US5019570A - Cephalosporin compounds - Google Patents

Cephalosporin compounds Download PDF

Info

Publication number
US5019570A
US5019570A US07/223,988 US22398888A US5019570A US 5019570 A US5019570 A US 5019570A US 22398888 A US22398888 A US 22398888A US 5019570 A US5019570 A US 5019570A
Authority
US
United States
Prior art keywords
alkyl
sub
carboxy
carboxylic acid
dihydro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US07/223,988
Other languages
English (en)
Inventor
Jean C. Arnould
Dominique Boucherot
David H. Davies
Frederick H. Jung
Colin J. Strawson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca SAS
Imperial Chemical Industries Ltd
Original Assignee
ICI Pharma SA
Imperial Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ICI Pharma SA, Imperial Chemical Industries Ltd filed Critical ICI Pharma SA
Assigned to IMPERIAL CHEMICAL INDUSTRIES PLC, A CORP. OF GREAT BRITAIN, I.C.I.-PHARMA, IMMEUBLE LE GALIEN "1, A CORP. OF FRANCE reassignment IMPERIAL CHEMICAL INDUSTRIES PLC, A CORP. OF GREAT BRITAIN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: DAVIES, DAVID H., JUNG, FREDERICK H., STRAWSON, COLIN J., ARNOULD, JEAN C., BOUCHEROT, DOMINIQUE
Priority to US07/653,149 priority Critical patent/US5232918A/en
Application granted granted Critical
Publication of US5019570A publication Critical patent/US5019570A/en
Priority to US07/886,392 priority patent/US5371220A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/247-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
    • C07D501/38Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/247-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
    • C07D501/38Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof
    • C07D501/46Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof with the 7-amino radical acylated by carboxylic acids containing hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D501/00Heterocyclic compounds containing 5-thia-1-azabicyclo [4.2.0] octane ring systems, i.e. compounds containing a ring system of the formula:, e.g. cephalosporins; Such ring systems being further condensed, e.g. 2,3-condensed with an oxygen-, nitrogen- or sulfur-containing hetero ring
    • C07D501/14Compounds having a nitrogen atom directly attached in position 7
    • C07D501/16Compounds having a nitrogen atom directly attached in position 7 with a double bond between positions 2 and 3
    • C07D501/207-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids
    • C07D501/247-Acylaminocephalosporanic or substituted 7-acylaminocephalosporanic acids in which the acyl radicals are derived from carboxylic acids with hydrocarbon radicals, substituted by hetero atoms or hetero rings, attached in position 3
    • C07D501/38Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof
    • C07D501/40Methylene radicals, substituted by nitrogen atoms; Lactams thereof with the 2-carboxyl group; Methylene radicals substituted by nitrogen-containing hetero rings attached by the ring nitrogen atom; Quaternary compounds thereof with the 7-amino radical acylated by an aliphatic carboxylic acid, which is substituted by hetero atoms

Definitions

  • the present invention relates to cephalosporins and in particular to such compounds comprising an amide group.
  • This invention further relates to processes for their preparation, to intermediates in their preparation, to their use as therapeutic agents and to pharmaceutical compositions containing them.
  • the compounds of this invention are antibiotics and can be used in the treatment of any disease that is treated with antibiotics for example in the treatment of bacterial infection in animals, in particular in mammals including humans.
  • the compounds of this invention also have non-therapeutic uses as they can be used in conventional manner in industry as is known to those in the art.
  • the compounds of this invention are primarily of therapeutic interest as they show a desirable profile of activity and duration in their antibacterial effect.
  • GB-B-2089339 and GB-B-2148282 disclose compounds wherein the 3-position substituent of a cephalosporin is of the formula: --CH 2 R 2 wherein R 2 is a substituted or unsubstituted aryl, acylamino, aromatic heterocyclic, triazolyl or tetrazolyl group.
  • R 2 is a substituted or unsubstituted aryl, acylamino, aromatic heterocyclic, triazolyl or tetrazolyl group.
  • the substituent "acyl” is able to have a variety of meanings but there is no teaching or suggestion of the compounds of the present invention which comprise specific ring systems having hydroxy groups or related substituents ortho to one another.
  • the present invention provides a cephalosporin compound having a 3-position substituent of the formula (I): ##STR3## wherein: R 1 is hydrogen, C 1-6 alkyl optionally substituted by halo, hydroxy, C 1-4 alkoxy, carboxy, amino, cyano, C 1-6 alkanoylamino, phenyl or heteroaryl, or R 1 is C 2-6 alkenyl;
  • Het is a 5- or 6-membered heterocyclic ring selected from a group of the formulae II-III: ##STR4## wherein A is CH or a nitrogen atom; B is oxygen, sulphur or a group NR 4 ; one or two of D, E, F and G are nitrogen atoms and the remainder are CH groups:
  • Het is a pyrazinone, pyridinone, pyridazinone or pyrimidinone ring, or is a thione equivalent of such a ring, said rings having a substituent R 4 on one nitrogen atom:
  • Het is a pyranone or pyranthione ring:
  • the ring Het being fused by any two adjacent carbon atoms to the benzene ring; and Het being bonded via a carbon atom to the --CH 2 NR 1 CO-- group;
  • R 2 is hydroxy or an in vivo hydrolysable ester thereof
  • R 3 is ortho to R 2 and is hydroxy or an in vivo hydrolysable ester thereof;
  • R 4 is hydrogen or hydroxy, or C 1-6 alkoxy, phenoxy, C 2-6 alkenyl or C 1-6 alkyl, (any of these groups being optionally substituted by hydroxy, C 1-6 alkoxy, cyano, amino, C 1-6 alkylamino, di-C 1-6 alkylamino, carboxy, C 1-6 alkoxycarbonyl, C 1-6 alkanoyloxy, carbamoyl, C 1-6 alkylcarbamoyl, di-C 1-6 alkylcarbamoyl, C 1-6 -alkoxycarbonylamino, phenyl, phenylC 1-6 alkyl, carboxyaminocarbonyl, C 1-6 alkoxycarbonylaminocarbonyl, benzoyl or C 3-8 cycloalkyl) or R 4 is phenyl, C 3-8 cycloalkyl, amino, C 1-6 alkylamino or di-C 1-6 alkylamino: wherein the fused
  • R 1 may be C 1-6 alkyl substituted by heteroaryl.
  • a heteroaryl group is a 5- or 6-membered ring containing 1, 2 or 3 heteroatoms selected from nitrogen, oxygen and sulphur and may be optionally substituted, for example by the substituents described hereinbefore with respect to the fused Het-benzene ring system.
  • R 1 may be pyridinylmethyl or furanylmethyl.
  • R 1 are hydrogen, C 1-6 alkyl for example methyl, ethyl or propyl, hydroxy C 1-6 alkyl for example 2-hydroxyethyl, halo C 1-6 alkyl for example 2-chloroethyl or 2-fluoroethyl, C 1-6 alkoxy C 1-6 alkyl for example 2-methoxyethyl, 2-ethoxyethyl or methoxymethyl, carboxy C 1-6 alkyl for example carboxymethyl, phenyl C 1-6 alkyl for example benzyl or phenethyl, or C 2-6 alkenyl for example allyl.
  • C 1-6 alkyl for example methyl, ethyl or propyl
  • hydroxy C 1-6 alkyl for example 2-hydroxyethyl
  • halo C 1-6 alkyl for example 2-chloroethyl or 2-fluoroethyl
  • C 1-6 alkoxy C 1-6 alkyl for example 2-methoxyethy
  • R 1 is hydrogen, methyl or ethyl. Most preferably R 1 is hydrogen.
  • Het is a ring of the formula II as hereinbefore described, that is Het is an imidazole, thiazole, oxazole, pyrrole, furan or thiophen ring.
  • the Het-benzene fused ring system is benzimidazol-2-yl, benzthiazol-2-yl or indol-2-yl.
  • Het is a ring of the formula III as hereinbefore described, that is the Het-benzene fused ring system represents quinoline, isoquinoline, quinazoline, cinnoline, quinoxaline or phthalazine.
  • Het is a pyrazinone, pyridinone, pyridazinone or pyrimidinone ring, or the thione equivalent of such rings, said rings having a substituent R 4 on one nitrogen atom.
  • the Het-benzene fused ring system may be of the sub-formula (i)-(ix): ##STR5##
  • Preferred values for the Het-benzene fused ring system are those of the sub-formulae (i), (ii) and (iii).
  • thione equivalents of ring systems (i)-(ix) are those wherein the oxo group ( ⁇ O) is replaced by the thioxo group ( ⁇ S).
  • the Het ring is a pyranone ring so that values of the Het-benzene fused ring system include sub-formulae (x)-(xii): ##STR6##
  • the ring systems of the sub-formulae (xi) are preferred, that is the chroman-2-one ring system.
  • the present invention also covers the related ring systems wherein the oxo group ( ⁇ O) is replaced by a thione group ( ⁇ S).
  • R 2 is hydroxy or an in vivo hydrolysable ester thereof.
  • In vivo hydrolysable esters are those pharmaceutically acceptable esters that hydrolyse in the human or animal body to produce the parent hydroxy compound. Such esters can be identified by administering, e.g. intravenously to a test animal, the compound under test and subsequently examining the test animal's body fluids.
  • Suitable in vivo hydrolysable esters include C 1-6 alkanoyloxy for example acetoxy, propionyloxy, pivaloyloxy, C 1-4 alkoxycarbonyloxy for example ethoxycarbonyloxy, phenylacetoxy and phthalidyl.
  • both R 2 and R 3 have the same value and are both hydroxy or are both in vivo hydrolysable esters, for example they are both acetoxy or pivaloyloxy.
  • the fused Het-benzene ring system may be further optionally substituted, on either ring, by one or more atoms or groups.
  • Particular substituents are C 1-6 alkyl for example methyl or ethyl, halo for example chloro, fluoro or bromo, hydroxy, hydroxyC 1-6 alkyl for example hydroxyethyl, nitro, amino, C 1-6 alkylamino for example methylamino or ethylamino, di-C 1-6 alkyl amino for example dimethylamino or diethylamino, phenylC 1-6 alkylamino for example benzylamino, C 1-6 alkoxy for example methoxy or ethoxy, carboxyC 1-6 alkyl for example carboxymethyl, C 1-6 alkanoylamino for example acetamido, trifluoromethyl, carboxy, carbamoyl, C 1-6 alkylcarbamoyl for example methylcarb
  • the 3-position substituent for the cephalosporins of the present invention is of the sub-formula (xiii): ##STR7## wherein R 2 and R 3 are as hereinbefore defined, R 41 is hydrogen or C 1-6 alkyl for example methyl, ethyl, propyl or butyl and R 42 is hydrogen, nitro, cyano, chloro, bromo, carboxy or C 1-6 alkoxycarbonyl for example methoxycarbonyl or ethoxycarbonyl.
  • the 3-position substituent for the cephalosporins of the present invention is of the sub-formula (xiv): ##STR8## wherein R 43 is hydrogen, chloro, bromo, carboxy, C 1-6 alkoxycarbonyl for example methoxycarbonyl or ethoxycarbonyl, amino, C 1-6 alkylamino for example methylamino or ethylamino or phenyl C 1-6 alkylamino for example benzylamino.
  • the 3-position substituent for the cephalosporins of the present invention is of the sub-formula (xv) or (xvi): ##STR9## wherein R 2 , R 3 and R 42 are as hereinbefore defined.
  • cephalosporins having a novel 3-position substituent.
  • a particular class of cephalosporins within the present invention is that of the formula IV: ##STR10## and salts and esters thereof wherein R 1 , Het, R 2 and R 3 are as hereinbefore defined;
  • X is sulphur, oxygen, methylene or sulphinyl
  • R 5 and R 7 are groups known for such positions in the cephalosporin art.
  • X is sulphur
  • R 6 is hydrogen
  • R 5 is for example 2-aminothiazol-4-yl or 2-aminooxazol-4-yl each optionally substituted in the 5-position by fluorine, chlorine or bromine, or R 5 is 5-aminoisothiazol-3-yl, 5-amino-1,2,4-thiadiazol-3-yl, 3-aminopyrazol-5-yl, 3-aminopyrazol-4-yl, 2-aminopyrimidin-5-yl, 2-aminopyrid-6-yl, 4-aminopyrimidin-2-yl, 2-amino-1,3,4-thiadiazol-5-yl or 5-amino-1-methyl-1,2,4-triazol-3-yl;
  • R 7 is for example of the formula ⁇ N.O.R 8 (having the syn configuration about the double bond) wherein R 8 is hydrogen, (1-6C)alkyl, (3-8C)cycloalkyl, (1-3C)alkyl(3-6C)cycloalkyl, (3-6C)cycloalkyl(1-3C)alkyl, (3-6C)alkenyl optionally substituted by carboxy, (5-8C)cycloalkenyl, (3-6C)alkynyl, (2-5C)alkylcarbamoyl, phenylcarbamoyl, benzylcarbamoyl, (1-4C)alkylcarbamoyl(1-4C)alkyl, di(1-4C)alkylcarbamoyl(1-4C)alkyl, (1-4C)haloalkylcarbamoyl(1-4C)alkyl, (1-3C)haloalkyl, (2-6C)hydroxyalkyl, (1-4C)alkoxy(2-4C
  • R 11 is hydrogen, (1-3C)alkyl or methylthio
  • R 12 is hydrogen (1-3C)alkyl, (3-7C)cycloalkyl, cyano, carboxy, (2-5C)carboxyalkyl or methanesulphonylamino, or R 11 and R 12 are joined to form, together with the carbon to which they are attached, a (3-7C)carbocyclic ring
  • R 13 is hydroxy, amino, (1-4C)alkoxy, (1-4C) alkylamino or of the formula NHOR 14 in which R 14 is hydrogen or (1-4C)alkyl;
  • R 7 may be of the formula ⁇ CH.R 15 wherein R 15 is hydrogen, halogen, (1-6C)alkyl, (3-7C)cycloalkyl, (2-6C)alkenyl, (3-7C)cycloalkenyl, phenyl or benzyl.
  • R 8 are hydrogen, methyl, ethyl, isopropyl, t-butyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, methylcyclopropyl, methylcyclobutyl, methylcyclopentyl, methylcyclohexyl, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, allyl, cyclopentenyl, cyclohexenyl, propargyl, methylcarbamoyl, ethylcarbamoyl, phenylcarbamoyl, benzylcarbamoyl, methylcarbamoylmethyl, 2-chloroethyl, 2-fluoroethyl, 2-bromoethyl, 2-hydroxyethyl, 3-hydroxypropyl, 2-methoxyethyl, 2-ethoxyethyl, 2-methyl
  • R 8 is of the formula V in which q is 1 or 2, a particular meaning for R 8 is when R 9 and R 10 are hydrogen or methyl,
  • R 8 when R 8 is of the formula VI, a particular meaning for R 8 is when r ⁇ O and R 11 is hydrogen, methyl or methylthio, R 12 is hydrogen, methyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cyano, carboxy, carboxymethyl, 2-carboxyethyl or methanesulphonylamino, or when R 11 and R 12 are joined to form, together with the carbon to which they are attached, a cyclopropane, cyclobutane, cyclopentane, cyclohexane or cycloheptane ring and R 13 is hydroxy, amino, methoxy, ethoxy, methylamino, ethylamino, or of the formula NHOR 14 in which R 14 is hydrogen, methyl or ethyl.
  • R 8 is C 1-6 alkyl for example methyl or ethyl, 1-carboxycyclobutyl, 1-carboxycyclopentyl, or 2-carboxyprop-2-yl.
  • R 8 is 2-carboxyprop-2-yl.
  • R 15 are hydrogen, methyl, ethyl or chlorine.
  • a particularly preferred class of cephalosporins of the present invention is that wherein R 5 is 2-aminothiazol-4-yl, R 7 is a group ⁇ NOR 8 wherein R 8 is C 1-6 alkyl, 1-carboxycyclobutyl, 1-carboxycyclopentyl or 2-carboxyprop-2-yl, R 6 is hydrogen, X is sulphur and the 3-position substituent is of the sub-formula (xiii)-(xvi).
  • Particular compounds of the present invention include:
  • cephalosporin derivatives referred to herein are generally named in accordance with the ⁇ cephem ⁇ nomenclature and numbering system proposed in J.A.C.S. 1962, 84,3400.
  • the present invention covers all tautomeric forms, for example the sub-formulae (i)-(ix) are depicted in the keto form; where possible these may exist and be depicted in the enol form. Such tautomers are, of course, within the scope of the present invention.
  • the Het ring may be optionally substituted by hydroxy and this may exist in the tautomeric keto form.
  • the present invention provides a cephalosporin compound having a 3-position substituent of the formula I or a pharmaceutically acceptable salt or ester thereof.
  • Suitable salts include acid addition salts formed with hydrochloric, hydrobromic, citric, maleic, phosphoric and sulphuric acids.
  • suitable salts are base salts such as an alkali metal salt for example sodium or potassium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, or N,N-dibenzylethylamine.
  • base salts such as an alkali metal salt for example sodium or potassium, an alkaline earth metal salt for example calcium or magnesium, an organic amine salt for example triethylamine, morpholine, N-methylpiperidine, N-ethylpiperidine, procaine, dibenzylamine, or N,N-dibenzylethylamine.
  • a compound of the present invention or a pharmaceutically acceptable salt or ester thereof for the therapy of mammals including humans, in particular in treating infection, it is normally formulated in accordance with standard pharmaceutical practice as a pharmaceutical composition.
  • the present invention provides a pharmaceutical composition which comprises a cephalosporin compound having a 3-position substituent of the formula I or a pharmaceutically acceptable salt or ester thereof and a pharmaceutically acceptable carrier.
  • compositions of this invention may be administered in standard manner for the disease condition that it is desired to treat, for example by oral, rectal, topical, local or parenteral administration.
  • it may be formulated by means known to the art into the form of, for example, tablets, capsules, syrups, aqueous or oily solutions or suspensions, emulsions, dispersible powders, suppositories and sterile injectable aqueous or oily solutions or suspensions.
  • the pharmaceutical composition of the invention may also contain, or be co-administered with, one or more known drugs selected from other clinically useful antibacterial agents (for example other beta-lactams or aminoglycosides), inhibitors of beta-lactamase (for example clavulanic acid), renal tubular blocking agents (e.g. probenicid) and inhibitors of metabolising enzymes (for example inhibitors of peptidases, for example Z-2-acylamino-3-substituted propenoates).
  • drugs selected from other clinically useful antibacterial agents (for example other beta-lactams or aminoglycosides), inhibitors of beta-lactamase (for example clavulanic acid), renal tubular blocking agents (e.g. probenicid) and inhibitors of metabolising enzymes (for example inhibitors of peptidases, for example Z-2-acylamino-3-substituted propenoates).
  • a preferred pharmaceutical composition of the invention is one suitable for intravenous, subcutaneous or intramuscular injection, for example a sterile injectable containing between 1 and 50% w/w of the cephalosporin derivative, or one suitable for oral administration in unit dosage form, for example a tablet or capsule which contains between 100 mg. and 1 g. of the cephalosporin derivative.
  • compositions of the invention will normally be administered to man in order to combat infections caused by bacteria, in the same general manner as that employed for cephalothin, cefoxitin, cephradine, ceftazidime and other known clinically used cephalosporin derivatives, due allowance being made in terms of dose levels for the potency of the cephalosporin derivative of the present invention relative to the known clinically used cephalosporins.
  • each patient will receive a daily intraveneous, subcutaneous or intramuscular dose of 0.05 to 30 g., and preferably 0.1 to 10 g., of the cephalosporin derivative, the composition being administered 1 to 4 times per day, preferably 1 or 2 times a day.
  • the intravenous, subcutaneous and intramuscular dose may be given by means of a bolus injection.
  • the intravenous dose may be given by continuous infusion over a period of time.
  • each patient will receive a daily oral dose which is approximately equivalent to the daily parenteral dose.
  • a preferred daily oral dose is 0.5 to 10 g. of the cephalosporin derivative, the composition being administered 1 to 4 times per day.
  • the present invention provides a process for preparing a cephalosporin compound having a 3-position substituent of the formula I, which process comprises:
  • L 1 is a leaving group and R 16 is a group R 8 other than hydrogen
  • L is a leaving group such as halo for example chloro, bromo or iodo.
  • the reaction is performed under conditions conventional for the reaction of acid halides with amines for example in the presence of an organic amine such as triethylamine.
  • the reaction is performed at an ambient or lower temperature in a substantially inert solvent such as dimethylformamide and/or dichloromethane.
  • the leaving group L is part of an activated ester formed with the acid precursor of the compound of the formula VII, i.e.
  • L is --OH
  • dicyclohexylcarbodi-imide provides an activated ester of the formula VII wherein L is --OC(NHC 6 H 11 ) ⁇ NC 6 H 11 , which group is displaced by the cephalosporin having a 3-position substituent of the formula: --CH 2 NHR 1 .
  • reaction promotors such as hydroxybenzotriazole and triethylamine, for example in a substantially inert organic solvent such as dimethylformamide at a non-extreme temperature such as 10° C.-50° C.
  • cephalosporin starting-materials for this reaction are known from the art, or are made by methods analogous to those of the art. See for example EP-A-127992 and EP-A-164944.
  • the compounds of the formula VII are either known in the art or are made by methods analogous thereto.
  • compounds wherein L is chloro are conveniently prepared from the corresponding acids of the formula (VII A): ##STR14## wherein Het, R 2 and R 3 are as hereinbefore defined.
  • the acids are known or are prepared by methods of heterocyclic chemistry known to those skilled in the art, for example as in the hereinafter described Examples.
  • Many of the acids of the formula VII A are novel and as such form another aspect of the present invention; in particular wherein R 2 and R 3 are both hydroxy.
  • Suitable and preferred acids of the formula VII A are those that give rise to the suitable and preferred cephalosporin compounds of the present invention.
  • the present invention provides specific, novel heterocyclic carboxylic acids (and precursors thereto) described in the experimental section hereinafter.
  • reaction between compounds of the formulae VIII and IX is performed under conditions conventional in the cephalosporin art, for example under standard acylation conditions wherein for example the acid is activated as an acid bromide, acid chloride, anhydride or activated ester, or the reaction is performed in the presence of a coupling reagent such as dicyclohexylcarbodi-imide.
  • a coupling reagent such as dicyclohexylcarbodi-imide.
  • the compounds of the formula VIII can be prepared in a manner analogous to that described for the compounds having the 3-substituent of the formula I, with the 7-amino group being optionally protected.
  • the reaction between the compound of the formula X and R 8 ONH 2 is performed under conditions standard in the general chemical and/or cephalosporin art.
  • the compounds of the formula X can be prepared in a manner analogous to that described for the compounds having the 3-substituent of the formula I.
  • a group R 5 may be formed by cyclizing an appropriate precursor.
  • compounds of the formulae XII and XIII: ##STR15## wherein R 7 , R 6 , X, R 1 , R 2 , R 3 and Het are as hereinbefore defined and L 2 is a leaving group, may be reacted to form a 2-aminothiazol-4-yl group.
  • a nitrogen atom of the thiourea may be optionally protected during this cyclization.
  • the compounds of the formula XII can be prepared in a manner analogous to that described for the compounds having a 3-substituent of the formula I.
  • any functional group can be optionally protected, if appropriate.
  • protecting groups may in general be chosen from any of the groups described in the literature or known to the skilled chemist as appropriate for the protection of the group in question, and may be introduced by conventional methods.
  • Protecting groups may be removed by any convenient methos as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
  • protecting groups are given below for the sake of convenience, in which "lower” signifies that the group to which it is applied preferably has 1-4 carbon atoms. It will be understood that these examples are not exhaustive. Where specific examples of methods for the removal of protecting groups are given below these are similarly not exhaustive. The use of protecting groups and methods of deprotection not specifically mentioned is of course within the scope of the invention.
  • a carboxyl protecting group may be the residue of an ester-forming aliphatic or araliphatic alcohol or of an ester-forming phenol, silanol or stannanol (the said alcohol, phenol, silanol or stannanol preferably containing 1-20 carbon atoms).
  • carboxyl protecting groups include straight or branched chain (1-12C)alkyl groups (e.g. isopropyl, tubutyl); halo lower alkyl groups (e.g. 2-iodoethyl, 2,2,2-trichloroethyl); lower alkoxy lower alkyl groups (e.g. methoxymethyl, ethoxymethyl, isobutoxymethyl); lower aliphatic acyloxy lower alkyl groups, (e.g. acetoxymethyl, propionyloxymethyl, butyryloxymethyl, pivaloyloxymethyl); lower alkoxycarbonyloxy lower alkyl groups (e.g.
  • aryl lower alkyl groups e.g. p-methoxybenzyl, o-nitrobenzyl, p-nitrobenzyl, benzhydryl and phthalidyl
  • tri(lower alkyl)silyl groups e.g. trimethylsilyl and t-butyldimethylsilyl
  • tri(lower alkyl)silyl lower alkyl groups e.g. trimethylsilylethyl
  • (2-6C)alkenyl groups e.g. allyl and vinylethyl
  • Methods particularly appropriate for the removal of carboxyl protecting groups include for example acid-, base-, metal- or enzymically-catalysed hydrolysis.
  • hydroxyl protecting groups include lower alkanoyl groups (e.g. acetyl); lower alkoxycarbonyl groups (e.g. t-butoxycarbonyl); halo lower alkoxycarbonyl groups (e.g. 2-iodoethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl); aryl lower alkoxycarbonyl groups (e.g. benzoyloxycarbonyl, p-methoxybenzyloxycarbonyl, o-nitrobenzyloxycarbonyl, p-nitrobenzyloxycarbonyl); tri lower alkylsilyl (e.g.
  • aryl lower alkyl e.g. benzyl
  • amino protecting groups include formyl, aralkyl groups (e.g. benzyl and substituted benzyl, e.g. p-methoxybenzyl, nitrobenzyl and 2,4-dimethoxybenzyl, and triphenylmethyl); di-p-anisylmethyl and furylmethyl groups; acyl (e.g. alkoxycarbonyl and aralkoxycarbonyl e.g. t-butoxycarbonyl and benzyloxycarbonyl); trialkylsilyl (e.g. trimethylsilyl and t-butyldimethylsilyl); alkylidene (e.g. methylidene); benzylidene and substituted benzylidene groups; and the phthalimido group.
  • acyl e.g. alkoxycarbonyl and aralkoxycarbonyl e.g. t-butoxycarbonyl and benzyloxycarbonyl
  • the pharmaceutically acceptable cephalosporin compounds of the present invention are useful antibacterial agents having a broad spectrum of activity in vitro against standard laboratory microorganisms, both Gram-negative and Gram-positive, which are used to screen for activity against pathogenic bacteria.
  • the antibacterial spectrum and potency of a particular compound may be determined in a standard test system.
  • the cephalosporins of the present invention show good stability to ⁇ -lactamases reinforcing the broad spectrum potency.
  • the present compounds typically have particularly high activity in vitro against strains of Pseudomonas aeruginosa and other Gram-negative aerobic bacteria.
  • the antibacterial properties of the compounds of the invention may also be demonstrated in vivo in conventional mouse protection tests.
  • representative compounds of this invention show prolonged duration, as evidenced by half-life values, in test animals.
  • the hydroxy groups on the heterocycle are protected.
  • the coupling reaction provides a cephalosporin wherein the hydroxy groups are protected. This may be subjected to standard deprotection (as indicated in footnotes).
  • the coupling reaction was performed with a carbonyl chloride wherein the hydroxy groups were protected as acetoxy to provide the corresponding cephalosporin. This was deprotected by dissolving in aqueous methanol, adjusting the pH to 8.5 with ammonium hydroxide, maintaining this value for 60 minutes and subsequently adjusting the pH to 6.5 to give the corresponding dihydroxy cephalosporin.
  • Trifluoroacetic acid was added to the reaction mixture prior to the evaporation of the solvent.
  • the heterocyclic compound was reacted in the form of an activated ester (corresponding carboxylic acid reacted with dicyclohexylcarbodi-imide and hydroxybenzotriazole in dimethylformamide).
  • the coupling reaction with the 3-aminomethylcephalosporin and triethylamine was performed at about 15°-50° C. for up to about 2-3 hours.
  • cephalosporin was 3-aminomethyl 7-[2-(aminothiazol-4-yl)-2-((Z)-1-t-butoxycarbonyl-1-methylethoxyimino)acetamide]ceph-3-em-4-carboxylic acid.
  • the t-butoxy carbonyl group was subsequently cleaved by stirring the protected product in 90% aqueous trifluoroacetic acid at 0° C. for 1 hour. Cleavage of the acetoxy groups was performed thereafter.
  • EP-A-127992 and EP-A-164944 for general descriptions of methods suitable for the preparation of cephalosporin starting materials.
  • the starting materials for the Examples of the present invention including: 3-aminomethyl-7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-carboxy-1-methylethoxyimino)acetamido]ceph-3-em-4-carboxylic acid; 3-aminomethyl-7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-ethoxyimino)acetamido]ceph-3-em-4-carboxylic acid; and 3-ethylaminomethyl-7-[2-(2-aminothiazol-4-yl)-2-((Z)-1-ethoxyimino)acetamido]ceph-3-em-4-carboxylic acid; are specifically described in EP-A-164944.
  • the carbonyl chlorides (for reacting with the 3-aminomethyl cephalosporins) are prepared in conventional manner from the corresponding acids.
  • Examples of conventional methods include dissolving the corresponding acid in anhydrous dichloromethane with thionyl chloride (at least one equivalent) and stirring for 1-3 hours at room temperature.
  • the heterocyclic acid is dissolved in dichloromethane in the presence of trimethylsilylchloride and triethylamine (e.g. Examples 4-14, 16, 17 and 59).
  • Example 15 the heterocycle (306 mg) was heated at reflux for 2.5 hours with hexamethyldisilazane (1.26 ml) and saccharin (20 mg) in chloroform (10 ml). The reaction mixture was evaporated under reduced pressure and then converted to the acid chloride as described above.
  • the activated esters for reacting with the 3-aminomethylcephalosporins are prepared in conventional manner from the corresponding acid.
  • conventional methods include dissolving the corresponding acid in dimethylformamide, adding triethylamine (1 equivalent), o-hydroxybenzotriazole and dicyclohexylcarbodi-imide; stirring for about 90 minutes and filtering (to remove urea).
  • heterocyclic carboxylic acids for preparing the carbonyl chlorides or activated esters
  • carbonyl chlorides or activated esters are known or are prepared as described below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Communicable Diseases (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cephalosporin Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Revetment (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)
  • Threshing Machine Elements (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)
  • Quinoline Compounds (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Pyrane Compounds (AREA)
US07/223,988 1987-07-23 1988-07-25 Cephalosporin compounds Expired - Fee Related US5019570A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US07/653,149 US5232918A (en) 1987-07-23 1991-02-11 Cephalosporin derivatives
US07/886,392 US5371220A (en) 1987-07-23 1992-05-21 Bicyclo-heterocyclic intermediates for cephalosporin compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP87401718 1987-07-23
EP87401718.9 1987-07-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US07/653,149 Division US5232918A (en) 1987-07-23 1991-02-11 Cephalosporin derivatives

Publications (1)

Publication Number Publication Date
US5019570A true US5019570A (en) 1991-05-28

Family

ID=8198237

Family Applications (1)

Application Number Title Priority Date Filing Date
US07/223,988 Expired - Fee Related US5019570A (en) 1987-07-23 1988-07-25 Cephalosporin compounds

Country Status (16)

Country Link
US (1) US5019570A (de)
EP (1) EP0304158B1 (de)
JP (1) JPH0193592A (de)
KR (1) KR890002186A (de)
CN (1) CN1031378A (de)
AT (1) ATE107651T1 (de)
AU (1) AU1976288A (de)
DE (1) DE3850321T2 (de)
DK (1) DK414888A (de)
FI (1) FI883439A (de)
GB (1) GB8816519D0 (de)
HU (1) HU201949B (de)
NO (1) NO883275L (de)
NZ (1) NZ225533A (de)
PT (1) PT88070B (de)
ZA (1) ZA885271B (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5126444A (en) * 1988-05-10 1992-06-30 Imperial Chemical Industries Plc Intermediates for cephalosporin compounds
US5149803A (en) * 1988-05-10 1992-09-22 Imperial Chemical Industries Plc Intermediates for cephalosporin compounds
US5232918A (en) * 1987-07-23 1993-08-03 Imperial Chemical Industries Plc Cephalosporin derivatives
US5234920A (en) * 1990-08-23 1993-08-10 Bristol-Myers Squibb Company Antibiotic C-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof
US6093732A (en) * 1997-12-22 2000-07-25 Pharmacia & Upjohn Company 4-hydroxyquinoline-3-carboxamides and hydrazides as antiviral agents
US6951870B2 (en) 2000-07-03 2005-10-04 Orion Corporation Coumarin derivatives with COMT inhibiting activity
WO2013052568A1 (en) * 2011-10-04 2013-04-11 Glaxo Group Limited Antibacterial compounds
US10174053B2 (en) 2012-10-29 2019-01-08 Glaxo Group Limited 2 substituted cephem compounds

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8811055D0 (en) * 1988-05-10 1988-06-15 Ici Plc Antibiotic compounds
EP0341990B1 (de) * 1988-05-10 1994-11-09 Imperial Chemical Industries Plc Cephalosporine, Verfahren zu ihrer Herstellung und pharmazeutische Präparate
US4904775A (en) * 1988-05-16 1990-02-27 E. R. Squibb & Sons, Inc. Heteroaroylhydrazide derivatives of monocyclic beta-lactam antibiotics
EP0366189A3 (de) * 1988-10-24 1992-01-02 Norwich Eaton Pharmaceuticals, Inc. Antimikrobielle Lactam-Quinolone
CA2001203C (en) * 1988-10-24 2001-02-13 Thomas P. Demuth, Jr. Novel antimicrobial dithiocarbamoyl quinolones
EP0366193A3 (de) * 1988-10-24 1992-01-08 Norwich Eaton Pharmaceuticals, Inc. Antimikrobielle Quinolonyllactame
US5273973A (en) * 1988-10-24 1993-12-28 Norwich Eaton Pharmaceuticals, Inc. Antimicrobial quinolonyl esters
US5180719A (en) * 1988-10-24 1993-01-19 Norwich Eaton Pharmaceuticals, Inc. Antimicrobial quinolonyl lactam esters
US5491139A (en) * 1988-10-24 1996-02-13 The Procter & Gamble Company Antimicrobial quinolonyl lactams
US5328908A (en) * 1988-10-24 1994-07-12 Procter & Gamble Pharmaceuticals, Inc. Antimicrobial quinolone thioureas
CA2024282A1 (en) * 1989-09-21 1991-03-22 Peter H. Ermann Heterocyclic hydrazide derivatives of monocyclic beta-lactam antibiotics
ES2147721T3 (es) * 1990-04-18 2000-10-01 Procter & Gamble Pharma Quinolonil lactamas antimicrobianas.
ZA918014B (en) * 1990-11-05 1992-07-29 Squibb & Sons Inc Heteroaroyl derivatives of monocyclic beta-lactam antibiotics
US5250691A (en) * 1991-09-09 1993-10-05 E. R. Squibb & Sons, Inc. Heteroaryl derivatives of monocyclic beta-lactam antibiotics
AU7706394A (en) * 1994-02-25 1995-09-11 Arrieta Munguia, Judith Marcia Quinolonylcarboxamidocephalosporin derivatives and pharmaceutical compositions containing them
ZA200609259B (en) 2004-04-30 2008-07-30 Takeda Pharmaceutical Heterocyclic amide compound and use thereof as an mmp-13 inhibitor
FR2874922A1 (fr) * 2004-07-30 2006-03-10 Palumed Sa Molecules hybrides qa ou q est une aminoquinoleine et a est un residu antibiotique, leur synthese et leurs utilisations en tant qu'agent antibacterien
BRPI0514381A (pt) * 2004-07-30 2008-06-10 Palumed Sa compostos hìbridos de aminoquinolina-antibiótico, composições farmacêuticas, método de preparação e uso destes
FR2873695A1 (fr) * 2004-07-30 2006-02-03 Palumed Sa Molecules hybrides qa ou q est une aminoquinoleine et a est un antibiotique ou un inhibiteur de resistance), leur synthese et leurs utilisations en tant qu'agent antibacterien
US8324405B2 (en) 2008-02-05 2012-12-04 Fibrogen, Inc. Chromene derivatives and use thereof as HIF hydroxylase activity inhibitors
US8927591B2 (en) 2008-11-14 2015-01-06 Fibrogen, Inc. Thiochromene derivatives as HIF hydroxylase inhibitors
BR112012029139A2 (pt) * 2010-05-21 2019-09-24 Syngenta Participations Ag amidas como fungicidas
UA117672C2 (uk) 2012-12-21 2018-09-10 ЯНССЕН САЙЄНСІЗ АЙРЛЕНД ЮСі Антибактеріальні сполуки

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089339A (en) * 1980-09-25 1982-06-23 Toyama Chemical Co Ltd Novel cephalosporins processes for producing the same intermediates thereof and process for producing the intermediates
GB2148282A (en) * 1983-09-20 1985-05-30 Toyama Chemical Co Ltd Process for producing cephalosporins
EP0182210A2 (de) * 1984-11-12 1986-05-28 Banyu Pharmaceutical Co., Ltd. Cephalosporinderivate
EP0186187A2 (de) * 1984-12-27 1986-07-02 Banyu Pharmaceutical Co., Ltd. Cephalosporinverbindungen
JPS6251688A (ja) * 1985-08-30 1987-03-06 Taito Pfizer Kk 新規なセフアロスポリン化合物
US4678781A (en) * 1983-06-03 1987-07-07 Ici Pharma 3-substituted-aminomethyl cephalosporin derivatives
JPS62209082A (ja) * 1986-03-11 1987-09-14 Banyu Pharmaceut Co Ltd セフアロスポリン誘導体
EP0238060A2 (de) * 1986-03-19 1987-09-23 Banyu Pharmaceutical Co., Ltd. Cephalosporinverbindungen, Verfahren zu ihrer Herstellung und antibakterielle Mittel
EP0241901A2 (de) * 1986-04-14 1987-10-21 Banyu Pharmaceutical Co., Ltd. Cephalosporinderivate, Verfahren zu ihrer Herstellung und antibakterielle Präparate
EP0265185A2 (de) * 1986-10-21 1988-04-27 Beecham Group Plc Cephalosporine, Verfahren zu ihrer Herstellung und sie enthaltende pharmazeutische Präparate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718689A (en) * 1980-07-08 1982-01-30 Eisai Co Ltd 7alpha-methoxycephem derivative
JPS57165389A (en) * 1981-04-02 1982-10-12 Eisai Co Ltd Novel penicillin and cephalosporin compound
US4552891A (en) * 1983-09-13 1985-11-12 Eli Lilly And Company Benzothiophene derivatives
FI851934L (fi) * 1984-05-30 1985-12-01 Ici Plc Kefalosporinderivat.
EP0187456A1 (de) * 1984-11-29 1986-07-16 Ici Pharma Cephalosporinverbindungen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2089339A (en) * 1980-09-25 1982-06-23 Toyama Chemical Co Ltd Novel cephalosporins processes for producing the same intermediates thereof and process for producing the intermediates
US4678781A (en) * 1983-06-03 1987-07-07 Ici Pharma 3-substituted-aminomethyl cephalosporin derivatives
GB2148282A (en) * 1983-09-20 1985-05-30 Toyama Chemical Co Ltd Process for producing cephalosporins
EP0182210A2 (de) * 1984-11-12 1986-05-28 Banyu Pharmaceutical Co., Ltd. Cephalosporinderivate
EP0186187A2 (de) * 1984-12-27 1986-07-02 Banyu Pharmaceutical Co., Ltd. Cephalosporinverbindungen
JPS6251688A (ja) * 1985-08-30 1987-03-06 Taito Pfizer Kk 新規なセフアロスポリン化合物
JPS62209082A (ja) * 1986-03-11 1987-09-14 Banyu Pharmaceut Co Ltd セフアロスポリン誘導体
EP0238060A2 (de) * 1986-03-19 1987-09-23 Banyu Pharmaceutical Co., Ltd. Cephalosporinverbindungen, Verfahren zu ihrer Herstellung und antibakterielle Mittel
EP0241901A2 (de) * 1986-04-14 1987-10-21 Banyu Pharmaceutical Co., Ltd. Cephalosporinderivate, Verfahren zu ihrer Herstellung und antibakterielle Präparate
EP0265185A2 (de) * 1986-10-21 1988-04-27 Beecham Group Plc Cephalosporine, Verfahren zu ihrer Herstellung und sie enthaltende pharmazeutische Präparate

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5232918A (en) * 1987-07-23 1993-08-03 Imperial Chemical Industries Plc Cephalosporin derivatives
US5371220A (en) * 1987-07-23 1994-12-06 Imperial Chemical Industries Plc Bicyclo-heterocyclic intermediates for cephalosporin compounds
US5126444A (en) * 1988-05-10 1992-06-30 Imperial Chemical Industries Plc Intermediates for cephalosporin compounds
US5149803A (en) * 1988-05-10 1992-09-22 Imperial Chemical Industries Plc Intermediates for cephalosporin compounds
US5234920A (en) * 1990-08-23 1993-08-10 Bristol-Myers Squibb Company Antibiotic C-7 catechol-substituted cephalosporin compounds, compositions, and method of use thereof
US6093732A (en) * 1997-12-22 2000-07-25 Pharmacia & Upjohn Company 4-hydroxyquinoline-3-carboxamides and hydrazides as antiviral agents
US6951870B2 (en) 2000-07-03 2005-10-04 Orion Corporation Coumarin derivatives with COMT inhibiting activity
WO2013052568A1 (en) * 2011-10-04 2013-04-11 Glaxo Group Limited Antibacterial compounds
US9340556B2 (en) 2011-10-04 2016-05-17 Glaxo Group Limited Antibacterial compounds
US10174053B2 (en) 2012-10-29 2019-01-08 Glaxo Group Limited 2 substituted cephem compounds

Also Published As

Publication number Publication date
FI883439A0 (fi) 1988-07-20
PT88070B (pt) 1995-03-01
JPH0193592A (ja) 1989-04-12
DE3850321T2 (de) 1994-10-06
HUT47942A (en) 1989-04-28
PT88070A (pt) 1989-06-30
FI883439A (fi) 1989-01-24
AU1976288A (en) 1989-01-27
NZ225533A (en) 1990-12-21
CN1031378A (zh) 1989-03-01
HU201949B (en) 1991-01-28
ATE107651T1 (de) 1994-07-15
EP0304158A1 (de) 1989-02-22
NO883275L (no) 1989-01-24
ZA885271B (en) 1989-03-29
EP0304158B1 (de) 1994-06-22
NO883275D0 (no) 1988-07-22
DE3850321D1 (de) 1994-07-28
KR890002186A (ko) 1989-04-08
DK414888D0 (da) 1988-07-22
DK414888A (da) 1989-01-24
GB8816519D0 (en) 1988-08-17

Similar Documents

Publication Publication Date Title
US5019570A (en) Cephalosporin compounds
US5200404A (en) 3-tetrazolylthiomethyl cephalosporin antibiotics
US5008259A (en) Cephalosporin compounds
US5371220A (en) Bicyclo-heterocyclic intermediates for cephalosporin compounds
US5017569A (en) Cephalosporin derivatives
US5013730A (en) Cephem derivatives
US5219848A (en) Cephem compounds
US5055462A (en) Cephalosporin compounds
US5057511A (en) 3-heterocyclic thiomethyl cephalosporins
US4508717A (en) Cephalosporin derivatives, their preparation and compositions containing them
US5064824A (en) Cephalosporin compounds
US5149803A (en) Intermediates for cephalosporin compounds
US5114933A (en) Cephalosporin compounds
US4814328A (en) Cephalosporin derivatives, and antibacterial agents
US5412093A (en) 3-heterocyclic thiomethyl cephalosporins
EP0269298B1 (de) Cephalosporine, Verfahren zu ihrer Herstellung und pharmazeutische Präparate
JPS62226986A (ja) 新規セフアロスポリン誘導体
US5008258A (en) Cephalosporin derivatives

Legal Events

Date Code Title Description
AS Assignment

Owner name: IMPERIAL CHEMICAL INDUSTRIES PLC, IMPERIAL CHEMICA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ARNOULD, JEAN C.;BOUCHEROT, DOMINIQUE;DAVIES, DAVID H.;AND OTHERS;REEL/FRAME:004944/0407;SIGNING DATES FROM 19880711 TO 19880713

Owner name: I.C.I.-PHARMA, IMMEUBLE LE GALIEN "1, RUE DES CHA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:ARNOULD, JEAN C.;BOUCHEROT, DOMINIQUE;DAVIES, DAVID H.;AND OTHERS;REEL/FRAME:004944/0407;SIGNING DATES FROM 19880711 TO 19880713

Owner name: IMPERIAL CHEMICAL INDUSTRIES PLC, A CORP. OF GREAT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNOULD, JEAN C.;BOUCHEROT, DOMINIQUE;DAVIES, DAVID H.;AND OTHERS;SIGNING DATES FROM 19880711 TO 19880713;REEL/FRAME:004944/0407

Owner name: I.C.I.-PHARMA, IMMEUBLE LE GALIEN "1, A CORP. OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARNOULD, JEAN C.;BOUCHEROT, DOMINIQUE;DAVIES, DAVID H.;AND OTHERS;SIGNING DATES FROM 19880711 TO 19880713;REEL/FRAME:004944/0407

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Lapsed due to failure to pay maintenance fee

Effective date: 19990528

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362