer spare areas OSA[0062] 0 and OSA1 in total is 16384 clusters and P=N/4=8. As a result, the size of the IDMAs 38 a and 38 c in total is 4096 clusters. And if L=64 (max), the size of the inner spare area ISA1 is 16384 clusters and Q=L/4=16. As a result, the size of the IDMA 38 b is allocated to be 4096 clusters. According to this example, the total maximum size of the data areas (35 a and 35 b) of the BD-WO dual layer is 711206 clusters, the total maximum size of the spare areas (ISA 0, ISA1, OSA0 and OSA1) of the BD-WO dual layer is 34816 clusters, the total maximum size of the IDMAs (38 a-38 c) is 8192 clusters, the total maximum size of the replacement areas (ISA0, 38 d, 38 f and 38 g) within the spare areas is 26624 clusters, and the total size of the user data areas (36 a and 36 b) is 676390 clusters. As a result, the total capacity (size) of the replacement areas (ISA0, 38 d, 38 f and 38 g) in the spare areas of the BD-WO dual layer corresponds to about 4% of the total recording capacity of the user data areas of the BD-WO dual layer.
  • Here, the size of the IDMAs may vary depending on the size of the spare areas ISA[0063] 1, OSA0 and OSA1 considering that when a replacement area for linear replacement is allocated in the corresponding spare area, the size of the replacement area, the size of the IDMA(s) and the size of the spare area depend on one another. In contrast, the size of the inner track area (especially the TDMA positioned at each of the lead-in area and the lead-out area) has a fixed value.
  • The arrows depicted in each of the areas shown in FIGS. 6 and 7 are examples of a data recording direction. [0064]
  • According to the second embodiment as shown in FIGS. 6 and 7, if a defective area within the user data area is detected during a data writing operation of the BD-WO, the data written or to be written to the defective area is written to a replacement area of a spare area according to the linear replacement. Information pertaining to the defective area and the replacement area and any other information is written onto the TDMA(s) and IDMA(s) allocated on specific areas of the disc. The same defect management information may be written to each of the TDMA(s) and IDMA(s). In the alternative, if the TDMA of a layer is full, then the IDMA(s) of the same or different layer may be used, or if an IDMA of a layer is full, then the IDMA(s) of the same or different layer or the TDMA(s) of the same or different layer may be used. [0065]
  • According to the second embodiment, in the BD-WO single layer, the entire ISA may be used as the area for linear replacement, whereas a portion of the OSA may be used as the IDMA and the remaining portion (or another portion) of the OSA may be used as the area for linear replacement. In the BD-WO dual layer, the entire ISA[0066] 0 may be used as the area for linear replacement, whereas portions of the ISA1, OSA0 and OSA1 may be used as the IDMA(s) and the remaining portions (or other portions) of the ISA1, OSA0 and OSA1 may be used as the area for linear replacement.
  • FIG. 8 is an example of a block diagram of an optical disc recording/reproducing device [0067] 20 according to an embodiment of the present invention. The optical disc recording/reproducing device 20 includes an optical pickup 22 for writing/reading data to/from an optical recording medium 21, a servo unit 23 for controlling the pickup 22 to maintain a distance between an objective lens of the pickup 22 and the recording medium 21 and for tracking relevant tracks on the recording medium 21, a data processor 24 for processing and supplying input data to the pickup 22 for writing, and for processing data read from the recording medium 21, an interface 25 for exchanging data and/or commands with any external host 30, a memory or storage 27 for storing information and data therein including defect management data (e.g., TDMA information, IDMA information, DMA information, etc.) associated with the recording medium 21, and a microprocessor or controller 26 for controlling the operations and elements of the recording/reproducing device 20. Data to be written/read to/from the recording medium 21 may also be stored in the memory 27. All the components of the recording/reproducing device 20 are operatively coupled. The recording medium 21 is a recording medium of write-once type such as a BD-WO.
  • The methods of allocating spare areas, IDMA(s) and TDMA(s) on the BD-WO according to the embodiments of the present invention can be implemented by the recording/reproducing device [0068] 20 of FIG. 8 or any other suitable device/system. For instance, the microcomputer 26 can control allocating the size of the spare area(s), the IDMA(s), TDMA(s), etc. according to the above discussed embodiments. It can control varying the size of the spare area(s) as replacement writing operations are performed. It can control the process of writing replacement data to replacement areas of the spare areas in a replacement writing operation, and the process of writing defect management information to the IDMA(s), TDMA(s), and DMA(s). The process of allocating the spare area(s), IDMA(s), TDMA(s), etc. may occur as needed while the disc is being manufactured, or during or prior to data writing and/or replacement writing operations using the recording/reproducing device 20 or some other suitable device/system.
  • It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the inventions. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents. [0069]

Claims (44)

What is claimed is:
1. A method for allocating a spare area on a recording medium of write-once type, the method comprising:
allocating a data area on the recording medium; and
allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
2. The method as claimed in claim 1, wherein the recording medium is a write-once blu-ray disc (BD-WO) and the rewritable optical disc is a rewritable blu-ray disc (BD-RE).
3. A method for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, the method comprising:
allocating a data area on the at least one recording layer of the recording medium; and
allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
4. The method as claimed in claim 3, wherein the at least one recording layer is a single recording layer, the recording layer including the user data area, an inner spare area, and an outer spare area, and
the inner spare area is allocated to have a predetermined fixed size and the outer spare area is allocated to have a size of N×256 clusters.
5. The method as claimed in claim 4, wherein N is greater than zero and ≦32.
6. The method as claimed in claim 5, wherein a maximum ratio of a total size of the inner and outer spare areas to the size of the user data area is about 3%.
7. The method as claimed in claim 4, wherein N is greater than zero and ≦64.
8. The method as claimed in claim 7, wherein a maximum ratio of a total size of the replacement area of the inner and outer spare areas to the size of the user data area is about 4%.
9. The method as claimed in claim 4, wherein the outer spare area includes a replacement area and an interim defect management area for temporarily storing defect management information therein.
10. The method as claimed in claim 9, wherein a size of the interim defect management area is about a quarter of a size of the outer spare area.
11. The method as claimed in claim 9, further comprising:
allocating a lead-in area on the single recording layer of the recording medium, the lead-in area including a temporary defect management area for temporarily storing defect management information therein.
12. The method as claimed in claim 3, wherein the at least one recording layer includes first and second recording layers, the first recording layer including a first user data area, a first inner spare area and a first outer spare area, the second recording layer including a second user data area, a second inner spare area, and a second outer spare area, and
the first inner spare area is allocated to have a predetermined fixed size and the second inner spare area is allocated to have a size of L×256 clusters where L is equal to or greater than zero.
13. The method as claimed in claim 12, wherein each of the first and second outer spare areas is allocated to a size of N×256 clusters where N is greater than zero.
14. The method as claimed in claim 13, wherein at least one of the second inner spare area, the first outer spare area and the second outer spare area includes an interim defect management area for storing defect management information therein.
15. The method as claimed in claim 14, wherein a size of the interim defect management area is about a quarter of a size of the corresponding inner spare area or outer spare area.
16. The method as claimed in claim 14, further comprising:
allocating a lead-in area on the first recording layer and a lead-out area on the second recording layer, at least one of the lead-in and lead-out areas including a temporary defect management area for storing defect management information therein.
17. The method as claimed in claim 13, wherein 0<N≦16 and 0<L≦32.
18. The method as claimed in claim 17, wherein a maximum ratio of a total size of the inner and outer spare areas to a total size of the user data areas is about 3%.
19. The method as claimed in claim 13, wherein 0<N≦32 and 0<L≦64.
20. The method as claimed in claim 19, wherein a maximum ratio of a total size of replacement areas of the inner and outer spare areas to a total size of the user data area is about 4%.
21. The method as claimed in claim 3, wherein the recording medium is a write-once blu-ray disc (BD-WO).
22. An apparatus for allocating a spare area on a recording medium of write-once type, the apparatus comprising:
means for allocating a data area on the recording medium; and
means for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
23. An apparatus for allocating a spare area on a recording medium of write-once type, the recording medium including at least one recording layer, the apparatus comprising:
means for allocating a data area on the at least one recording layer of the recording medium; and
means for allocating a user data area and at least one spare area within the data area on the recording medium, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
24. A recording medium of write-once type, the recording medium comprising:
a data area allocated on the recording medium, the data area including a user data area and at least one spare area, the at least one spare area having a variable size,
wherein a maximum recording capacity of the at least one spare area on the recording medium is less than a maximum recording capacity of at least one variable spare area on a rewritable type optical disc.
25. The recording medium as claimed in claim 24, wherein the recording medium is a write-once blu-ray disc (BD-WO) and the rewritable optical disc is a rewritable blu-ray disc (BD-RE).
26. A recording medium of write-once type, the recording medium comprising:
at least one recording layer; and
a data area allocated on the at least one recording layer, the data area including a user data area and at least one spare area, the at least one spare area having at least one replacement area, the at least one replacement area having a variable size and constituting a part of the at least one spare area or the entire at least one spare area,
wherein a maximum ratio of a size of the at least one replacement area to a size of the user data area is less than about 5%.
27. The recording medium as claimed in claim 26, wherein the at least one recording layer is a single recording layer, the recording layer including the user data area, an inner spare area, and an outer spare area, and
the inner spare area is allocated to have a predetermined fixed size and the outer spare area is allocated to have a size of N×256 clusters.
28. The recording medium as claimed in claim 27, wherein N is greater than zero and ≦32.
29. The recording medium as claimed in claim 28, wherein a maximum ratio of a total size of the inner and outer spare areas to the size of the user data area is about 3%.
30. The recording medium as claimed in claim 27, wherein N is greater than zero and ≦64.
31. The recording medium as claimed in claim 30, wherein a maximum ratio of a total size of the replacement area of the inner and outer spare areas to the size of the user data area is about 4%.
32. The recording medium as claimed in claim 27, wherein the outer spare area includes a replacement area and an interim defect management area for temporarily storing defect management information therein.
33. The recording medium as claimed in claim 32, wherein a size of the interim defect management area is about a quarter of a size of the outer spare area.
34. The recording medium as claimed in claim 32, further comprising:
allocating a lead-in area on the single recording layer of the recording medium, the lead-in area including a temporary defect management area for temporarily storing defect management information therein.
35. The recording medium as claimed in claim 26, wherein the at least one recording layer includes first and second recording layers, the first recording layer including a first user data area, a first inner spare area and a first outer spare area, the second recording layer including a second user data area, a second inner spare area, and a second outer spare area, and
the first inner spare area is allocated to have a predetermined fixed size and the second inner spare area is allocated to have a size of L×256 clusters where L is equal to or greater than zero.
36. The recording medium as claimed in claim 35, wherein each of the first and second outer spare areas is allocated to a size of N×256 clusters where N is greater than zero.
37. The recording medium as claimed in claim 36, wherein at least one of the second inner spare area, the first outer spare area and the second outer spare area includes an interim defect management area for storing defect management information therein.
38. The recording medium as claimed in claim 37, wherein a size of the interim defect management area is about a quarter of a size of the corresponding inner spare area or outer spare area.
39. The recording medium as claimed in claim 37, further comprising:
allocating a lead-in area on the first recording layer and a lead-out area on the second recording layer, at least one of the lead-in and lead-out areas including a temporary defect management area for storing defect management information therein.
40. The recording medium as claimed in claim 36, wherein 0<N≦16 and 0<L≦32.
41. The recording medium as claimed in claim 40, wherein a maximum ratio of a total size of the inner and outer spare areas to a total size of the user data areas is about 3%.
42. The recording medium as claimed in claim 36, wherein 0<N≦32 and 0<L≦64.
43. The recording medium as claimed in claim 42, wherein a maximum ratio of a total size of replacement areas of the inner and outer spare areas to a total size of the user data area is about 4%.
44. The recording medium as claimed in claim 26, wherein the recording medium is a write-once blu-ray disc (BD-WO).
US10/670,462 2003-02-17 2003-09-26 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc Abandoned US20040160799A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KRP2003-09895 2003-02-17
KR20030009895 2003-02-17
KR20030023876 2003-04-16
KRP2003-23876 2003-04-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/242,699 US7764581B2 (en) 2003-02-17 2008-09-30 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/242,699 Continuation US7764581B2 (en) 2003-02-17 2008-09-30 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc

Publications (1)

Publication Number Publication Date
US20040160799A1 true US20040160799A1 (en) 2004-08-19

Family

ID=36273514

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/670,462 Abandoned US20040160799A1 (en) 2003-02-17 2003-09-26 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc
US12/242,699 Active US7764581B2 (en) 2003-02-17 2008-09-30 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/242,699 Active US7764581B2 (en) 2003-02-17 2008-09-30 Write-once optical disc, and method and apparatus for allocating spare area on write-once optical disc

Country Status (16)

Country Link
US (2) US20040160799A1 (en)
EP (2) EP2110817B1 (en)
JP (1) JP4541161B2 (en)
KR (1) KR100964690B1 (en)
CN (2) CN101252016B (en)
AT (1) AT443321T (en)
AU (1) AU2003265114B2 (en)
BR (1) BR0318122A (en)
CA (1) CA2515164C (en)
DE (1) DE60329334D1 (en)
ES (1) ES2333010T3 (en)
HU (1) HUE030832T2 (en)
MX (1) MXPA05008699A (en)
RU (1) RU2334290C2 (en)
TW (1) TWI296113B (en)
WO (1) WO2004072963A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050276191A1 (en) * 2004-06-14 2005-12-15 Yutaka Kashihara Optical disk, optical disk recording method, and optical disk recording apparatus
US20070211591A1 (en) * 2002-09-30 2007-09-13 Park Yong C Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7663997B2 (en) 2003-05-09 2010-02-16 Lg Electronics, Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7668054B2 (en) 2002-12-11 2010-02-23 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
US7672208B2 (en) 2003-08-05 2010-03-02 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7684293B2 (en) 2003-05-09 2010-03-23 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7783829B2 (en) 2003-09-08 2010-08-24 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
US7813243B2 (en) 2003-01-11 2010-10-12 Lg Electronics Inc. Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7911900B2 (en) 2003-09-08 2011-03-22 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US8045430B2 (en) 2002-09-30 2011-10-25 Lg Electronics Inc. Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US8054718B2 (en) 2003-07-15 2011-11-08 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information thereon
US8296529B2 (en) 2003-09-08 2012-10-23 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
TWI419151B (en) * 2004-05-20 2013-12-11 Lg Electronics Inc Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20140189283A1 (en) * 2012-12-27 2014-07-03 SK Hynix Inc. Semiconductor memory device and operating method for the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI335587B (en) 2003-02-21 2011-01-01 Lg Electronics Inc Write-once optical recording medium and defect management information management method thereof
KR20050031683A (en) * 2003-09-30 2005-04-06 삼성전자주식회사 Write-once disc and method of using the write-once disc
JP5129156B2 (en) 2006-12-15 2013-01-23 パナソニック株式会社 Access device, and a write once recording system
JP4798276B2 (en) * 2009-09-14 2011-10-19 ソニー株式会社 Information recording apparatus and method, program storage medium, and program
JP2013065370A (en) * 2011-09-16 2013-04-11 Hitachi Consumer Electronics Co Ltd Medium having alternate area, and recording device and recording method of the same

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733386A (en) * 1985-05-02 1988-03-22 Hitachi, Ltd. Method of writing file data into a write-once type memory device
US4807205A (en) * 1985-11-29 1989-02-21 Michel Picard Process for writing with updating and reading informations on a non-erasable support organized into sectors
US5111444A (en) * 1988-07-13 1992-05-05 Matsushita Electric Industrial Co., Ltd. Method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
US5138203A (en) * 1988-04-27 1992-08-11 Hitachi, Ltd. Integrated circuit compensation for losses in signal lines due to parasitics
US5210734A (en) * 1989-08-30 1993-05-11 Victor Company Of Japan, Ltd. Information management method for appendage type additional information recording medium
US5235585A (en) * 1991-09-11 1993-08-10 International Business Machines Reassigning defective sectors on a disk
US5237553A (en) * 1990-05-24 1993-08-17 Matsushita Electric Industrial Co. Data recording and reproducing apparatus having a plurality of operating modes
US5319626A (en) * 1990-08-27 1994-06-07 Mitsubishi Electric Corporation Method for rewriting defect management areas on optical disk according to ECMA standard
US5404357A (en) * 1991-06-27 1995-04-04 Matsushita Electric Industrial Co., Ltd. Information writing and reading apparatus
US5442611A (en) * 1992-05-07 1995-08-15 Olympus Optical Co., Ltd. Method of recording information on record medium having data record region and file management information record region
US5481519A (en) * 1990-10-03 1996-01-02 Canon Kabushiki Kaisha Method for recording, reproducing and managing file data on a recording medium
US5495466A (en) * 1994-01-10 1996-02-27 Eastman Kodak Company Write verification in an optical recording system by sensing mark formation while writing
US5528571A (en) * 1993-06-08 1996-06-18 Sony Corporation Optical disc apparatus
US5608715A (en) * 1994-07-26 1997-03-04 Pioneer Electronic Corporation Multi-layered recording disk and recording/reproducing system using the same
US5715221A (en) * 1995-04-21 1998-02-03 Matsushita Electric Industrial Method for managing defects in an information recording medium, and a device and information recording medium using said method
US5720030A (en) * 1994-08-22 1998-02-17 Seiko Epson Corporation Preprocess method, information read/write method, input/output device and read/write device
US5740435A (en) * 1994-10-31 1998-04-14 Sony Corporation Data management apparatus and method for managing data of variable lengths recorded on a record medium
US5745444A (en) * 1994-12-19 1998-04-28 Hitachi, Ltd. Method of controlling recording information on an optical disk using replacement control information
US5799212A (en) * 1993-02-26 1998-08-25 Sony Corporation Efficient recording medium
US5867455A (en) * 1993-12-07 1999-02-02 Hitachi, Ltd. Optical method and device for irradiating domains at predetermined positions
US5878020A (en) * 1996-03-25 1999-03-02 Kabushiki Kaisha Toshiba Information recording disk with management areas
US5914928A (en) * 1996-03-25 1999-06-22 Kabushiki Kaisha Toshiba Information recording disk having replacement area
US6058085A (en) * 1992-07-31 2000-05-02 Sony Corporation Method and apparatus for identifying and skipping defective sections
US6189118B1 (en) * 1998-10-22 2001-02-13 Matsushita Electric Industrial Co., Ltd. Information recording medium, and method and apparatus for managing defect thereof
US6233654B1 (en) * 1996-03-05 2001-05-15 Sony Corporation Recording apparatus having a partially exchangeable disk array, a loading/unloading device, and a control device and which uses a disk-like recording medium
US20010009537A1 (en) * 2000-01-26 2001-07-26 Lg Electronics, Inc. Method of formatting optical recording medium
US6341109B1 (en) * 1999-02-05 2002-01-22 Nec Corporation Defective area replacement method and information writing/reading device
US20020025138A1 (en) * 2000-01-11 2002-02-28 Hitachi, Ltd. Apparatus and method for recording and reproducing information
US6373800B1 (en) * 1998-09-14 2002-04-16 Kabushiki Kaisha Toshiba Information recording apparatus and method with replacement process
US6405332B1 (en) * 1998-05-27 2002-06-11 Oki Electric Industry Co, Ltd. Storage device and alternate processing method for defective sectors of the same
US6414923B1 (en) * 1998-08-17 2002-07-02 Lg Electronics Inc. Recording/reproducing method of optical recording medium
US20020097666A1 (en) * 1998-10-10 2002-07-25 Samsung Electronics Co., Ltd Recording medium having spare areas for defect management and method of allocating spare areas
US20020099950A1 (en) * 2001-01-22 2002-07-25 Smith Kenneth K. Method of maintaining integrity of an instruction or data set
US6529458B1 (en) * 1998-09-26 2003-03-04 Lg Electronics Inc. Method for managing defective area of optical recording medium
US6542450B1 (en) * 1998-11-11 2003-04-01 Lg Electronics Inc. Method for assigning spare area in optical recording medium
US20030072236A1 (en) * 2001-10-12 2003-04-17 Akemi Hirotsune Recording method, recording medium, and recording system
US6564345B1 (en) * 1998-03-02 2003-05-13 Lg Electronics, Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US20030095482A1 (en) * 2001-11-20 2003-05-22 Chien-Li Hung Method for adjusting the writing speed of a CD drive
US6581167B1 (en) * 1999-02-01 2003-06-17 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information recording/reproduction system
US20030137910A1 (en) * 2002-01-22 2003-07-24 Hiroshi Ueda Multi-layered information recording medium, reproduction apparatus, recording apparatus, reproduction method, and recording method
US20030137909A1 (en) * 2002-01-22 2003-07-24 Motoshi Ito Multi-layered information recording medium, recording apparatus , and recording method
US20030142608A1 (en) * 2002-01-31 2003-07-31 Yoshikazu Yamamoto Information recording medium, recording apparatus, reproduction apparatus, recording method, reproduction method and defect management method
US20040001408A1 (en) * 2000-05-30 2004-01-01 Dataplay, Inc. Defect management system for write-once storage disk
US20040004917A1 (en) * 2002-07-04 2004-01-08 Ming-Hung Lee Method for managing spare blocks of an optical disc
US6697306B2 (en) * 2000-07-31 2004-02-24 Sony Corporation Data recording method, data outputting method, and data recording and/or reproducing method
US6714502B2 (en) * 2000-04-08 2004-03-30 Samsung Electronics Co., Ltd Method of verifying defect management area information of optical disc and apparatus for performing the same
US20040062160A1 (en) * 2002-09-30 2004-04-01 Park Yong Cheol Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US20040062159A1 (en) * 2002-09-26 2004-04-01 Park Yong Cheol Optical disc, method and apparatus for managing a defective area on an optical disc of write once type
US6724701B2 (en) * 2000-06-06 2004-04-20 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US20040076096A1 (en) * 2002-10-18 2004-04-22 Samsung Electronics, Co., Ltd. Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS
US6738341B2 (en) * 1997-12-18 2004-05-18 Mitsubishi Denki Kabushiki Kaisha Rewritable optical disk with spare area and optical disk processing apparatus
US20040105363A1 (en) * 2002-08-12 2004-06-03 Samsung Electronics Co., Ltd. Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US20040114474A1 (en) * 2002-12-11 2004-06-17 Park Yong Cheol Method and apparatus for managing overwrite on an optical disc write once
US20040120233A1 (en) * 2002-12-11 2004-06-24 Park Yong Cheol Method of managing overwrite and method of recording management information on an optical disc write once
US20040125717A1 (en) * 2002-10-10 2004-07-01 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US20040125716A1 (en) * 2002-09-10 2004-07-01 Samsung Electronics Co., Ltd. Of Suwon-City, Korea Method and apparatus for adaptively allocating a spare area in a recording medium, and a recording medium having a spare area allocated using the same
US6760288B2 (en) * 1999-09-23 2004-07-06 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US6763429B1 (en) * 2000-03-31 2004-07-13 Hitachi, Ltd. Method and apparatus for recording and playing back information
US20040136292A1 (en) * 2003-01-14 2004-07-15 Park Yong Cheol Method for managing defective area on optical disc of writable once type
US6766418B1 (en) * 2001-04-30 2004-07-20 Emc Corporation Methods and apparatus for accessing data using a cache
US20040145980A1 (en) * 2003-01-27 2004-07-29 Park Yong Cheol Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US6842580B1 (en) * 1999-01-27 2005-01-11 Matsushita Electric Industrial Co., Ltd. Real-time recording/reproduction on an information recording medium including a defective region
US20050007910A1 (en) * 2003-07-08 2005-01-13 Motoshi Ito Write-once recording medium, recording method, recording apparatus, reproduction method, and reproduction apparatus
US20050008346A1 (en) * 2002-10-07 2005-01-13 Pioneer Corporation Recording apparatus, method for controlling the same and playback apparatus
US6845069B2 (en) * 2000-07-26 2005-01-18 Pioneer Corporation Information editing apparatus, information editing method, and information recording medium on which program for controlling edit is recorded so as to be read by computer
US20050025007A1 (en) * 2003-07-15 2005-02-03 Park Yong Cheol Write-once optical disc, and method and apparatus for recording management information thereon
US20050047294A1 (en) * 2003-05-10 2005-03-03 Park Yong Cheol Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
US20050050402A1 (en) * 2003-08-12 2005-03-03 Takeshi Koda Information recording medium, recording apparatus and method, reproducing apparatus and method, computer program for controlling record or reproduction, and data structure including control signal
US20050052972A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc and method for recording management information thereon
US20050052973A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20050055500A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc and method for recording management information thereon
US20050060489A1 (en) * 2003-07-14 2005-03-17 Park Yong Cheol Write-once optical disc, method and apparatus for recording management information on write-once optical disc
US20050068877A1 (en) * 1997-05-21 2005-03-31 Lg Electronics Inc. Optical disc having variable spare area rates and method for variably setting the rate of spare areas in the optical disc
US6883111B2 (en) * 2001-11-12 2005-04-19 Hitachi, Ltd. Data recording method and data recording apparatus
US20050083740A1 (en) * 2002-06-11 2005-04-21 Shoei Kobayashi Disc recording medium, recording method, disc drive device
US20050083767A1 (en) * 2002-11-22 2005-04-21 Sony Corporation Recording medium, recording device, reproduction device, recording method, and reproduction method
US20050083830A1 (en) * 2002-01-18 2005-04-21 Koninkljke Philips Electronics N.V. Optical data storage medium and use of such medium
US6918003B2 (en) * 2002-01-15 2005-07-12 Ricoh Company, Ltd. Information reproducing apparatus, data management information obtaining method, data management information obtaining program, and storage medium
US6999398B2 (en) * 2001-03-30 2006-02-14 Canon Kabushiki Kaisha Method and apparatus for recording information on information recording medium
US7002882B2 (en) * 2001-03-22 2006-02-21 Kabushiki Kaisha Toshiba Information recording medium capable of defect management, information recording apparatus capable of defect management, and information playback apparatus for playing back information from defect-managed medium
US7027373B2 (en) * 2000-03-08 2006-04-11 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information reproduction method
US7027059B2 (en) * 2002-05-30 2006-04-11 Intel Corporation Dynamically constructed rasterizers
US7050701B1 (en) * 1998-09-25 2006-05-23 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording/reproducing method, and information recording/reproducing device
US7161879B2 (en) * 2003-04-26 2007-01-09 Samsung Electronics Co., Ltd. Method of and drive for recording medium defect management, and defect managed recording medium
US7188271B2 (en) * 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7233550B2 (en) * 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7236687B2 (en) * 2000-04-21 2007-06-26 Sony Corporation Information processing apparatus and method, program, and recording medium
US20080046780A1 (en) * 2003-01-28 2008-02-21 Hirofumi Shibuya Nonvolatile memory

Family Cites Families (112)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58194143A (en) 1982-05-07 1983-11-12 Hitachi Ltd Recording and reproducing system of data
JPH0736716B2 (en) * 1983-10-18 1995-04-19 株式会社明電舍 Mode - data picked up method
US5247494A (en) 1984-06-08 1993-09-21 Matsushita Electric Industrial Co. Ltd. Method for recording and reproducing information on and from an optical disk having a read-only recorded zone and a writable and readable zone using a spot laser light
US5040110A (en) 1987-10-30 1991-08-13 Matsushita Electric Industrial Co., Ltd. Write once read many optical disc storage system having directory for storing virtual address and corresponding up-to-date sector address
JPH01128266A (en) * 1987-11-13 1989-05-19 Pioneer Electron Corp Method for controlling drive device for writable disk
EP0325823A1 (en) 1988-01-26 1989-08-02 Laserdrive Ltd. Data storage system
JPH01263955A (en) * 1988-04-14 1989-10-20 Matsushita Electric Ind Co Ltd Optical recording medium
US4963866A (en) 1989-03-27 1990-10-16 Digital Recorders, Inc. Multi channel digital random access recorder-player
US5065388A (en) 1989-03-29 1991-11-12 U.S. Philips Corporation Method and apparatus for recording on a record carrier a table of contents identifying all the recorded data signals
JP2776006B2 (en) 1990-07-06 1998-07-16 松下電器産業株式会社 Information recording and reproducing apparatus
US5043967A (en) 1990-08-20 1991-08-27 International Business Machines Corporation Structured data storage method and medium
JP3315711B2 (en) 1990-09-17 2002-08-19 ヒューレット・パッカード・カンパニー Writing management system and method of the magneto-optical disk data storage device
US5303198A (en) 1990-09-28 1994-04-12 Fuji Photo Film Co., Ltd. Method of recording data in memory card having EEPROM and memory card system using the same
US5448728A (en) 1991-08-08 1995-09-05 Sharp Kabushiki Kaisha Storage medium control system for controlling a write-once read-many storage medium
US6347051B2 (en) 1991-11-26 2002-02-12 Hitachi, Ltd. Storage device employing a flash memory
JP3039099B2 (en) 1992-02-14 2000-05-08 ソニー株式会社 Optical disc recording apparatus and method
US5473753A (en) 1992-10-30 1995-12-05 Intel Corporation Method of managing defects in flash disk memories
SG46550A1 (en) 1993-06-08 1998-02-20 Matsushita Electric Ind Co Ltd Optical disk and information recording/ reproduction apparatus
JPH0773602A (en) 1993-09-02 1995-03-17 Fujitsu Ltd Optical disk device
US5650881A (en) 1994-11-02 1997-07-22 Texas Instruments Incorporated Support post architecture for micromechanical devices
JPH08147110A (en) 1994-11-18 1996-06-07 Sony Corp Method and device for data recording medium management and data recording medium
JPH08153858A (en) 1994-11-29 1996-06-11 Nec Corp Manufacture of semiconductor device
RU2182722C2 (en) 1995-11-10 2002-05-20 Сони Корпорейшн Data processing device and method thereof
US5805536A (en) * 1996-11-07 1998-09-08 Eastman Kodak Company Method for bandwidth reduction in writeable optical data storage apparatus
JP3050375B2 (en) 1997-03-12 2000-06-12 インターナショナル・ビジネス・マシーンズ・コーポレイション Error recovery method for a disk drive apparatus and the disk drive apparatus
JPH10283653A (en) 1997-04-04 1998-10-23 Victor Co Of Japan Ltd Optical information recording and reproducing device and optical recording medium
JPH10289537A (en) 1997-04-11 1998-10-27 Sony Corp Digital data recording method and digital data recording medium
JP3855390B2 (en) 1997-09-16 2006-12-06 ソニー株式会社 Recording apparatus, a recording method and a disc-shaped recording medium
JPH11242850A (en) 1998-02-25 1999-09-07 Hitachi Ltd Real time data recording system
RU2192673C2 (en) 1998-04-20 2002-11-10 Самсунг Электроникс Ко., Лтд. Record medium for data storage (alternatives), method for handling defects, and method for real- time data recording
KR100354739B1 (en) 1998-04-20 2002-09-17 삼성전자 주식회사 Recording media storing defect menagement information for recording real time data and defect management method therefor
KR100274400B1 (en) * 1998-05-09 2000-12-15 구자홍 The method of optical recording medium having the differential compartment a free area, the recording / reproducing method and apparatus
EP0957477A3 (en) 1998-05-15 2003-11-05 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, recording and reproducing method therefor and optical information recording and reproduction apparatus
US6744713B1 (en) 1998-06-15 2004-06-01 Samsung Electronics Co., Ltd. Recording medium for storing write protection information and write protection method thereof
JP2000040305A (en) * 1998-07-21 2000-02-08 Fujitsu Ltd Recording medium and storage device
CN100481233C (en) 1998-07-28 2009-04-22 Lg电子株式会社 Optical recording medium and method for managing optical recording medium defect area
GB2356735B (en) 1998-08-05 2002-01-02 Mitsubishi Electric Corp Method of managing defects in an optical disk, an optical disk device and an optical disk
US6788631B1 (en) 1998-09-02 2004-09-07 Lc Electronics Inc. Optical recording medium having recording capacity information and method for indicating recording capacity
KR100442236B1 (en) 1998-09-07 2004-10-14 엘지전자 주식회사 Method for searching available good spare block of optical recording medium
DE69937002T2 (en) 1998-09-10 2007-12-13 Matsushita Electric Industrial Co., Ltd., Kadoma An optical information recording medium, methods of making, and method for recording and reproduction
JP2000099401A (en) 1998-09-22 2000-04-07 Sony Corp Recording medium, recording method and recorder
JP2000195178A (en) 1998-10-22 2000-07-14 Matsushita Electric Ind Co Ltd Information recording medium, and method and device for managing defects
US6466532B1 (en) 1998-11-10 2002-10-15 Samsung Electronics Co., Ltd. Recording medium having spare area for defect management and information on defect management, and method and apparatus of allocating spare area and managing defects
KR100667729B1 (en) 1998-11-10 2007-01-11 삼성전자주식회사 Disc having spare area for defect management and management information thereof, allocationg method of spare area and defect management method
KR100459161B1 (en) * 1998-11-20 2005-01-15 엘지전자 주식회사 optical recording medium and method for assigning spare area and for managing defect area of optical recording medium
KR100451718B1 (en) 1999-01-13 2004-10-08 엘지전자 주식회사 Optical recording medium and method for managing defect area and method for controlling record/playback of it
JP2000293948A (en) 1999-02-01 2000-10-20 Matsushita Electric Ind Co Ltd Medium and method for information recording and information recording and reproduction system
MY122279A (en) 1999-03-03 2006-04-29 Sony Corp Nonvolatile memory and nonvolatile memory reproducing apparatus
US6160778A (en) 1999-03-08 2000-12-12 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method, information recording apparatus and information reproducing apparatus
US6615363B1 (en) 1999-03-19 2003-09-02 Hitachi Maxell, Ltd. Optical disk and method of recording on the same
JP3856980B2 (en) 1999-03-31 2006-12-13 株式会社東芝 Information recording and reproducing apparatus
KR100544175B1 (en) 1999-05-08 2006-01-23 삼성전자주식회사 Recording medium storing linking type information and method for processing defective area
JP2001023317A (en) 1999-07-02 2001-01-26 Nec Corp Optical disk recording and reproducing method, device therefor and medium storing optical disk recording and reproducing program
DE60031835T2 (en) 1999-07-15 2007-03-01 Matsushita Electric Industrial Co., Ltd., Kadoma Optical recording medium and method for recording on an optical recording medium
JP2003505813A (en) * 1999-07-15 2003-02-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and apparatus for recording information
JP2001069440A (en) 1999-08-30 2001-03-16 Sanyo Electric Co Ltd Driver
JP2001110168A (en) 1999-10-13 2001-04-20 Ricoh Co Ltd Information recording and reproducing device, information recording and reproducing method, and recording medium readable by computer in which information recording and reproducing program is recorded
EP1168322A4 (en) 1999-12-28 2002-05-02 Mitsubishi Chem Corp Rewritable phase change optical disk partly having rom region and data recording and erasing methods for optical disk
JP2001266464A (en) * 2000-03-21 2001-09-28 Nippon Columbia Co Ltd Data recording and reproducing unit
US6804797B2 (en) 2000-04-08 2004-10-12 Samsung Electronics, Co., Ltd. Method of verifying defect management area information of disc and test apparatus for performing the same
JP3835977B2 (en) 2000-04-25 2006-10-18 富士通周辺機株式会社 Format processing method for a disk type recording medium, a disk-type recording medium and an information recording and reproducing apparatus using the same
JP2001351334A (en) 2000-06-08 2001-12-21 Sony Corp Optical recording medium and data recorder-reproducer performing data recording-reproducing with respect to the recording medium
JP2001357623A (en) 2000-06-16 2001-12-26 Victor Co Of Japan Ltd Information processor
JP2002015507A (en) 2000-06-30 2002-01-18 Sony Corp Method for recording data and disk drive
JP2002056619A (en) 2000-08-08 2002-02-22 Sony Corp Disk drive device and data storing method
JP3898430B2 (en) 2000-09-18 2007-03-28 株式会社日立製作所 Optical recording apparatus and an optical disk used therefor
TW497098B (en) 2000-11-04 2002-08-01 Li-Shin Jou Optical recording medium and recording method
JP3945165B2 (en) 2001-01-15 2007-07-18 セイコーエプソン株式会社 Text data processing apparatus
JP4407063B2 (en) 2001-02-19 2010-02-03 パナソニック株式会社 Defect management information reproducing apparatus
JP4037617B2 (en) 2001-03-16 2008-01-23 株式会社東芝 Defect search method
JP2002352522A (en) 2001-03-22 2002-12-06 Matsushita Electric Ind Co Ltd Recording method, reproducing method, recording device, reproducing device and information recording medium
JP2002288937A (en) 2001-03-22 2002-10-04 Toshiba Corp Information recording medium, information recorder, information recording method, information reproducing device and information reproducing method
US7023775B2 (en) 2001-03-22 2006-04-04 Matsushita Electric Industrial Co., Ltd. Recording apparatus and method, and reproduction apparatus and method for recording data to or reproducing data from a write once type information recording medium, and write once type information recording medium
US7092334B2 (en) 2001-04-12 2006-08-15 Hitachi-Lg Data Storage Korea, Inc. Method of detecting a defect area of a disk
TWI235927B (en) 2001-04-25 2005-07-11 Koninkl Philips Electronics Nv Methods and devices for recording or reading files on/from a sequential medium and sequential medium
JP2002329321A (en) 2001-04-27 2002-11-15 Sony Corp Recorder and player
JP2002334527A (en) 2001-05-11 2002-11-22 Matsushita Electric Ind Co Ltd Disk memory device, defect determination method for disk memory device, and recording medium
JP2003016737A (en) 2001-07-02 2003-01-17 Nec Microsystems Ltd Optical disk unit, program and method for managing data
US6835974B2 (en) 2002-03-14 2004-12-28 Jeng-Jye Shau Three dimensional integrated circuits using sub-micron thin-film diodes
CN101256801B (en) 2002-03-20 2011-11-16 松下电器产业株式会社 Information recording method, recording apparatus, reproduction apparatus
US6826140B2 (en) 2002-08-26 2004-11-30 Bae Systems Information And Electronic Systems Integration Inc Multichannel digital recording system with multi-user detection
KR20030082262A (en) 2002-04-17 2003-10-22 삼성전자주식회사 Apparatus and method for changing write speed of optical writing media during writing
JP4279515B2 (en) 2002-06-25 2009-06-17 株式会社日立グローバルストレージテクノロジーズ Recording and reproducing apparatus
TWI273575B (en) 2002-08-03 2007-02-11 Samsung Electronics Co Ltd Information storage medium and method of recording and/or reproducing with respect to the medium
KR20040015425A (en) 2002-08-12 2004-02-19 삼성전자주식회사 High density recording medium for write-once adapting to a defect management, method of managing a defect and apparatus thereof
KR100891107B1 (en) 2002-09-10 2009-03-30 삼성전자주식회사 Method and apparatus for managing defect on disc
AT528760T (en) 2002-09-19 2011-10-15 Koninkl Philips Electronics Nv Recording medium defect management
US7330409B2 (en) 2003-01-13 2008-02-12 Samsung Electronics Co., Ltd. Disc with temporary defect management area, and disc defect management method and apparatus therefor
TWI334595B (en) 2003-01-27 2010-12-11 Lg Electronics Inc Optical disc, method and apparatus for managing a defective area on an optical disc
KR101051000B1 (en) 2003-02-19 2011-07-26 엘지전자 주식회사 And the high density optical disk, the method determines piracy hence
TWI335587B (en) 2003-02-21 2011-01-01 Lg Electronics Inc Write-once optical recording medium and defect management information management method thereof
US7385889B2 (en) 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS
EP1602039A2 (en) 2003-03-03 2005-12-07 Philips Electronics N.V. Method and arrangement for searching for strings
KR100991788B1 (en) 2003-03-04 2010-11-03 엘지전자 주식회사 Method for recording on optical recording medium and apparatus using the same
CA2497770C (en) 2003-03-08 2012-05-08 Samsung Electronics Co., Ltd. Method and apparatus for preserving data-recording status of a write-once recording medium, and write-once recording medium therefor
JP4026517B2 (en) * 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, a recording apparatus, a recording method
JP4026518B2 (en) 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, a recording apparatus, a recording method
JP4026519B2 (en) 2003-03-12 2007-12-26 ソニー株式会社 Recording medium, recording apparatus, reproducing apparatus, recording method, reproducing method
MXPA05009731A (en) 2003-03-13 2005-11-04 Samsung Electronics Co Ltd Write once disc, method of managing data area of write once disc, and apparatus and method for reproducing data therefor.
TWI405196B (en) 2003-03-13 2013-08-11 Lg Electronics Inc Optical recording medium and defective area management method and apparatus for write-once recording medium
RU2005127337A (en) 2003-03-13 2006-02-10 Самсунг Электроникс Ко. Лтд. (Kr) One-time recordable disc, a method of allocating a data area write-once disc, an apparatus and method for reproducing data from such a disc,
RU2321080C2 (en) 2003-03-13 2008-03-27 Самсунг Электроникс Ко. Лтд One-time recording disk, method for distribution of data area of one-time recordable disk and method for reproducing data from such a disk
AT543184T (en) 2003-03-17 2012-02-15 Pioneer Corp recording device once writable recording medium, and procedures for the write-once recording medium and reproducing apparatus and method for the write-once recording medium
KR100739681B1 (en) 2003-03-24 2007-07-13 삼성전자주식회사 Method of overwriting in write-once information storage medium
WO2004093035A1 (en) 2003-04-15 2004-10-28 Ds Enterprise, Inc. An instruction plate and signage using photo luminescent porcelain enamel
KR101244296B1 (en) * 2003-04-14 2013-03-18 코닌클리케 필립스 일렉트로닉스 엔.브이. Device for and method of recording information
US8184513B2 (en) 2003-04-15 2012-05-22 Samsung Electronics Co., Ltd. Recording/reproducing method, recording/reproducing apparatus, optical recording medium, and computer readable recording medium having recorded thereon program for the recording/reproducing method
CA2525115A1 (en) 2003-05-09 2004-11-18 Lg Electronics Inc. Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
CA2525119A1 (en) 2003-05-09 2004-11-18 Lg Electronics Inc. Recording medium having data structure for managing at least a data area of the recording medium and recording and reproducing methods and apparatuses
JP3861856B2 (en) 2003-06-13 2006-12-27 ソニー株式会社 Recording and reproducing apparatus, recording and reproducing method
US8223607B2 (en) 2003-07-04 2012-07-17 Lg Electronics Inc. Method and apparatus for managing a overwrite recording on optical disc write once
BRPI0413704A (en) 2003-08-21 2006-10-17 Koninkl Philips Electronics Nv Method and recording device for recording information on a multilayer record carrier, and multilayer recording carrier

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4733386A (en) * 1985-05-02 1988-03-22 Hitachi, Ltd. Method of writing file data into a write-once type memory device
US4807205A (en) * 1985-11-29 1989-02-21 Michel Picard Process for writing with updating and reading informations on a non-erasable support organized into sectors
US5138203A (en) * 1988-04-27 1992-08-11 Hitachi, Ltd. Integrated circuit compensation for losses in signal lines due to parasitics
US5111444A (en) * 1988-07-13 1992-05-05 Matsushita Electric Industrial Co., Ltd. Method of managing defective sectors in a disk-shaped information recording medium and an apparatus for performing the same
US5210734A (en) * 1989-08-30 1993-05-11 Victor Company Of Japan, Ltd. Information management method for appendage type additional information recording medium
US5237553A (en) * 1990-05-24 1993-08-17 Matsushita Electric Industrial Co. Data recording and reproducing apparatus having a plurality of operating modes
US5319626A (en) * 1990-08-27 1994-06-07 Mitsubishi Electric Corporation Method for rewriting defect management areas on optical disk according to ECMA standard
US5481519A (en) * 1990-10-03 1996-01-02 Canon Kabushiki Kaisha Method for recording, reproducing and managing file data on a recording medium
US5404357A (en) * 1991-06-27 1995-04-04 Matsushita Electric Industrial Co., Ltd. Information writing and reading apparatus
US5235585A (en) * 1991-09-11 1993-08-10 International Business Machines Reassigning defective sectors on a disk
US5442611A (en) * 1992-05-07 1995-08-15 Olympus Optical Co., Ltd. Method of recording information on record medium having data record region and file management information record region
US6058085A (en) * 1992-07-31 2000-05-02 Sony Corporation Method and apparatus for identifying and skipping defective sections
US5799212A (en) * 1993-02-26 1998-08-25 Sony Corporation Efficient recording medium
US5528571A (en) * 1993-06-08 1996-06-18 Sony Corporation Optical disc apparatus
US5867455A (en) * 1993-12-07 1999-02-02 Hitachi, Ltd. Optical method and device for irradiating domains at predetermined positions
US5495466A (en) * 1994-01-10 1996-02-27 Eastman Kodak Company Write verification in an optical recording system by sensing mark formation while writing
US5608715A (en) * 1994-07-26 1997-03-04 Pioneer Electronic Corporation Multi-layered recording disk and recording/reproducing system using the same
US5720030A (en) * 1994-08-22 1998-02-17 Seiko Epson Corporation Preprocess method, information read/write method, input/output device and read/write device
US6341278B1 (en) * 1994-10-31 2002-01-22 Sony Corporation Recording and reproducing apparatus and method for accessing data stored on a randomly accessible recording medium, and for managing data thereon
US5740435A (en) * 1994-10-31 1998-04-14 Sony Corporation Data management apparatus and method for managing data of variable lengths recorded on a record medium
US5745444A (en) * 1994-12-19 1998-04-28 Hitachi, Ltd. Method of controlling recording information on an optical disk using replacement control information
US5715221A (en) * 1995-04-21 1998-02-03 Matsushita Electric Industrial Method for managing defects in an information recording medium, and a device and information recording medium using said method
US6233654B1 (en) * 1996-03-05 2001-05-15 Sony Corporation Recording apparatus having a partially exchangeable disk array, a loading/unloading device, and a control device and which uses a disk-like recording medium
US5914928A (en) * 1996-03-25 1999-06-22 Kabushiki Kaisha Toshiba Information recording disk having replacement area
US5878020A (en) * 1996-03-25 1999-03-02 Kabushiki Kaisha Toshiba Information recording disk with management areas
US20050068877A1 (en) * 1997-05-21 2005-03-31 Lg Electronics Inc. Optical disc having variable spare area rates and method for variably setting the rate of spare areas in the optical disc
US6738341B2 (en) * 1997-12-18 2004-05-18 Mitsubishi Denki Kabushiki Kaisha Rewritable optical disk with spare area and optical disk processing apparatus
US20030126527A1 (en) * 1998-03-02 2003-07-03 Lg Electronics Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6754860B2 (en) * 1998-03-02 2004-06-22 Lg Electronics, Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US20030135800A1 (en) * 1998-03-02 2003-07-17 Lg Electronics Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6564345B1 (en) * 1998-03-02 2003-05-13 Lg Electronics, Inc. Method for creating defect management information in an recording medium, and apparatus and medium based on said method
US6405332B1 (en) * 1998-05-27 2002-06-11 Oki Electric Industry Co, Ltd. Storage device and alternate processing method for defective sectors of the same
US6414923B1 (en) * 1998-08-17 2002-07-02 Lg Electronics Inc. Recording/reproducing method of optical recording medium
US6373800B1 (en) * 1998-09-14 2002-04-16 Kabushiki Kaisha Toshiba Information recording apparatus and method with replacement process
US7050701B1 (en) * 1998-09-25 2006-05-23 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording/reproducing method, and information recording/reproducing device
US6529458B1 (en) * 1998-09-26 2003-03-04 Lg Electronics Inc. Method for managing defective area of optical recording medium
US20020097665A1 (en) * 1998-10-10 2002-07-25 Samsung Electronics Co., Ltd. Recording medium having spare areas for defect management and method of allocating spare areas
US20020097666A1 (en) * 1998-10-10 2002-07-25 Samsung Electronics Co., Ltd Recording medium having spare areas for defect management and method of allocating spare areas
US6189118B1 (en) * 1998-10-22 2001-02-13 Matsushita Electric Industrial Co., Ltd. Information recording medium, and method and apparatus for managing defect thereof
US6542450B1 (en) * 1998-11-11 2003-04-01 Lg Electronics Inc. Method for assigning spare area in optical recording medium
US6842580B1 (en) * 1999-01-27 2005-01-11 Matsushita Electric Industrial Co., Ltd. Real-time recording/reproduction on an information recording medium including a defective region
US6581167B1 (en) * 1999-02-01 2003-06-17 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information recording/reproduction system
US6341109B1 (en) * 1999-02-05 2002-01-22 Nec Corporation Defective area replacement method and information writing/reading device
US6760288B2 (en) * 1999-09-23 2004-07-06 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US20020025138A1 (en) * 2000-01-11 2002-02-28 Hitachi, Ltd. Apparatus and method for recording and reproducing information
US20010009537A1 (en) * 2000-01-26 2001-07-26 Lg Electronics, Inc. Method of formatting optical recording medium
US7027373B2 (en) * 2000-03-08 2006-04-11 Matsushita Electric Industrial Co., Ltd. Information recording medium, information recording method and information reproduction method
US6763429B1 (en) * 2000-03-31 2004-07-13 Hitachi, Ltd. Method and apparatus for recording and playing back information
US6714502B2 (en) * 2000-04-08 2004-03-30 Samsung Electronics Co., Ltd Method of verifying defect management area information of optical disc and apparatus for performing the same
US7236687B2 (en) * 2000-04-21 2007-06-26 Sony Corporation Information processing apparatus and method, program, and recording medium
US20040001408A1 (en) * 2000-05-30 2004-01-01 Dataplay, Inc. Defect management system for write-once storage disk
US6724701B2 (en) * 2000-06-06 2004-04-20 Koninklijke Philips Electronics N.V. Method of immediate writing or reading files on a disc like recording medium
US6845069B2 (en) * 2000-07-26 2005-01-18 Pioneer Corporation Information editing apparatus, information editing method, and information recording medium on which program for controlling edit is recorded so as to be read by computer
US6697306B2 (en) * 2000-07-31 2004-02-24 Sony Corporation Data recording method, data outputting method, and data recording and/or reproducing method
US20020099950A1 (en) * 2001-01-22 2002-07-25 Smith Kenneth K. Method of maintaining integrity of an instruction or data set
US7002882B2 (en) * 2001-03-22 2006-02-21 Kabushiki Kaisha Toshiba Information recording medium capable of defect management, information recording apparatus capable of defect management, and information playback apparatus for playing back information from defect-managed medium
US20060077827A1 (en) * 2001-03-22 2006-04-13 Hideki Takahashi Information recording medium capable of defect management, information recording apparatus capable of defect management, and information playback apparatus for playing back information from defect-managed medium
US6999398B2 (en) * 2001-03-30 2006-02-14 Canon Kabushiki Kaisha Method and apparatus for recording information on information recording medium
US6766418B1 (en) * 2001-04-30 2004-07-20 Emc Corporation Methods and apparatus for accessing data using a cache
US20030072236A1 (en) * 2001-10-12 2003-04-17 Akemi Hirotsune Recording method, recording medium, and recording system
US6883111B2 (en) * 2001-11-12 2005-04-19 Hitachi, Ltd. Data recording method and data recording apparatus
US20030095482A1 (en) * 2001-11-20 2003-05-22 Chien-Li Hung Method for adjusting the writing speed of a CD drive
US6918003B2 (en) * 2002-01-15 2005-07-12 Ricoh Company, Ltd. Information reproducing apparatus, data management information obtaining method, data management information obtaining program, and storage medium
US20050083830A1 (en) * 2002-01-18 2005-04-21 Koninkljke Philips Electronics N.V. Optical data storage medium and use of such medium
US7184377B2 (en) * 2002-01-22 2007-02-27 Matsushita Electric Industrial Co., Ltd. Multi-layered information recording medium, recording apparatus, and recording method
US20030137909A1 (en) * 2002-01-22 2003-07-24 Motoshi Ito Multi-layered information recording medium, recording apparatus , and recording method
US20030137910A1 (en) * 2002-01-22 2003-07-24 Hiroshi Ueda Multi-layered information recording medium, reproduction apparatus, recording apparatus, reproduction method, and recording method
US20030142608A1 (en) * 2002-01-31 2003-07-31 Yoshikazu Yamamoto Information recording medium, recording apparatus, reproduction apparatus, recording method, reproduction method and defect management method
US7042825B2 (en) * 2002-01-31 2006-05-09 Matsushita Electric Industrial Co., Ltd. Information recording medium, recording apparatus, reproduction apparatus, recording method, reproduction method and defect management method
US7027059B2 (en) * 2002-05-30 2006-04-11 Intel Corporation Dynamically constructed rasterizers
US20050083740A1 (en) * 2002-06-11 2005-04-21 Shoei Kobayashi Disc recording medium, recording method, disc drive device
US20040004917A1 (en) * 2002-07-04 2004-01-08 Ming-Hung Lee Method for managing spare blocks of an optical disc
US20040105363A1 (en) * 2002-08-12 2004-06-03 Samsung Electronics Co., Ltd. Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US7379402B2 (en) * 2002-08-12 2008-05-27 Samsung Electronics Co., Ltd. Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
US20040125716A1 (en) * 2002-09-10 2004-07-01 Samsung Electronics Co., Ltd. Of Suwon-City, Korea Method and apparatus for adaptively allocating a spare area in a recording medium, and a recording medium having a spare area allocated using the same
US20040062159A1 (en) * 2002-09-26 2004-04-01 Park Yong Cheol Optical disc, method and apparatus for managing a defective area on an optical disc of write once type
US20040062160A1 (en) * 2002-09-30 2004-04-01 Park Yong Cheol Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US7233550B2 (en) * 2002-09-30 2007-06-19 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US20050008346A1 (en) * 2002-10-07 2005-01-13 Pioneer Corporation Recording apparatus, method for controlling the same and playback apparatus
US20040125717A1 (en) * 2002-10-10 2004-07-01 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects in disc, and disc on which defects are managed
US7327654B2 (en) * 2002-10-18 2008-02-05 Samsung Electronics Co., Ltd. Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS
US20040076096A1 (en) * 2002-10-18 2004-04-22 Samsung Electronics, Co., Ltd. Method of and apparatus for managing disc defects using temporary defect management information (TDFL) and temporary defect management information (TDDS), and disc having the TDFL and TDDS
US7349301B2 (en) * 2002-11-22 2008-03-25 Sony Corporation Write-once recording medium on which portion of the data is logically overwritten
US20050083767A1 (en) * 2002-11-22 2005-04-21 Sony Corporation Recording medium, recording device, reproduction device, recording method, and reproduction method
US20040114474A1 (en) * 2002-12-11 2004-06-17 Park Yong Cheol Method and apparatus for managing overwrite on an optical disc write once
US20040120233A1 (en) * 2002-12-11 2004-06-24 Park Yong Cheol Method of managing overwrite and method of recording management information on an optical disc write once
US20040136292A1 (en) * 2003-01-14 2004-07-15 Park Yong Cheol Method for managing defective area on optical disc of writable once type
US20040145980A1 (en) * 2003-01-27 2004-07-29 Park Yong Cheol Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US20080046780A1 (en) * 2003-01-28 2008-02-21 Hirofumi Shibuya Nonvolatile memory
US7188271B2 (en) * 2003-02-25 2007-03-06 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7161879B2 (en) * 2003-04-26 2007-01-09 Samsung Electronics Co., Ltd. Method of and drive for recording medium defect management, and defect managed recording medium
US20050047294A1 (en) * 2003-05-10 2005-03-03 Park Yong Cheol Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
US20050007910A1 (en) * 2003-07-08 2005-01-13 Motoshi Ito Write-once recording medium, recording method, recording apparatus, reproduction method, and reproduction apparatus
US20050060489A1 (en) * 2003-07-14 2005-03-17 Park Yong Cheol Write-once optical disc, method and apparatus for recording management information on write-once optical disc
US20050025007A1 (en) * 2003-07-15 2005-02-03 Park Yong Cheol Write-once optical disc, and method and apparatus for recording management information thereon
US20050050402A1 (en) * 2003-08-12 2005-03-03 Takeshi Koda Information recording medium, recording apparatus and method, reproducing apparatus and method, computer program for controlling record or reproduction, and data structure including control signal
US20050052973A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20050055500A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc and method for recording management information thereon
US20050052972A1 (en) * 2003-09-08 2005-03-10 Park Yong Cheol Write-once optical disc and method for recording management information thereon

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701823B2 (en) 2002-09-30 2010-04-20 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US20070211591A1 (en) * 2002-09-30 2007-09-13 Park Yong C Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US8045430B2 (en) 2002-09-30 2011-10-25 Lg Electronics Inc. Write-once type optical disc, and method and apparatus for managing defective areas on write-once type optical disc using TDMA information
US7911904B2 (en) 2002-09-30 2011-03-22 Lg Electronics, Inc. Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
US7668054B2 (en) 2002-12-11 2010-02-23 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7936649B2 (en) 2002-12-11 2011-05-03 Lg Electronics Inc. Method of managing overwrite and method of recording management information on an optical disc write once
US7813243B2 (en) 2003-01-11 2010-10-12 Lg Electronics Inc. Optical disc of write once type, method, and apparatus for managing defect information on the optical disc
US7672204B2 (en) 2003-01-27 2010-03-02 Lg Electronics Inc. Optical disc, method and apparatus for managing a defective area on an optical disc
US7684293B2 (en) 2003-05-09 2010-03-23 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US8107336B2 (en) 2003-05-09 2012-01-31 Lg Electronics Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US7663997B2 (en) 2003-05-09 2010-02-16 Lg Electronics, Inc. Write once optical disc, and method and apparatus for recovering disc management information from the write once optical disc
US8054718B2 (en) 2003-07-15 2011-11-08 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information thereon
US7672208B2 (en) 2003-08-05 2010-03-02 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7952972B2 (en) 2003-08-05 2011-05-31 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7783829B2 (en) 2003-09-08 2010-08-24 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
US7911900B2 (en) 2003-09-08 2011-03-22 Lg Electronics Inc. Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US8296529B2 (en) 2003-09-08 2012-10-23 Lg Electronics Inc. Write-once optical disc and method for recording management information thereon
TWI419151B (en) * 2004-05-20 2013-12-11 Lg Electronics Inc Write-once optical disc, and method and apparatus for recording management information on the write-once optical disc
US20050276191A1 (en) * 2004-06-14 2005-12-15 Yutaka Kashihara Optical disk, optical disk recording method, and optical disk recording apparatus
US7643394B2 (en) 2004-06-14 2010-01-05 Kabushiki Kaisha Toshiba Optical disk, optical disk recording method, and optical disk recording apparatus
US20140189283A1 (en) * 2012-12-27 2014-07-03 SK Hynix Inc. Semiconductor memory device and operating method for the same
US9443618B2 (en) * 2012-12-27 2016-09-13 SK Hynix Inc. Semiconductor memory device mapping external address as internal address wherein internal addresses of spare cells of two blocks differ by upper most bit and internal addresses of main cells of two blocks differ by upper most bit and the internal addresses of main cell and spare cell of each block differ by one bit and operating method for the same

Also Published As

Publication number Publication date
JP2006514388A (en) 2006-04-27
AU2003265114A1 (en) 2004-09-06
MXPA05008699A (en) 2005-11-04
CA2515164C (en) 2011-11-29
AT443321T (en) 2009-10-15
JP4541161B2 (en) 2010-09-08
RU2005125958A (en) 2006-06-27
WO2004072963A1 (en) 2004-08-26
EP1595251A1 (en) 2005-11-16
US20090028015A1 (en) 2009-01-29
EP2110817A1 (en) 2009-10-21
TWI296113B (en) 2008-04-21
RU2334290C2 (en) 2008-09-20
HUE030832T2 (en) 2017-06-28
EP1595251B1 (en) 2009-09-16
CN1751339A (en) 2006-03-22
AU2003265114B2 (en) 2009-08-06
CA2515164A1 (en) 2004-08-26
CN101252016A (en) 2008-08-27
US7764581B2 (en) 2010-07-27
KR100964690B1 (en) 2010-06-21
BR0318122A (en) 2006-02-07
CN100383860C (en) 2008-04-23
EP2110817B1 (en) 2016-07-13
CN101252016B (en) 2016-01-20
ES2333010T3 (en) 2010-02-16
KR20050095899A (en) 2005-10-04
TW200416689A (en) 2004-09-01
DE60329334D1 (en) 2009-10-29

Similar Documents

Publication Publication Date Title
US7672208B2 (en) Write-once optical disc, and method and apparatus for recording/playback management information on/from optical disc
US7313066B2 (en) Write once disc allowing management of data area, method of managing the data area, and method for reproducing data from write once disc
US7613085B2 (en) Method and apparatus for managing defective area on recording medium, and recording medium using the same
US7606125B2 (en) Method of and drive for recording medium defect management, and defect managed recording medium
US7630283B2 (en) Optical disc, method and apparatus for managing a defective area on an optical disc of write once type
KR100944108B1 (en) Multi-layered information recording medium, reproduction apparatus and recording apparatus
RU2298237C9 (en) Method and device for controlling disk defects on disk, and disk, on which control over defects is realized
EP2093762B1 (en) Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
EP1597722B1 (en) Write-once optical disc, and method and apparatus for recording management information on write-once optical disc
KR100991788B1 (en) Method for recording on optical recording medium and apparatus using the same
US7400564B2 (en) Disc with temporary disc definition structure (TDDS) and temporary defect list (TDFL), and method of and apparatus for managing defect in the same
CN101635152B (en) Defective area management method and apparatus
CN100541611C (en) Method and apparatus for managing defective areas on write-once type optical disc using TDMA information
CN101071614B (en) Optical disc, method and apparatus for managing a defective area on an optical disc
KR101008641B1 (en) Method and apparatus for managing overwrite on an optical disc write once
US6493301B1 (en) Optical recording medium and method of managing defect area of the optical recording medium
RU2377667C2 (en) Recording medium with data structure for managing at least recording medium data area, and methods and devices for recording and playing back
AU2003265116B2 (en) Write-once optical recording medium and defect management information management method thereof
KR100703146B1 (en) Information recording medium, recording device and recording method for information recording medium, reproduction device and reproduction method for information recording medium, computer program for recording or reproduction, and data structure containing control signal
EP1652174B1 (en) Write-once optical disc, and method and apparatus for recording/reproducing management information on/from optical disc
US7800994B2 (en) Method of overwriting data in write-once information storage medium and data recording and/or reproducing apparatus for write-once information storage medium
US7782725B2 (en) Optical recording medium and method for formatting the same with improved compatability and consistency
US7843780B2 (en) Write-once recording medium preserving data-recording status, method of preserving data recording status of a write-once recording medium, medium including computer readable code for the same, and recording and/or reproducing apparatus therefor
EP1647014B1 (en) Method and apparatus for managing a overwrite recording on a write-once optical disc
CA2497770C (en) Method and apparatus for preserving data-recording status of a write-once recording medium, and write-once recording medium therefor

Legal Events

Date Code Title Description
AS Assignment

Owner name: LG ELECTRONICS INC., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PARK, YONG CHEOL;KIM, SUNG DAE;REEL/FRAME:014552/0744

Effective date: 20030821