US6087820A - Current source - Google Patents
Current source Download PDFInfo
- Publication number
- US6087820A US6087820A US09/265,252 US26525299A US6087820A US 6087820 A US6087820 A US 6087820A US 26525299 A US26525299 A US 26525299A US 6087820 A US6087820 A US 6087820A
- Authority
- US
- United States
- Prior art keywords
- current
- circuit
- temperature
- output
- bandgap reference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/26—Current mirrors
- G05F3/262—Current mirrors using field-effect transistors only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F3/00—Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
- G05F3/02—Regulating voltage or current
- G05F3/08—Regulating voltage or current wherein the variable is dc
- G05F3/10—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
- G05F3/16—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
- G05F3/20—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
- G05F3/24—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only
- G05F3/242—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage
- G05F3/245—Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations wherein the transistors are of the field-effect type only with compensation for device parameters, e.g. channel width modulation, threshold voltage, processing, or external variations, e.g. temperature, loading, supply voltage producing a voltage or current as a predetermined function of the temperature
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S323/00—Electricity: power supply or regulation systems
- Y10S323/907—Temperature compensation of semiconductor
Definitions
- This invention relates generally to current sources and more particularly to current sources adapted to produce current insensitive to temperature and external voltage supply variations.
- a method for producing an output current.
- the method includes adding two currents with opposing temperature coefficients to produce such output current.
- a first one of the two currents, I 1 is a scaled copy of current produced in a temperature compensated bandgap reference circuit.
- a second one of the two currents, I 2 is derived from a temperature stable voltage produced by the bandgap circuit divided by a positive temperature coefficient resistance.
- the added currents, I 1 +I 2 provide the output current.
- a current source in accordance with another feature of the invention, includes a first circuit for producing: (i) a reference current having a positive temperature coefficient; and (ii) an output voltage at an output node substantially insensitive to variations in supply voltage and temperature over a predetermined range.
- the current source includes a second circuit connected to the output node for producing a first current derived from the reference current.
- the first current has a positive temperature coefficient.
- a third circuit connected to the output node for producing a second current derived from the output voltage, such second current having a negative current temperature coefficient.
- the first and second currents are summed at the output node to produce, at the output node, an output current related to the sum of the first and second currents, such output current being substantially insensitive to variations in temperature and supply voltage over the predetermined range.
- the second circuit comprises a current mirror.
- the third circuit comprises a resistor.
- the first circuit comprises a bandgap reference circuit.
- the bandgap reference circuit is a self-biased bandgap reference circuit.
- the self-biased bandgap reference circuit comprises CMOS transistors.
- a current source having a bandgap reference circuit adapted for coupling to a supply voltage.
- the bandgap reference circuit produces: a bandgap reference current having a positive temperature coefficient; and, at an output current summing node, an output voltage substantially insensitive to variations in supply voltage and temperature over a predetermined range.
- a current summing circuit is provided having a pair of current paths, one of such paths producing a first current derived from the bandgap reference current.
- the first current has a positive temperature coefficient.
- Another one of such pair of current paths produces a second current derived from the output voltage.
- the second current has a negative current temperature coefficient.
- the first and second currents are summed at the summing node to produce, at the summing node, a current substantially insensitive to variations in temperature and supply voltage over the predetermined range.
- a current source having a bandgap reference circuit for producing a temperature dependent current which increases with temperature and a temperature stable voltage.
- a differential amplifier is provided having one of a pair of inputs fed by the temperature stable voltage.
- a MOSFET has a gate connected to the output of the amplifier and one of the source/drain electrodes is connected to one of the inputs of the amplifier in a negative feedback arrangement. The other one of the source/drain electrodes is coupled to a voltage supply.
- a summing node is provided at the output of the amplifier.
- a resistor is connected to the summing node for passing a first current at the summing node.
- a current mirror is fed by the temperature variant current, for passing a second current at the node.
- the MOSFET passes through the source and drain electrodes thereof a third current related to the sum of the first and second currents, such third current being independent of temperature.
- FIG. 1 is a schematic diagram of a current source in accordance with the invention
- FIG. 2 is a sketch showing the relationship between currents produced in the circuit of FIG. 1 as a function of temperature, T;
- FIG. 3 is plot showing SPICE simulation results of the circuit of FIG. 1.
- the current source 10 includes a bandgap reference circuit 12 for producing a temperature dependent current IBGR which increases with increasing temperature, T, and, in response to such temperature dependant current I BGR , a temperature stable voltage V BGR at output 11 of the circuit 12.
- the current source 10 also includes a differential amplifier 14 having one input, here the inverting input (-) fed by the temperature stable voltage V BGR .
- a Metal Oxide Semiconductor Field Effect Transistor (MOSFET), here a p-channel MOSFET, T 1 has a gate electrode connected to the output of the amplifier 14.
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- One of the source/drain electrodes of MOSFET T 1 is connected to the other one of the inputs, here the non-inverting (+) input of the amplifier 14 in a negative feedback arrangement.
- the other one of the source/drain electrodes of MOSFET T 1 is coupled to a voltage supply 18 though a current mirror 20.
- a summing node 22 is connected to the drain of the MOSFET T 1 .
- a resistor R having a resistance R(T) which increases with temperature, T, is connected to the summing node 22 for passing a first current I R at the summing node 22. More particularly, the resistor R is connected between the summing node 22 and a reference potential, here ground, as indicated.
- the current I BGR increases with temperature, T.
- the current nI BGR also increases with temperature, T as indicated in FIG. 2.
- the resistance R(T) of resistor R increases with temperature while the voltage V' BGR is substantially invariant with temperature, T
- the current I R from summing node 22 to ground through resistor R deceases with temperature, T, as indicated in FIG. 2.
- the value of the resistance of resistor R and the value of n are selected so that the sum of the currents nI BGR and I R is substantially invariant with temperature, T, as indicated in FIG. 2.
- the circuit 10 produces such temperature/power supply invariant current I REF by adding two currents with opposing temperature coefficients to produce such output current, a first one of the two currents, nI BGR , being a scaled copy of current I BGR produced in a temperature compensated bandgap reference circuit 12 and a second one of the two currents, I R , being derived from a temperature stable voltage V BGR produced by the bandgap circuit 12 divided by a positive temperature coefficient resistance, i.e., the resistor R, such added currents, nI BGR +I R , being the output current I REF .
- the bandgap reference circuit 10 includes p-channel MOSFETs T 4 , T 5 and T 6 , n-channel MOSFETs T 7 and T 8 , and diodes A 0 and A 1 all arranged as shown.
- the bandgap reference circuit 12 is connected to the +Volt supply 18 having a voltage greater than the sum of the forward voltage drop across diode D 1 , the threshold voltage of transistor T 5 , and the threshold voltage of transistor T 8 .
- the bandgap reference circuit 12 also includes a resistor R 1 and a diode D 1 arranged as shown. The diodes D 1 , A 0 , and A 1 are thermally matched.
- This current I GBR is mirrored by the arrangement of transistors T 5 , T 6 , T 7 and T 8 , such that the current I BGR passes though diode A 1 and the diode D 1 .
- the voltage at the output 11 (i.e., the voltage V BGR ) of the bandgap reference circuit 12 will however be substantially constant with temperature T because, while the current through resistor R 1 , which mirrors the current I BGR , will also increases with temperature, the voltage across the diode D 1 will decrease with temperature in accordance with -2 mV/° C.
- the output voltage at 11 (i.e., VBGR) may be expressed as:
- R 2T0 and R T0 are the resistance values at a reference temperature T0;
- a is the resistance temperature coefficient of resistors R 2 and R;
- the current I BGR produced within the bandgap reference circuit 10 (also, current through resistor R 1 ) is well known and may be expressed as: ##EQU1## where: A 1 /A 0 is the diode area ratio (typically 10) and kT/q is the thermal voltage (i.e., k is Boltzmann's constant, T is temperature, and q is the charge of an electron).
- V BGR is made independent of temperature by design choice.
- the sum current I REF is the result of multiplying I BGR by a gain factor n provided by current mirror section 26 and adding it to the current passing through R. This is expressed in algebraic form: ##EQU3##
- R T0 resistance temperature characteristic
- the resistance temperature characteristic is defined by the constants a and b.
- the bandgap reference circuit design defines A 0 , A 1 , R 2T0 and V BGR .
- the constants k and q are known physics constants, as described above.
- the temperature compensation is not a function of the value of resistor R. Only the absolute value of the current IBGR depends on the value of resistor R.
- the resistor ratio R 2 /R should constant with process variations when the circuit is formed on the same semiconductor chip. This is a significant advantage of the invention.
- R 2 71 kilohms or 0.071 megohms at a T0 of 83 degrees Centigrade;
- V BGR 1.2 volts
- R 1040 kilohms or 1.04 MegOhms at 83 degrees Centigrade.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
- Amplifiers (AREA)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/265,252 US6087820A (en) | 1999-03-09 | 1999-03-09 | Current source |
EP00103581A EP1035460A1 (en) | 1999-03-09 | 2000-02-19 | Current source |
TW089103971A TW469364B (en) | 1999-03-09 | 2000-03-06 | Current source |
CN00104012A CN1271116A (zh) | 1999-03-09 | 2000-03-09 | 电流源 |
JP2000065508A JP2000330658A (ja) | 1999-03-09 | 2000-03-09 | 電流源および電流の発生方法 |
KR1020000011707A KR20000071425A (ko) | 1999-03-09 | 2000-03-09 | 전류 소스 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/265,252 US6087820A (en) | 1999-03-09 | 1999-03-09 | Current source |
Publications (1)
Publication Number | Publication Date |
---|---|
US6087820A true US6087820A (en) | 2000-07-11 |
Family
ID=23009674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/265,252 Expired - Lifetime US6087820A (en) | 1999-03-09 | 1999-03-09 | Current source |
Country Status (6)
Country | Link |
---|---|
US (1) | US6087820A (zh) |
EP (1) | EP1035460A1 (zh) |
JP (1) | JP2000330658A (zh) |
KR (1) | KR20000071425A (zh) |
CN (1) | CN1271116A (zh) |
TW (1) | TW469364B (zh) |
Cited By (70)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6198670B1 (en) * | 1999-06-22 | 2001-03-06 | Micron Technology, Inc. | Bias generator for a four transistor load less memory cell |
US6259324B1 (en) * | 2000-06-23 | 2001-07-10 | International Business Machines Corporation | Active bias network circuit for radio frequency amplifier |
US6342781B1 (en) | 2001-04-13 | 2002-01-29 | Ami Semiconductor, Inc. | Circuits and methods for providing a bandgap voltage reference using composite resistors |
US6351111B1 (en) | 2001-04-13 | 2002-02-26 | Ami Semiconductor, Inc. | Circuits and methods for providing a current reference with a controlled temperature coefficient using a series composite resistor |
US6466081B1 (en) * | 2000-11-08 | 2002-10-15 | Applied Micro Circuits Corporation | Temperature stable CMOS device |
EP1253499A1 (en) * | 2001-04-27 | 2002-10-30 | STMicroelectronics S.r.l. | Current reference circuit for low supply voltages |
EP1262852A1 (en) * | 2001-06-01 | 2002-12-04 | STMicroelectronics Limited | Current source |
US6492874B1 (en) | 2001-07-30 | 2002-12-10 | Motorola, Inc. | Active bias circuit |
US20030020444A1 (en) * | 2001-07-26 | 2003-01-30 | Alcatel | Low drop voltage regulator |
EP1315062A1 (fr) * | 2001-11-26 | 2003-05-28 | EM Microelectronic-Marin SA | Circuit de génération de courant pour applications haute-tension |
EP1315063A1 (en) * | 2001-11-14 | 2003-05-28 | Dialog Semiconductor GmbH | A threshold voltage-independent MOS current reference |
US20030098738A1 (en) * | 2001-11-26 | 2003-05-29 | Em Microelectronic-Marin Sa | Current generator circuit for high-voltage applications |
US20030117210A1 (en) * | 2001-12-21 | 2003-06-26 | Jochen Rudolph | Current-source circuit |
US20030132796A1 (en) * | 2001-11-26 | 2003-07-17 | Stmicroelectronics S.A. | Temperature-compensated current source |
US6600304B2 (en) | 2001-02-22 | 2003-07-29 | Samsung Electronics Co., Ltd. | Current generating circuit insensive to resistance variation |
WO2004012333A2 (en) * | 2002-07-25 | 2004-02-05 | Honeywell International, Inc. | Method and apparatus for common-mode level shifting |
US20040108889A1 (en) * | 2002-12-05 | 2004-06-10 | Fujitsu Limited | Semiconductor integrated circuit |
US20040128566A1 (en) * | 2002-12-31 | 2004-07-01 | Burr James B. | Adaptive power control |
US20040130378A1 (en) * | 2002-10-31 | 2004-07-08 | Hideyuki Kihara | Leak current compensating device and leak current compensating method |
US6819164B1 (en) * | 2002-10-17 | 2004-11-16 | National Semiconductor Corporation | Apparatus and method for a precision bi-directional trim scheme |
US20040263144A1 (en) * | 2003-06-27 | 2004-12-30 | Chien-Chung Tseng | Reference voltage generator with supply voltage and temperature immunity |
US20050093617A1 (en) * | 2003-10-29 | 2005-05-05 | Samsung Electronics Co., Ltd. | Reference voltage generating circuit for integrated circuit |
US6954059B1 (en) * | 2003-04-16 | 2005-10-11 | National Semiconductor Corporation | Method and apparatus for output voltage temperature dependence adjustment of a low voltage band gap circuit |
US20050248397A1 (en) * | 2004-05-07 | 2005-11-10 | Hideyuki Aota | Constant current generating circuit using resistor formed of metal thin film |
US20050248389A1 (en) * | 2004-05-05 | 2005-11-10 | Rambus Inc. | Dynamic gain compensation and calibration |
US20060197585A1 (en) * | 2005-03-03 | 2006-09-07 | Hyoungrae Kim | Voltage reference generator and method of generating a reference voltage |
US7110729B1 (en) | 2003-01-22 | 2006-09-19 | National Semiconductor Corporation | Apparatus and method for generating a temperature insensitive reference current |
US20060220732A1 (en) * | 2005-03-29 | 2006-10-05 | Fujitsu Limited | Constant current circuit and constant current generating method |
US20060232326A1 (en) * | 2005-04-18 | 2006-10-19 | Helmut Seitz | Reference circuit that provides a temperature dependent voltage |
US20060268629A1 (en) * | 2005-05-24 | 2006-11-30 | Emma Mixed Signal C.V. | Reference voltage generator |
US20070001751A1 (en) * | 2005-07-01 | 2007-01-04 | Ess Technology, Inc. | System and method for providing an accurate reference bias current |
US20070030055A1 (en) * | 2005-08-05 | 2007-02-08 | Sanyo Electric Co., Ltd. | Constant Current Circuit |
US20070189095A1 (en) * | 2006-02-16 | 2007-08-16 | Wolfgang Hokenmaier | Method and apparatus for an oscillator within a memory device |
US7301316B1 (en) * | 2005-08-12 | 2007-11-27 | Altera Corporation | Stable DC current source with common-source output stage |
US20080001648A1 (en) * | 2006-07-03 | 2008-01-03 | Tser-Yu Lin | Device having temperature compensation for providing constant current through utilizing compensating unit with positive temperature coefficient |
US20080048771A1 (en) * | 2006-08-28 | 2008-02-28 | Nec Electronics Corporation | Constant current circuit |
US7362165B1 (en) | 2003-12-23 | 2008-04-22 | Transmeta Corporation | Servo loop for well bias voltage source |
US20080200117A1 (en) * | 2007-02-19 | 2008-08-21 | Yair Oren | Method and system for improving uplink performance |
US20080238400A1 (en) * | 2007-03-30 | 2008-10-02 | Linear Technology Corporation | Bandgap voltage and current reference |
WO2009004534A1 (en) * | 2007-07-03 | 2009-01-08 | Nxp B.V. | Electronic device and a method of biasing a mos transistor in an integrated circuit |
WO2009007346A1 (en) * | 2007-07-09 | 2009-01-15 | Texas Instruments Deutschland Gmbh | Bias current generator |
US20090261893A1 (en) * | 2008-04-17 | 2009-10-22 | Noriyasu Kumazaki | Semiconductor device including cell transistor and cell capacitor |
US7649402B1 (en) | 2003-12-23 | 2010-01-19 | Tien-Min Chen | Feedback-controlled body-bias voltage source |
US20100060345A1 (en) * | 2008-09-08 | 2010-03-11 | Faraday Technology Corporation | Reference circuit for providing precision voltage and precision current |
US7683702B1 (en) * | 2007-06-26 | 2010-03-23 | Marvell International Ltd. | Profile circuit control function |
US7692477B1 (en) * | 2003-12-23 | 2010-04-06 | Tien-Min Chen | Precise control component for a substrate potential regulation circuit |
US7719344B1 (en) | 2003-12-23 | 2010-05-18 | Tien-Min Chen | Stabilization component for a substrate potential regulation circuit |
US7774625B1 (en) | 2004-06-22 | 2010-08-10 | Eric Chien-Li Sheng | Adaptive voltage control by accessing information stored within and specific to a microprocessor |
CN101236731B (zh) * | 2007-01-29 | 2010-09-01 | 乐金显示有限公司 | 液晶显示器件及该类器件的驱动方法 |
DE10042586B4 (de) * | 2000-08-30 | 2010-09-30 | Infineon Technologies Ag | Referenzstromquelle mit MOS-Transistoren |
US20100253316A1 (en) * | 2009-04-07 | 2010-10-07 | Nec Electronics Corporation | Current control circuit |
US20110050330A1 (en) * | 2009-09-02 | 2011-03-03 | Kabushiki Kaisha Toshiba | Reference current generating circuit |
US7953990B2 (en) | 2002-12-31 | 2011-05-31 | Stewart Thomas E | Adaptive power control based on post package characterization of integrated circuits |
US8370658B2 (en) | 2004-06-22 | 2013-02-05 | Eric Chen-Li Sheng | Adaptive control of operating and body bias voltages |
US20130077357A1 (en) * | 2011-09-23 | 2013-03-28 | Power Integrations, Inc. | Adaptive biasing for integrated circuits |
US20130077358A1 (en) * | 2011-09-23 | 2013-03-28 | Power Integrations, Inc. | Controller with constant current limit |
US8442784B1 (en) | 2002-12-31 | 2013-05-14 | Andrew Read | Adaptive power control based on pre package characterization of integrated circuits |
CN103955252A (zh) * | 2014-04-14 | 2014-07-30 | 中国科学院微电子研究所 | 三维存储器的参考电流产生电路及其产生参考电流的方法 |
US8797094B1 (en) * | 2013-03-08 | 2014-08-05 | Synaptics Incorporated | On-chip zero-temperature coefficient current generator |
US8902679B2 (en) | 2012-06-27 | 2014-12-02 | International Business Machines Corporation | Memory array with on and off-state wordline voltages having different temperature coefficients |
US9310426B2 (en) | 2012-09-25 | 2016-04-12 | Globalfoundries Inc. | On-going reliability monitoring of integrated circuit chips in the field |
US9407241B2 (en) | 2002-04-16 | 2016-08-02 | Kleanthes G. Koniaris | Closed loop feedback control of integrated circuits |
US20160252920A1 (en) * | 2014-08-25 | 2016-09-01 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US10001793B2 (en) | 2015-07-28 | 2018-06-19 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
WO2020048578A1 (en) | 2018-09-03 | 2020-03-12 | Laurent Collot | Display driver |
US10613572B1 (en) * | 2019-04-17 | 2020-04-07 | Micron Technology, Inc. | Systems for generating process, voltage, temperature (PVT)-independent current for a low voltage domain |
JP2021119447A (ja) * | 2020-01-30 | 2021-08-12 | 株式会社東芝 | 半導体装置 |
EP3244281B1 (en) * | 2016-05-13 | 2022-07-20 | Rohm Co., Ltd. | An on chip temperature independent current generator |
US11429131B2 (en) * | 2020-01-07 | 2022-08-30 | Winbond Electronics Corp. | Constant current circuit and semiconductor apparatus |
US11962274B2 (en) | 2020-08-28 | 2024-04-16 | Murata Manufacturing Co., Ltd. | Amplifier device |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003273654A (ja) | 2002-03-15 | 2003-09-26 | Seiko Epson Corp | 温度特性補償装置 |
US7543253B2 (en) * | 2003-10-07 | 2009-06-02 | Analog Devices, Inc. | Method and apparatus for compensating for temperature drift in semiconductor processes and circuitry |
CN100383691C (zh) * | 2003-10-17 | 2008-04-23 | 清华大学 | 低温度系数和低电源电压系数的参考电流源 |
CN100373282C (zh) * | 2004-11-29 | 2008-03-05 | 中兴通讯股份有限公司 | 电流源装置 |
US7486065B2 (en) * | 2005-02-07 | 2009-02-03 | Via Technologies, Inc. | Reference voltage generator and method for generating a bias-insensitive reference voltage |
JP4683468B2 (ja) * | 2005-03-22 | 2011-05-18 | ルネサスエレクトロニクス株式会社 | 高周波電力増幅回路 |
KR100635167B1 (ko) * | 2005-08-08 | 2006-10-17 | 삼성전기주식회사 | 온도 보상 바이어스 소스회로 |
JP2009003835A (ja) * | 2007-06-25 | 2009-01-08 | Oki Electric Ind Co Ltd | 基準電流発生装置 |
CN100559688C (zh) * | 2007-07-20 | 2009-11-11 | 绿达光电(苏州)有限公司 | 带温度补偿的欠压锁定电路 |
JP5957987B2 (ja) * | 2012-03-14 | 2016-07-27 | ミツミ電機株式会社 | バンドギャップリファレンス回路 |
CN103677055B (zh) * | 2012-09-24 | 2015-11-18 | 联咏科技股份有限公司 | 能带隙参考电路及其双输出自我参考稳压器 |
CN102890522B (zh) * | 2012-10-24 | 2014-10-29 | 广州润芯信息技术有限公司 | 一种电流基准电路 |
CN104765405B (zh) | 2014-01-02 | 2017-09-05 | 意法半导体研发(深圳)有限公司 | 温度和工艺补偿的电流基准电路 |
US9898030B2 (en) * | 2016-07-12 | 2018-02-20 | Stmicroelectronics International N.V. | Fractional bandgap reference voltage generator |
CN106774574B (zh) * | 2016-12-14 | 2019-01-15 | 深圳市紫光同创电子有限公司 | 一种带隙基准源电路 |
CN106708165A (zh) * | 2017-03-15 | 2017-05-24 | 深圳慧能泰半导体科技有限公司 | 一种电流源电路、芯片及电子设备 |
CN107544612A (zh) * | 2017-10-11 | 2018-01-05 | 郑州云海信息技术有限公司 | 一种基准电压源电路 |
CN110739835B (zh) * | 2018-07-18 | 2021-03-05 | 圣邦微电子(北京)股份有限公司 | 限流保护电路 |
CN110865677B (zh) * | 2019-12-09 | 2022-04-19 | 北京集创北方科技股份有限公司 | 基准源电路、芯片、电源及电子设备 |
CN113075953B (zh) * | 2020-01-06 | 2023-04-28 | 中芯国际集成电路制造(上海)有限公司 | 电流源 |
CN111916121B (zh) * | 2020-07-29 | 2022-10-14 | 北京中电华大电子设计有限责任公司 | 一种读参考电流源 |
CN112039444B (zh) * | 2020-11-04 | 2021-02-19 | 成都铱通科技有限公司 | 一种提升正温度系数变化范围的增益放大器 |
KR102335288B1 (ko) * | 2020-11-09 | 2021-12-06 | 주식회사 센소니아 | 전원 전압 및 온도 변화에 대한 둔감성이 강화되는 기준전류 발생회로 |
CN112099563B (zh) * | 2020-11-17 | 2021-04-09 | 四川科道芯国智能技术股份有限公司 | 用于nfc芯片的低功耗cmos电流源电路 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243948A (en) * | 1979-05-08 | 1981-01-06 | Rca Corporation | Substantially temperature-independent trimming of current flows |
US4587478A (en) * | 1983-03-31 | 1986-05-06 | U.S. Philips Corporation | Temperature-compensated current source having current and voltage stabilizing circuits |
US4851954A (en) * | 1987-10-15 | 1989-07-25 | Dragerwerk Aktiengesellschaft | Monitoring apparatus for monitoring temperature in a circuit arrangement |
US4935690A (en) * | 1988-10-31 | 1990-06-19 | Teledyne Industries, Inc. | CMOS compatible bandgap voltage reference |
US5231315A (en) * | 1991-10-29 | 1993-07-27 | Lattice Semiconductor Corporation | Temperature compensated CMOS voltage to current converter |
US5572161A (en) * | 1995-06-30 | 1996-11-05 | Harris Corporation | Temperature insensitive filter tuning network and method |
US5581174A (en) * | 1993-12-03 | 1996-12-03 | U.S. Philips Corporation | Band-gap reference current source with compensation for saturation current spread of bipolar transistors |
US5604427A (en) * | 1994-10-24 | 1997-02-18 | Nec Corporation | Current reference circuit using PTAT and inverse PTAT subcircuits |
US5774013A (en) * | 1995-11-30 | 1998-06-30 | Rockwell Semiconductor Systems, Inc. | Dual source for constant and PTAT current |
US5818294A (en) * | 1996-07-18 | 1998-10-06 | Advanced Micro Devices, Inc. | Temperature insensitive current source |
US5889394A (en) * | 1997-06-02 | 1999-03-30 | Motorola Inc. | Temperature independent current reference |
US5939872A (en) * | 1996-05-22 | 1999-08-17 | U.S. Philips Corporation | Thermal overload protection system providing supply voltage reduction in discrete steps at predetermined temperature thresholds |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2525346B2 (ja) * | 1983-10-27 | 1996-08-21 | 富士通株式会社 | 定電流源回路を有する差動増幅回路 |
EP0504983A1 (en) * | 1991-03-20 | 1992-09-23 | Koninklijke Philips Electronics N.V. | Reference circuit for supplying a reference current with a predetermined temperature coefficient |
EP0778509B1 (en) * | 1995-12-06 | 2002-05-02 | International Business Machines Corporation | Temperature compensated reference current generator with high TCR resistors |
US5870004A (en) * | 1997-10-16 | 1999-02-09 | Utron Technology Inc. | Temperature compensated frequency generating circuit |
-
1999
- 1999-03-09 US US09/265,252 patent/US6087820A/en not_active Expired - Lifetime
-
2000
- 2000-02-19 EP EP00103581A patent/EP1035460A1/en not_active Withdrawn
- 2000-03-06 TW TW089103971A patent/TW469364B/zh not_active IP Right Cessation
- 2000-03-09 KR KR1020000011707A patent/KR20000071425A/ko not_active Application Discontinuation
- 2000-03-09 JP JP2000065508A patent/JP2000330658A/ja active Pending
- 2000-03-09 CN CN00104012A patent/CN1271116A/zh active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4243948A (en) * | 1979-05-08 | 1981-01-06 | Rca Corporation | Substantially temperature-independent trimming of current flows |
US4587478A (en) * | 1983-03-31 | 1986-05-06 | U.S. Philips Corporation | Temperature-compensated current source having current and voltage stabilizing circuits |
US4851954A (en) * | 1987-10-15 | 1989-07-25 | Dragerwerk Aktiengesellschaft | Monitoring apparatus for monitoring temperature in a circuit arrangement |
US4935690A (en) * | 1988-10-31 | 1990-06-19 | Teledyne Industries, Inc. | CMOS compatible bandgap voltage reference |
US5231315A (en) * | 1991-10-29 | 1993-07-27 | Lattice Semiconductor Corporation | Temperature compensated CMOS voltage to current converter |
US5581174A (en) * | 1993-12-03 | 1996-12-03 | U.S. Philips Corporation | Band-gap reference current source with compensation for saturation current spread of bipolar transistors |
US5604427A (en) * | 1994-10-24 | 1997-02-18 | Nec Corporation | Current reference circuit using PTAT and inverse PTAT subcircuits |
US5572161A (en) * | 1995-06-30 | 1996-11-05 | Harris Corporation | Temperature insensitive filter tuning network and method |
US5774013A (en) * | 1995-11-30 | 1998-06-30 | Rockwell Semiconductor Systems, Inc. | Dual source for constant and PTAT current |
US5939872A (en) * | 1996-05-22 | 1999-08-17 | U.S. Philips Corporation | Thermal overload protection system providing supply voltage reduction in discrete steps at predetermined temperature thresholds |
US5818294A (en) * | 1996-07-18 | 1998-10-06 | Advanced Micro Devices, Inc. | Temperature insensitive current source |
US5889394A (en) * | 1997-06-02 | 1999-03-30 | Motorola Inc. | Temperature independent current reference |
Non-Patent Citations (4)
Title |
---|
Bang Sup Song et al., A Precision Curvature Compensated CMOS Bandgap Reference , IEEE Journal of Solid State Circuits, vol. SC 18, No. 6, Dec./1983. * |
Bang-Sup Song et al., "A Precision Curvature-Compensated CMOS Bandgap Reference", IEEE Journal of Solid-State Circuits, vol. SC-18, No. 6, Dec./1983. |
Gray et al., "Analysis and Design of Analog Integrated Circuits", pp. 338-347, Third Edition, Copyright © 1977, 1984, 1993 by John Wiley & Sons, Inc. No Month. |
Gray et al., Analysis and Design of Analog Integrated Circuits , pp. 338 347, Third Edition, Copyright 1977, 1984, 1993 by John Wiley & Sons, Inc. No Month. * |
Cited By (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6373756B2 (en) | 1999-06-22 | 2002-04-16 | Micron Technology, Inc. | Memory structure utilizing four transistor load less memory cells and a bias generator |
US6198670B1 (en) * | 1999-06-22 | 2001-03-06 | Micron Technology, Inc. | Bias generator for a four transistor load less memory cell |
US6288966B2 (en) | 1999-06-22 | 2001-09-11 | Micron Technology, Inc. | Method of modifying the current conducted by the access transistors of a load less, four transistor memory cell |
US6330195B2 (en) | 1999-06-22 | 2001-12-11 | Micron Technology, Inc. | Bias generator for a four transistor load less memory cell |
US6337813B2 (en) | 1999-06-22 | 2002-01-08 | Micron Technology, Inc. | Method of regulating a voltage difference between a word line and a digit line of a load less, four transistor memory cell |
US6496422B2 (en) | 1999-06-22 | 2002-12-17 | Micron Technology, Inc. | Memory structure utilizing four transistor load less memory cells and a bias generator |
US6388933B2 (en) | 1999-06-22 | 2002-05-14 | Micron Technology, Inc. | Method of controlling the conduction of the access transistors of a load less, four transistor memory cell |
US6373339B2 (en) * | 2000-06-23 | 2002-04-16 | International Business Machines Corporation | Active bias network circuit for radio frequency amplifier |
US6259324B1 (en) * | 2000-06-23 | 2001-07-10 | International Business Machines Corporation | Active bias network circuit for radio frequency amplifier |
DE10042586B4 (de) * | 2000-08-30 | 2010-09-30 | Infineon Technologies Ag | Referenzstromquelle mit MOS-Transistoren |
US6686797B1 (en) | 2000-11-08 | 2004-02-03 | Applied Micro Circuits Corporation | Temperature stable CMOS device |
US6466081B1 (en) * | 2000-11-08 | 2002-10-15 | Applied Micro Circuits Corporation | Temperature stable CMOS device |
US6600304B2 (en) | 2001-02-22 | 2003-07-29 | Samsung Electronics Co., Ltd. | Current generating circuit insensive to resistance variation |
KR100441248B1 (ko) * | 2001-02-22 | 2004-07-21 | 삼성전자주식회사 | 저항 변화에 둔감한 전류 발생 회로 |
US6342781B1 (en) | 2001-04-13 | 2002-01-29 | Ami Semiconductor, Inc. | Circuits and methods for providing a bandgap voltage reference using composite resistors |
US6351111B1 (en) | 2001-04-13 | 2002-02-26 | Ami Semiconductor, Inc. | Circuits and methods for providing a current reference with a controlled temperature coefficient using a series composite resistor |
EP1253499A1 (en) * | 2001-04-27 | 2002-10-30 | STMicroelectronics S.r.l. | Current reference circuit for low supply voltages |
US6639451B2 (en) | 2001-04-27 | 2003-10-28 | Stmicroelectronics S.R.L. | Current reference circuit for low supply voltages |
EP1262852A1 (en) * | 2001-06-01 | 2002-12-04 | STMicroelectronics Limited | Current source |
US6693415B2 (en) | 2001-06-01 | 2004-02-17 | Stmicroelectronics Ltd. | Current source |
US20030020444A1 (en) * | 2001-07-26 | 2003-01-30 | Alcatel | Low drop voltage regulator |
US6492874B1 (en) | 2001-07-30 | 2002-12-10 | Motorola, Inc. | Active bias circuit |
EP1315063A1 (en) * | 2001-11-14 | 2003-05-28 | Dialog Semiconductor GmbH | A threshold voltage-independent MOS current reference |
US20030132796A1 (en) * | 2001-11-26 | 2003-07-17 | Stmicroelectronics S.A. | Temperature-compensated current source |
US20030098738A1 (en) * | 2001-11-26 | 2003-05-29 | Em Microelectronic-Marin Sa | Current generator circuit for high-voltage applications |
EP1315062A1 (fr) * | 2001-11-26 | 2003-05-28 | EM Microelectronic-Marin SA | Circuit de génération de courant pour applications haute-tension |
US6759893B2 (en) * | 2001-11-26 | 2004-07-06 | Stmicroelectronics Sa | Temperature-compensated current source |
US20030117210A1 (en) * | 2001-12-21 | 2003-06-26 | Jochen Rudolph | Current-source circuit |
US6690229B2 (en) * | 2001-12-21 | 2004-02-10 | Koninklijke Philips Electronics N.V. | Feed back current-source circuit |
US10432174B2 (en) | 2002-04-16 | 2019-10-01 | Facebook, Inc. | Closed loop feedback control of integrated circuits |
US9407241B2 (en) | 2002-04-16 | 2016-08-02 | Kleanthes G. Koniaris | Closed loop feedback control of integrated circuits |
WO2004012333A2 (en) * | 2002-07-25 | 2004-02-05 | Honeywell International, Inc. | Method and apparatus for common-mode level shifting |
WO2004012333A3 (en) * | 2002-07-25 | 2004-08-19 | Honeywell Int Inc | Method and apparatus for common-mode level shifting |
US20040080365A1 (en) * | 2002-07-25 | 2004-04-29 | Honeywell International Inc. | Method and apparatus for common-mode level shifting |
US6924696B2 (en) | 2002-07-25 | 2005-08-02 | Honeywell International Inc. | Method and apparatus for common-mode level shifting |
US6819164B1 (en) * | 2002-10-17 | 2004-11-16 | National Semiconductor Corporation | Apparatus and method for a precision bi-directional trim scheme |
CN100397279C (zh) * | 2002-10-31 | 2008-06-25 | 松下电器产业株式会社 | 漏电流补偿装置及漏电流补偿方法 |
US6856190B2 (en) * | 2002-10-31 | 2005-02-15 | Matsushita Electric Industrial Co., Ltd. | Leak current compensating device and leak current compensating method |
US20040130378A1 (en) * | 2002-10-31 | 2004-07-08 | Hideyuki Kihara | Leak current compensating device and leak current compensating method |
US20040108889A1 (en) * | 2002-12-05 | 2004-06-10 | Fujitsu Limited | Semiconductor integrated circuit |
US6940338B2 (en) * | 2002-12-05 | 2005-09-06 | Fujitsu Limited | Semiconductor integrated circuit |
US7953990B2 (en) | 2002-12-31 | 2011-05-31 | Stewart Thomas E | Adaptive power control based on post package characterization of integrated circuits |
US20110219245A1 (en) * | 2002-12-31 | 2011-09-08 | Burr James B | Adaptive power control |
US7941675B2 (en) | 2002-12-31 | 2011-05-10 | Burr James B | Adaptive power control |
US8442784B1 (en) | 2002-12-31 | 2013-05-14 | Andrew Read | Adaptive power control based on pre package characterization of integrated circuits |
US20040128566A1 (en) * | 2002-12-31 | 2004-07-01 | Burr James B. | Adaptive power control |
US7110729B1 (en) | 2003-01-22 | 2006-09-19 | National Semiconductor Corporation | Apparatus and method for generating a temperature insensitive reference current |
US6954059B1 (en) * | 2003-04-16 | 2005-10-11 | National Semiconductor Corporation | Method and apparatus for output voltage temperature dependence adjustment of a low voltage band gap circuit |
US20040263144A1 (en) * | 2003-06-27 | 2004-12-30 | Chien-Chung Tseng | Reference voltage generator with supply voltage and temperature immunity |
US7042205B2 (en) * | 2003-06-27 | 2006-05-09 | Macronix International Co., Ltd. | Reference voltage generator with supply voltage and temperature immunity |
US7135913B2 (en) | 2003-10-29 | 2006-11-14 | Samsung Electronics Co., Ltd. | Reference voltage generating circuit for integrated circuit |
US20050093617A1 (en) * | 2003-10-29 | 2005-05-05 | Samsung Electronics Co., Ltd. | Reference voltage generating circuit for integrated circuit |
US7362165B1 (en) | 2003-12-23 | 2008-04-22 | Transmeta Corporation | Servo loop for well bias voltage source |
US8193852B2 (en) | 2003-12-23 | 2012-06-05 | Tien-Min Chen | Precise control component for a substrate potential regulation circuit |
US7719344B1 (en) | 2003-12-23 | 2010-05-18 | Tien-Min Chen | Stabilization component for a substrate potential regulation circuit |
US7649402B1 (en) | 2003-12-23 | 2010-01-19 | Tien-Min Chen | Feedback-controlled body-bias voltage source |
US8629711B2 (en) | 2003-12-23 | 2014-01-14 | Tien-Min Chen | Precise control component for a substarate potential regulation circuit |
US7692477B1 (en) * | 2003-12-23 | 2010-04-06 | Tien-Min Chen | Precise control component for a substrate potential regulation circuit |
US7847619B1 (en) | 2003-12-23 | 2010-12-07 | Tien-Min Chen | Servo loop for well bias voltage source |
US8436675B2 (en) | 2003-12-23 | 2013-05-07 | Tien-Min Chen | Feedback-controlled body-bias voltage source |
US7064602B2 (en) * | 2004-05-05 | 2006-06-20 | Rambus Inc. | Dynamic gain compensation and calibration |
US20050248389A1 (en) * | 2004-05-05 | 2005-11-10 | Rambus Inc. | Dynamic gain compensation and calibration |
US20050248397A1 (en) * | 2004-05-07 | 2005-11-10 | Hideyuki Aota | Constant current generating circuit using resistor formed of metal thin film |
US7208931B2 (en) * | 2004-05-07 | 2007-04-24 | Ricoh Company, Ltd. | Constant current generating circuit using resistor formed of metal thin film |
US8370658B2 (en) | 2004-06-22 | 2013-02-05 | Eric Chen-Li Sheng | Adaptive control of operating and body bias voltages |
US7774625B1 (en) | 2004-06-22 | 2010-08-10 | Eric Chien-Li Sheng | Adaptive voltage control by accessing information stored within and specific to a microprocessor |
US9026810B2 (en) | 2004-06-22 | 2015-05-05 | Intellectual Venture Funding Llc | Adaptive control of operating and body bias voltages |
US20060197585A1 (en) * | 2005-03-03 | 2006-09-07 | Hyoungrae Kim | Voltage reference generator and method of generating a reference voltage |
US7518437B2 (en) * | 2005-03-29 | 2009-04-14 | Fujitsu Microelectronics Limited | Constant current circuit and constant current generating method |
US20060220732A1 (en) * | 2005-03-29 | 2006-10-05 | Fujitsu Limited | Constant current circuit and constant current generating method |
US20060232326A1 (en) * | 2005-04-18 | 2006-10-19 | Helmut Seitz | Reference circuit that provides a temperature dependent voltage |
KR100798436B1 (ko) | 2005-04-18 | 2008-01-28 | 인피니언 테크놀로지스 아게 | 온도 의존성 전압을 제공하는 기준 회로 |
US20060268629A1 (en) * | 2005-05-24 | 2006-11-30 | Emma Mixed Signal C.V. | Reference voltage generator |
US20070001751A1 (en) * | 2005-07-01 | 2007-01-04 | Ess Technology, Inc. | System and method for providing an accurate reference bias current |
US7332957B2 (en) * | 2005-08-05 | 2008-02-19 | Sanyo Electric Co., Ltd. | Constant current circuit |
US20070030055A1 (en) * | 2005-08-05 | 2007-02-08 | Sanyo Electric Co., Ltd. | Constant Current Circuit |
US7301316B1 (en) * | 2005-08-12 | 2007-11-27 | Altera Corporation | Stable DC current source with common-source output stage |
US20070189095A1 (en) * | 2006-02-16 | 2007-08-16 | Wolfgang Hokenmaier | Method and apparatus for an oscillator within a memory device |
US7333382B2 (en) | 2006-02-16 | 2008-02-19 | Infineon Technologies Ag | Method and apparatus for an oscillator within a memory device |
US7504878B2 (en) * | 2006-07-03 | 2009-03-17 | Mediatek Inc. | Device having temperature compensation for providing constant current through utilizing compensating unit with positive temperature coefficient |
US20080001648A1 (en) * | 2006-07-03 | 2008-01-03 | Tser-Yu Lin | Device having temperature compensation for providing constant current through utilizing compensating unit with positive temperature coefficient |
US7609106B2 (en) | 2006-08-28 | 2009-10-27 | Nec Electronics Corporation | Constant current circuit |
US20080048771A1 (en) * | 2006-08-28 | 2008-02-28 | Nec Electronics Corporation | Constant current circuit |
CN101236731B (zh) * | 2007-01-29 | 2010-09-01 | 乐金显示有限公司 | 液晶显示器件及该类器件的驱动方法 |
US9312938B2 (en) | 2007-02-19 | 2016-04-12 | Corning Optical Communications Wireless Ltd | Method and system for improving uplink performance |
US20080200117A1 (en) * | 2007-02-19 | 2008-08-21 | Yair Oren | Method and system for improving uplink performance |
US8085029B2 (en) * | 2007-03-30 | 2011-12-27 | Linear Technology Corporation | Bandgap voltage and current reference |
US20080238400A1 (en) * | 2007-03-30 | 2008-10-02 | Linear Technology Corporation | Bandgap voltage and current reference |
US7683702B1 (en) * | 2007-06-26 | 2010-03-23 | Marvell International Ltd. | Profile circuit control function |
US7692482B1 (en) * | 2007-06-26 | 2010-04-06 | Marvell International Ltd. | Profile circuit control function |
US20100289564A1 (en) * | 2007-07-03 | 2010-11-18 | St-Ericsson Sa | Electronic device and a method of biasing a mos transistor in an integrated circuit |
WO2009004534A1 (en) * | 2007-07-03 | 2009-01-08 | Nxp B.V. | Electronic device and a method of biasing a mos transistor in an integrated circuit |
US20090039945A1 (en) * | 2007-07-09 | 2009-02-12 | Matthias Arnold | Bias Current Generator |
WO2009007346A1 (en) * | 2007-07-09 | 2009-01-15 | Texas Instruments Deutschland Gmbh | Bias current generator |
US8441308B2 (en) | 2007-07-09 | 2013-05-14 | Texas Instruments Incorporated | Bias current generator |
US20090261893A1 (en) * | 2008-04-17 | 2009-10-22 | Noriyasu Kumazaki | Semiconductor device including cell transistor and cell capacitor |
US20100060345A1 (en) * | 2008-09-08 | 2010-03-11 | Faraday Technology Corporation | Reference circuit for providing precision voltage and precision current |
US7880534B2 (en) * | 2008-09-08 | 2011-02-01 | Faraday Technology Corp. | Reference circuit for providing precision voltage and precision current |
US20100253316A1 (en) * | 2009-04-07 | 2010-10-07 | Nec Electronics Corporation | Current control circuit |
US8102200B2 (en) * | 2009-04-07 | 2012-01-24 | Renesas Electronics Corporation | Current control circuit |
US20110050330A1 (en) * | 2009-09-02 | 2011-03-03 | Kabushiki Kaisha Toshiba | Reference current generating circuit |
US8278996B2 (en) | 2009-09-02 | 2012-10-02 | Kabushiki Kaisha Toshiba | Reference current generating circuit |
US9287784B2 (en) * | 2011-09-23 | 2016-03-15 | Power Integrations, Inc. | Adaptive biasing for integrated circuits |
US20130077358A1 (en) * | 2011-09-23 | 2013-03-28 | Power Integrations, Inc. | Controller with constant current limit |
US9391523B2 (en) * | 2011-09-23 | 2016-07-12 | Power Integrations, Inc. | Controller with constant current limit |
US20130077357A1 (en) * | 2011-09-23 | 2013-03-28 | Power Integrations, Inc. | Adaptive biasing for integrated circuits |
US8902679B2 (en) | 2012-06-27 | 2014-12-02 | International Business Machines Corporation | Memory array with on and off-state wordline voltages having different temperature coefficients |
US9310426B2 (en) | 2012-09-25 | 2016-04-12 | Globalfoundries Inc. | On-going reliability monitoring of integrated circuit chips in the field |
US8797094B1 (en) * | 2013-03-08 | 2014-08-05 | Synaptics Incorporated | On-chip zero-temperature coefficient current generator |
CN103955252A (zh) * | 2014-04-14 | 2014-07-30 | 中国科学院微电子研究所 | 三维存储器的参考电流产生电路及其产生参考电流的方法 |
US10073477B2 (en) * | 2014-08-25 | 2018-09-11 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US20180341282A1 (en) * | 2014-08-25 | 2018-11-29 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US20160252920A1 (en) * | 2014-08-25 | 2016-09-01 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US10678284B2 (en) * | 2014-08-25 | 2020-06-09 | Micron Technology, Inc. | Apparatuses and methods for temperature independent current generations |
US10001793B2 (en) | 2015-07-28 | 2018-06-19 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
US10459466B2 (en) | 2015-07-28 | 2019-10-29 | Micron Technology, Inc. | Apparatuses and methods for providing constant current |
EP3244281B1 (en) * | 2016-05-13 | 2022-07-20 | Rohm Co., Ltd. | An on chip temperature independent current generator |
WO2020048578A1 (en) | 2018-09-03 | 2020-03-12 | Laurent Collot | Display driver |
US10613572B1 (en) * | 2019-04-17 | 2020-04-07 | Micron Technology, Inc. | Systems for generating process, voltage, temperature (PVT)-independent current for a low voltage domain |
US11429131B2 (en) * | 2020-01-07 | 2022-08-30 | Winbond Electronics Corp. | Constant current circuit and semiconductor apparatus |
JP2021119447A (ja) * | 2020-01-30 | 2021-08-12 | 株式会社東芝 | 半導体装置 |
US11962274B2 (en) | 2020-08-28 | 2024-04-16 | Murata Manufacturing Co., Ltd. | Amplifier device |
Also Published As
Publication number | Publication date |
---|---|
TW469364B (en) | 2001-12-21 |
JP2000330658A (ja) | 2000-11-30 |
CN1271116A (zh) | 2000-10-25 |
KR20000071425A (ko) | 2000-11-25 |
EP1035460A1 (en) | 2000-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6087820A (en) | Current source | |
US5039878A (en) | Temperature sensing circuit | |
US6507179B1 (en) | Low voltage bandgap circuit with improved power supply ripple rejection | |
US5796244A (en) | Bandgap reference circuit | |
US7170336B2 (en) | Low voltage bandgap reference (BGR) circuit | |
US6628558B2 (en) | Proportional to temperature voltage generator | |
US7088085B2 (en) | CMOS bandgap current and voltage generator | |
JP2682470B2 (ja) | 基準電流回路 | |
US5568045A (en) | Reference voltage generator of a band-gap regulator type used in CMOS transistor circuit | |
US20070080740A1 (en) | Reference circuit for providing a temperature independent reference voltage and current | |
US7511567B2 (en) | Bandgap reference voltage circuit | |
JPH0342709A (ja) | 基準電圧発生回路 | |
JP5085238B2 (ja) | 基準電圧回路 | |
US20040124825A1 (en) | Cmos voltage bandgap reference with improved headroom | |
US4935690A (en) | CMOS compatible bandgap voltage reference | |
JP2008108009A (ja) | 基準電圧発生回路 | |
JP3039611B2 (ja) | カレントミラー回路 | |
JPH0668712B2 (ja) | 電圧基準回路 | |
US20160246317A1 (en) | Power and area efficient method for generating a bias reference | |
US20040095186A1 (en) | Low power bandgap voltage reference circuit | |
US10379567B2 (en) | Bandgap reference circuitry | |
US7843231B2 (en) | Temperature-compensated voltage comparator | |
JP2001510609A (ja) | 温度補償された出力基準電圧を有する基準電圧源 | |
US6507238B1 (en) | Temperature-dependent reference generator | |
US10642304B1 (en) | Low voltage ultra-low power continuous time reverse bandgap reference circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:STAHL, ERNST;REEL/FRAME:009963/0430 Effective date: 19990504 Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOUGHTON, RUSSELL J.;REEL/FRAME:009963/0301 Effective date: 19990301 |
|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES NORTH AMERICA CORP., CALIFOR Free format text: CHANGE OF NAME;ASSIGNOR:INFINEON TECHNOLOGIES CORPORATION;REEL/FRAME:010693/0052 Effective date: 19990930 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: QIMONDA AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES NORTH AMERICA CORPORATION;REEL/FRAME:023791/0001 Effective date: 20060425 |
|
FPAY | Fee payment |
Year of fee payment: 12 |
|
AS | Assignment |
Owner name: INFINEON TECHNOLOGIES AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:QIMONDA AG;REEL/FRAME:035623/0001 Effective date: 20141009 |
|
AS | Assignment |
Owner name: SAMSUNG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INFINEON TECHNOLOGIES AG;REEL/FRAME:037221/0885 Effective date: 20150930 |