US4702988A - Process for producing toner for developing electrostatic images - Google Patents
Process for producing toner for developing electrostatic images Download PDFInfo
- Publication number
- US4702988A US4702988A US07/018,535 US1853587A US4702988A US 4702988 A US4702988 A US 4702988A US 1853587 A US1853587 A US 1853587A US 4702988 A US4702988 A US 4702988A
- Authority
- US
- United States
- Prior art keywords
- process according
- monomer composition
- monomer
- particles
- dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 78
- 230000008569 process Effects 0.000 title claims abstract description 52
- 239000000178 monomer Substances 0.000 claims abstract description 100
- 239000002245 particle Substances 0.000 claims abstract description 91
- 239000006185 dispersion Substances 0.000 claims abstract description 79
- 239000000203 mixture Substances 0.000 claims abstract description 69
- 239000007788 liquid Substances 0.000 claims abstract description 42
- 239000003381 stabilizer Substances 0.000 claims abstract description 32
- 239000002612 dispersion medium Substances 0.000 claims abstract description 15
- 238000010557 suspension polymerization reaction Methods 0.000 claims abstract description 15
- 239000003086 colorant Substances 0.000 claims abstract description 13
- 239000003505 polymerization initiator Substances 0.000 claims description 15
- 229920001971 elastomer Polymers 0.000 claims description 13
- 239000006249 magnetic particle Substances 0.000 claims description 11
- 229920006112 polar polymer Polymers 0.000 claims description 11
- 239000012736 aqueous medium Substances 0.000 claims description 9
- 239000006229 carbon black Substances 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 7
- 239000003431 cross linking reagent Substances 0.000 claims description 6
- 238000010008 shearing Methods 0.000 claims description 3
- 230000003179 granulation Effects 0.000 description 29
- 238000005469 granulation Methods 0.000 description 29
- 238000006116 polymerization reaction Methods 0.000 description 27
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 15
- 238000009826 distribution Methods 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 238000010298 pulverizing process Methods 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000001993 wax Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 9
- 239000002270 dispersing agent Substances 0.000 description 9
- -1 ethylene, propylene, butylene Chemical group 0.000 description 8
- 239000011362 coarse particle Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 230000005291 magnetic effect Effects 0.000 description 6
- 239000000377 silicon dioxide Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 125000000129 anionic group Chemical group 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 4
- 229910002012 Aerosil® Inorganic materials 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 229920006318 anionic polymer Polymers 0.000 description 4
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- 239000012188 paraffin wax Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000004094 surface-active agent Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 description 3
- 230000003116 impacting effect Effects 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- OCNVVYBTRKWBCO-JUZPTULESA-N petrosin Chemical compound C([C@@H]1CCCN2C[C@@H](C([C@H]([C@H]21)CCCCC1)=O)C)CCCC[C@@H]2C(=O)[C@@H](C)CN3CCC[C@@H]1[C@@H]32 OCNVVYBTRKWBCO-JUZPTULESA-N 0.000 description 3
- OCNVVYBTRKWBCO-UHFFFAOYSA-N petrosin-B Natural products C1CCCCC(C23)C(=O)C(C)CN2CCCC3CCCCCC2C(=O)C(C)CN3CCCC1C32 OCNVVYBTRKWBCO-UHFFFAOYSA-N 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 230000006641 stabilisation Effects 0.000 description 3
- 238000011105 stabilization Methods 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 2
- LEJBBGNFPAFPKQ-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethoxy)ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOC(=O)C=C LEJBBGNFPAFPKQ-UHFFFAOYSA-N 0.000 description 2
- WYGWHHGCAGTUCH-UHFFFAOYSA-N 2-[(2-cyano-4-methylpentan-2-yl)diazenyl]-2,4-dimethylpentanenitrile Chemical compound CC(C)CC(C)(C#N)N=NC(C)(C#N)CC(C)C WYGWHHGCAGTUCH-UHFFFAOYSA-N 0.000 description 2
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 description 2
- INQDDHNZXOAFFD-UHFFFAOYSA-N 2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOC(=O)C=C INQDDHNZXOAFFD-UHFFFAOYSA-N 0.000 description 2
- WDQMWEYDKDCEHT-UHFFFAOYSA-N 2-ethylhexyl 2-methylprop-2-enoate Chemical compound CCCCC(CC)COC(=O)C(C)=C WDQMWEYDKDCEHT-UHFFFAOYSA-N 0.000 description 2
- ZGHFDIIVVIFNPS-UHFFFAOYSA-N 3-Methyl-3-buten-2-one Chemical compound CC(=C)C(C)=O ZGHFDIIVVIFNPS-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 2
- 229920002125 Sokalan® Polymers 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical class C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 239000008119 colloidal silica Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000007822 coupling agent Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- FJKIXWOMBXYWOQ-UHFFFAOYSA-N ethenoxyethane Chemical compound CCOC=C FJKIXWOMBXYWOQ-UHFFFAOYSA-N 0.000 description 2
- 238000005227 gel permeation chromatography Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000004200 microcrystalline wax Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004584 polyacrylic acid Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 239000011669 selenium Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- WRXCBRHBHGNNQA-UHFFFAOYSA-N (2,4-dichlorobenzoyl) 2,4-dichlorobenzenecarboperoxoate Chemical compound ClC1=CC(Cl)=CC=C1C(=O)OOC(=O)C1=CC=C(Cl)C=C1Cl WRXCBRHBHGNNQA-UHFFFAOYSA-N 0.000 description 1
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- QLLUAUADIMPKIH-UHFFFAOYSA-N 1,2-bis(ethenyl)naphthalene Chemical compound C1=CC=CC2=C(C=C)C(C=C)=CC=C21 QLLUAUADIMPKIH-UHFFFAOYSA-N 0.000 description 1
- BJQFWAQRPATHTR-UHFFFAOYSA-N 1,2-dichloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1Cl BJQFWAQRPATHTR-UHFFFAOYSA-N 0.000 description 1
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 description 1
- QOVCUELHTLHMEN-UHFFFAOYSA-N 1-butyl-4-ethenylbenzene Chemical compound CCCCC1=CC=C(C=C)C=C1 QOVCUELHTLHMEN-UHFFFAOYSA-N 0.000 description 1
- KTZVZZJJVJQZHV-UHFFFAOYSA-N 1-chloro-4-ethenylbenzene Chemical compound ClC1=CC=C(C=C)C=C1 KTZVZZJJVJQZHV-UHFFFAOYSA-N 0.000 description 1
- DMADTXMQLFQQII-UHFFFAOYSA-N 1-decyl-4-ethenylbenzene Chemical compound CCCCCCCCCCC1=CC=C(C=C)C=C1 DMADTXMQLFQQII-UHFFFAOYSA-N 0.000 description 1
- WJNKJKGZKFOLOJ-UHFFFAOYSA-N 1-dodecyl-4-ethenylbenzene Chemical compound CCCCCCCCCCCCC1=CC=C(C=C)C=C1 WJNKJKGZKFOLOJ-UHFFFAOYSA-N 0.000 description 1
- OZCMOJQQLBXBKI-UHFFFAOYSA-N 1-ethenoxy-2-methylpropane Chemical compound CC(C)COC=C OZCMOJQQLBXBKI-UHFFFAOYSA-N 0.000 description 1
- OEVVKKAVYQFQNV-UHFFFAOYSA-N 1-ethenyl-2,4-dimethylbenzene Chemical compound CC1=CC=C(C=C)C(C)=C1 OEVVKKAVYQFQNV-UHFFFAOYSA-N 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical compound CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical compound CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- WHFHDVDXYKOSKI-UHFFFAOYSA-N 1-ethenyl-4-ethylbenzene Chemical compound CCC1=CC=C(C=C)C=C1 WHFHDVDXYKOSKI-UHFFFAOYSA-N 0.000 description 1
- LCNAQVGAHQVWIN-UHFFFAOYSA-N 1-ethenyl-4-hexylbenzene Chemical compound CCCCCCC1=CC=C(C=C)C=C1 LCNAQVGAHQVWIN-UHFFFAOYSA-N 0.000 description 1
- LUWBJDCKJAZYKZ-UHFFFAOYSA-N 1-ethenyl-4-nonylbenzene Chemical compound CCCCCCCCCC1=CC=C(C=C)C=C1 LUWBJDCKJAZYKZ-UHFFFAOYSA-N 0.000 description 1
- HLRQDIVVLOCZPH-UHFFFAOYSA-N 1-ethenyl-4-octylbenzene Chemical compound CCCCCCCCC1=CC=C(C=C)C=C1 HLRQDIVVLOCZPH-UHFFFAOYSA-N 0.000 description 1
- RCSKFKICHQAKEZ-UHFFFAOYSA-N 1-ethenylindole Chemical compound C1=CC=C2N(C=C)C=CC2=C1 RCSKFKICHQAKEZ-UHFFFAOYSA-N 0.000 description 1
- CTXUTPWZJZHRJC-UHFFFAOYSA-N 1-ethenylpyrrole Chemical compound C=CN1C=CC=C1 CTXUTPWZJZHRJC-UHFFFAOYSA-N 0.000 description 1
- QEDJMOONZLUIMC-UHFFFAOYSA-N 1-tert-butyl-4-ethenylbenzene Chemical compound CC(C)(C)C1=CC=C(C=C)C=C1 QEDJMOONZLUIMC-UHFFFAOYSA-N 0.000 description 1
- IGGDKDTUCAWDAN-UHFFFAOYSA-N 1-vinylnaphthalene Chemical class C1=CC=C2C(C=C)=CC=CC2=C1 IGGDKDTUCAWDAN-UHFFFAOYSA-N 0.000 description 1
- GZBSIABKXVPBFY-UHFFFAOYSA-N 2,2-bis(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)CO GZBSIABKXVPBFY-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- QHVBLSNVXDSMEB-UHFFFAOYSA-N 2-(diethylamino)ethyl prop-2-enoate Chemical compound CCN(CC)CCOC(=O)C=C QHVBLSNVXDSMEB-UHFFFAOYSA-N 0.000 description 1
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 1
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 1
- JFZBUNLOTDDXNY-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)propoxy]propyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)OCC(C)OC(=O)C(C)=C JFZBUNLOTDDXNY-UHFFFAOYSA-N 0.000 description 1
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 1
- WHBAYNMEIXUTJV-UHFFFAOYSA-N 2-chloroethyl prop-2-enoate Chemical compound ClCCOC(=O)C=C WHBAYNMEIXUTJV-UHFFFAOYSA-N 0.000 description 1
- WFUGQJXVXHBTEM-UHFFFAOYSA-N 2-hydroperoxy-2-(2-hydroperoxybutan-2-ylperoxy)butane Chemical compound CCC(C)(OO)OOC(C)(CC)OO WFUGQJXVXHBTEM-UHFFFAOYSA-N 0.000 description 1
- RUMACXVDVNRZJZ-UHFFFAOYSA-N 2-methylpropyl 2-methylprop-2-enoate Chemical compound CC(C)COC(=O)C(C)=C RUMACXVDVNRZJZ-UHFFFAOYSA-N 0.000 description 1
- CFVWNXQPGQOHRJ-UHFFFAOYSA-N 2-methylpropyl prop-2-enoate Chemical compound CC(C)COC(=O)C=C CFVWNXQPGQOHRJ-UHFFFAOYSA-N 0.000 description 1
- FRIBMENBGGCKPD-UHFFFAOYSA-N 3-(2,3-dimethoxyphenyl)prop-2-enal Chemical compound COC1=CC=CC(C=CC=O)=C1OC FRIBMENBGGCKPD-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical compound CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 description 1
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- 229910002016 Aerosil® 200 Inorganic materials 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 108700032487 GAP-43-3 Proteins 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 239000001828 Gelatine Substances 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- YIVJZNGAASQVEM-UHFFFAOYSA-N Lauroyl peroxide Chemical compound CCCCCCCCCCCC(=O)OOC(=O)CCCCCCCCCCC YIVJZNGAASQVEM-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000872198 Serjania polyphylla Species 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- DAKWPKUUDNSNPN-UHFFFAOYSA-N Trimethylolpropane triacrylate Chemical compound C=CC(=O)OCC(CC)(COC(=O)C=C)COC(=O)C=C DAKWPKUUDNSNPN-UHFFFAOYSA-N 0.000 description 1
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 229920002494 Zein Polymers 0.000 description 1
- JLPDZISYQBAZFZ-UHFFFAOYSA-N [1,3-dibromo-2,2-dimethyl-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound C(C(=C)C)(=O)OC(C(C)(C(OC(C(=C)C)=O)Br)C)Br JLPDZISYQBAZFZ-UHFFFAOYSA-N 0.000 description 1
- ULQMPOIOSDXIGC-UHFFFAOYSA-N [2,2-dimethyl-3-(2-methylprop-2-enoyloxy)propyl] 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCC(C)(C)COC(=O)C(C)=C ULQMPOIOSDXIGC-UHFFFAOYSA-N 0.000 description 1
- KYIKRXIYLAGAKQ-UHFFFAOYSA-N abcn Chemical compound C1CCCCC1(C#N)N=NC1(C#N)CCCCC1 KYIKRXIYLAGAKQ-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000000783 alginic acid Substances 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 229960001126 alginic acid Drugs 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 229910052925 anhydrite Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- 229940092738 beeswax Drugs 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- INLLPKCGLOXCIV-UHFFFAOYSA-N bromoethene Chemical compound BrC=C INLLPKCGLOXCIV-UHFFFAOYSA-N 0.000 description 1
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- ZCZLQYAECBEUBH-UHFFFAOYSA-L calcium;octadec-9-enoate Chemical compound [Ca+2].CCCCCCCCC=CCCCCCCCC([O-])=O.CCCCCCCCC=CCCCCCCCC([O-])=O ZCZLQYAECBEUBH-UHFFFAOYSA-L 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004203 carnauba wax Substances 0.000 description 1
- 235000013869 carnauba wax Nutrition 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- GVGUFUZHNYFZLC-UHFFFAOYSA-N dodecyl benzenesulfonate;sodium Chemical compound [Na].CCCCCCCCCCCCOS(=O)(=O)C1=CC=CC=C1 GVGUFUZHNYFZLC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 229960004887 ferric hydroxide Drugs 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 239000011361 granulated particle Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- PBZROIMXDZTJDF-UHFFFAOYSA-N hepta-1,6-dien-4-one Chemical compound C=CCC(=O)CC=C PBZROIMXDZTJDF-UHFFFAOYSA-N 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Substances CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- ZSDPJPHNMOTSQZ-UHFFFAOYSA-N hydroxy propan-2-yl carbonate Chemical compound CC(C)OC(=O)OO ZSDPJPHNMOTSQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- IEECXTSVVFWGSE-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Fe+3] IEECXTSVVFWGSE-UHFFFAOYSA-M 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000005395 methacrylic acid group Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 235000019808 microcrystalline wax Nutrition 0.000 description 1
- 150000005673 monoalkenes Chemical class 0.000 description 1
- 239000012170 montan wax Substances 0.000 description 1
- KKFHAJHLJHVUDM-UHFFFAOYSA-N n-vinylcarbazole Chemical compound C1=CC=C2N(C=C)C3=CC=CC=C3C2=C1 KKFHAJHLJHVUDM-UHFFFAOYSA-N 0.000 description 1
- 229920005615 natural polymer Polymers 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- HILCQVNWWOARMT-UHFFFAOYSA-N non-1-en-3-one Chemical compound CCCCCCC(=O)C=C HILCQVNWWOARMT-UHFFFAOYSA-N 0.000 description 1
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 1
- NZIDBRBFGPQCRY-UHFFFAOYSA-N octyl 2-methylprop-2-enoate Chemical compound CCCCCCCCOC(=O)C(C)=C NZIDBRBFGPQCRY-UHFFFAOYSA-N 0.000 description 1
- ANISOHQJBAQUQP-UHFFFAOYSA-N octyl prop-2-enoate Chemical compound CCCCCCCCOC(=O)C=C ANISOHQJBAQUQP-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- HDBWAWNLGGMZRQ-UHFFFAOYSA-N p-Vinylbiphenyl Chemical compound C1=CC(C=C)=CC=C1C1=CC=CC=C1 HDBWAWNLGGMZRQ-UHFFFAOYSA-N 0.000 description 1
- UCUUFSAXZMGPGH-UHFFFAOYSA-N penta-1,4-dien-3-one Chemical class C=CC(=O)C=C UCUUFSAXZMGPGH-UHFFFAOYSA-N 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- QIWKUEJZZCOPFV-UHFFFAOYSA-N phenyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OC1=CC=CC=C1 QIWKUEJZZCOPFV-UHFFFAOYSA-N 0.000 description 1
- WRAQQYDMVSCOTE-UHFFFAOYSA-N phenyl prop-2-enoate Chemical compound C=CC(=O)OC1=CC=CC=C1 WRAQQYDMVSCOTE-UHFFFAOYSA-N 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005651 polypropylene glycol dimethacrylate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229940114930 potassium stearate Drugs 0.000 description 1
- ANBFRLKBEIFNQU-UHFFFAOYSA-M potassium;octadecanoate Chemical compound [K+].CCCCCCCCCCCCCCCCCC([O-])=O ANBFRLKBEIFNQU-UHFFFAOYSA-M 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- NHARPDSAXCBDDR-UHFFFAOYSA-N propyl 2-methylprop-2-enoate Chemical compound CCCOC(=O)C(C)=C NHARPDSAXCBDDR-UHFFFAOYSA-N 0.000 description 1
- PNXMTCDJUBJHQJ-UHFFFAOYSA-N propyl prop-2-enoate Chemical compound CCCOC(=O)C=C PNXMTCDJUBJHQJ-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- BTURAGWYSMTVOW-UHFFFAOYSA-M sodium dodecanoate Chemical compound [Na+].CCCCCCCCCCCC([O-])=O BTURAGWYSMTVOW-UHFFFAOYSA-M 0.000 description 1
- 229940080264 sodium dodecylbenzenesulfonate Drugs 0.000 description 1
- UDWXLZLRRVQONG-UHFFFAOYSA-M sodium hexanoate Chemical compound [Na+].CCCCCC([O-])=O UDWXLZLRRVQONG-UHFFFAOYSA-M 0.000 description 1
- 229940082004 sodium laurate Drugs 0.000 description 1
- 229940067741 sodium octyl sulfate Drugs 0.000 description 1
- 229960000776 sodium tetradecyl sulfate Drugs 0.000 description 1
- FIWQZURFGYXCEO-UHFFFAOYSA-M sodium;decanoate Chemical compound [Na+].CCCCCCCCCC([O-])=O FIWQZURFGYXCEO-UHFFFAOYSA-M 0.000 description 1
- WFRKJMRGXGWHBM-UHFFFAOYSA-M sodium;octyl sulfate Chemical compound [Na+].CCCCCCCCOS([O-])(=O)=O WFRKJMRGXGWHBM-UHFFFAOYSA-M 0.000 description 1
- SMECTXYFLVLAJE-UHFFFAOYSA-M sodium;pentadecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCCOS([O-])(=O)=O SMECTXYFLVLAJE-UHFFFAOYSA-M 0.000 description 1
- UPUIQOIQVMNQAP-UHFFFAOYSA-M sodium;tetradecyl sulfate Chemical compound [Na+].CCCCCCCCCCCCCCOS([O-])(=O)=O UPUIQOIQVMNQAP-UHFFFAOYSA-M 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229920006027 ternary co-polymer Polymers 0.000 description 1
- SFKTYEXKZXBQRQ-UHFFFAOYSA-J thorium(4+);tetrahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[Th+4] SFKTYEXKZXBQRQ-UHFFFAOYSA-J 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 229940078499 tricalcium phosphate Drugs 0.000 description 1
- 229910000391 tricalcium phosphate Inorganic materials 0.000 description 1
- 235000019731 tricalcium phosphate Nutrition 0.000 description 1
- KOZCZZVUFDCZGG-UHFFFAOYSA-N vinyl benzoate Chemical compound C=COC(=O)C1=CC=CC=C1 KOZCZZVUFDCZGG-UHFFFAOYSA-N 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 229960000834 vinyl ether Drugs 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- FUSUHKVFWTUUBE-UHFFFAOYSA-N vinyl methyl ketone Natural products CC(=O)C=C FUSUHKVFWTUUBE-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
- 239000005019 zein Substances 0.000 description 1
- 229940093612 zein Drugs 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/087—Binders for toner particles
- G03G9/08702—Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/44—Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G9/00—Developers
- G03G9/08—Developers with toner particles
- G03G9/0802—Preparation methods
- G03G9/0804—Preparation methods whereby the components are brought together in a liquid dispersing medium
- G03G9/0806—Preparation methods whereby the components are brought together in a liquid dispersing medium whereby chemical synthesis of at least one of the toner components takes place
Definitions
- the present invention relates to a process for producing a toner for developing electrostatic or electrostatically charged images in image forming process such as electrophotography, electrostatography and electrostatic printing, and more particularly to a process for producing a toner for developing electrostatic images through suspension polymerization including a step of granulation or droplet formation for effectively forming particles (droplets) with a sharp particle size distribution.
- the methods of developing electrostatic images formed on recording media used heretofore in electrophotography, electrostatic recording and electrostatic printing may roughly include the liquid developing method using a developer comprising an insulating liquid and a various pigment or dye dispersed therein; and the dry developing method such as the cascade method, the fur brush method, the magnetic brush method, the impression method, and the powder cloud method respectively using fine particles called "toner” comprising a colorant such as carbon black dispersed in natural or synthetic polymers or waxes.
- the above mentioned liquid developing method involves problems that the treatment of the developer is troublesome and undesirable odor occurs during development and fixation, and even thereafter. For this reason, the above mentioned dry developing method is frequently used.
- the toner for developing electrostatic images is generally produced by mixing a binder such as a vinyl polymer such as polystyrene or polyacrylic acid ester, epoxy polymer, petroleum polymer or ester condensate; and a colorant such as dye, carbon black or magnetic material; and subjecting the mixture to melt kneading, cooling, pulverization and classification into an average particle size of 1-50 ⁇ . It is required for the toner thus formed to satisfy various properties such as storage stability, durability, moisture resistance, electrostatic characteristic, fluidity, fixability, and image characteristic.
- a binder such as a vinyl polymer such as polystyrene or polyacrylic acid ester, epoxy polymer, petroleum polymer or ester condensate
- a colorant such as dye, carbon black or magnetic material
- the production of a toner through suspension polymerization has been proposed.
- the production of a dry toner through suspension polymerization proposed heretofore involves the following problems.
- In the production of a toner by an ordinary suspension polymerization process it is very difficult to effectively control a particle size to a desired size in a granulation or particle (or more precisely droplet) formation step wherein a liquid monomer composition comprising a polymerizable monomer and a colorant.
- the resultant particles have a broad particle size distribution and contain very large size particles, so that the proportion of particles within a proper size range is low and the productivity is poor.
- a dispersion stabilizer is used in order to form particles of a monomer composition and stabilize the particles.
- a hardly water-soluble or substantially water-insoluble inorganic fine powder such as that of BaSO 4 , CaSO 4 , CaCO 3 and silica acid (silica); and a water-soluble polymer such as polyvinyl alcohol or gelatine or a water-soluble surfactant, may generally be used singly or in combination.
- a dispersion stabilizer has a strong affinity to water for its function.
- a dispersion stabilizer remains in a toner, the toner is caused to have a lowered development ability and a lowered transfer efficiency mainly because of decrease in chargeability.
- a deterioration of image quality due to decrease in copied image density, decrease in resolution, blurring and scattering.
- an object of the present invention is to provide a toner production process capable of efficiently producing a toner with an extremely narrow particle size distribution while easily controlling the average particle size, in production of a toner for developing electrostatic images through the suspension polymerization process.
- Another object of the invention is to provide a process for effectively producing a dry toner with a small particle size.
- Another object is to provide a process for producing a toner with a uniform and sharp particle size distribution by using a small amount of fine powdery dispersion stabilizer in toner production through suspension polymerization.
- Another object is to provide a process for producing a toner which has good powder characteristic and also has good developing, transferring, fixing and cleaning characteristics.
- Still another object is to provide a process for producing a toner at a low cost and a good productivity.
- a process for producing a toner for developing electrostatic latent images comprising:
- FIG. 1 is a sectional view illustrating a homogenizer which can be used in the granulation step according to the present invention
- FIGS. 2 to 4 are flow charts each showing steps involved in an embodiment of the process according to the present invention.
- FIG. 5 is a schematic view illustrating a developing apparatus used for evaluating the electrophotographic characteristics of polymerization toners obtained in Examples of the present invention and Comparative Examples.
- a piston-type high-pressure homogenizer manufactured by Gaulin Corp. may be raised.
- the high pressure homogenizer comprises a pressurizing mechanism for pressuring a process liquid, a valve mechanism for ejecting or jetting the pressurized process liquid, and an impacting mechanism for causing impringement of the ejected process liquid.
- the apparatus is applicable for forming particles or droplets with sizes on the order of microns in the presence of a solid powdery dispersant.
- a monomer composition comprising a polymerizable monomer such as styrene, a colorant such as carbon black and a polymerization initiator is preliminarily dispersed for pregranulation in a liquid dispersion medium in the presence of a solid fine powdery dispersion stabilizer such as silica fine powder by a dispersion means such as a high shearing-force stirring-type mixer.
- a dispersion means such as a high shearing-force stirring-type mixer.
- a liquid dispersion 1 containing the predispersed monomer composition is pressurized up to a prescribed pressure of 10 kg/cm 2 or above and is supplied to a high pressure section 2.
- a volumetric plunger pump is used as a pressurizing means as it is excellent in metering characteristic and capable of arbitrarily adjusting the pressure.
- the pressurized dispersion 1 is jetted through a gap 5 between a valve sheet 3 and a valve 4 constituting a valve mechanism against an impact ring 6, which is an impacting, impinging a striking member, because of a pressure difference between the high pressure section 2 and a low pressure section 7 and is caused to impinge on the impact ring 6.
- the coarse particles of the monomer composition are converted into fine particles.
- agglomerates, of a fine powdery dispersion stabilizer which do not effectively function are further disintegrated to approach individual fine particles, so that the dispersion stabilization ability is increased as a whole.
- the fine particles of the monomer composition are protected by the fine powdery dispersion stabilizer with an enhanced stabilization function.
- the dispersed particles are further subjected to one or more times of additional pressurization and granulation when a sharp particle size is not obtained through a single granulation step, the possibility of further communication is much smaller than in the conventional granulation method.
- toner particles continuously through a preliminary dispersion step, a pressurization step, a granulation step and a polymerization step, as shown in FIG. 2. It is preferred, in order to obtain a sharp particle size distribution, that after the completion of the first cycle of the pressurization and granulation steps, the dispersion is continuously or intermittently recycled to repeat the pressurization and granulation steps as shown in FIG. 3. It is also possible to repeat the pressurization and granulation steps n times in series wherein n is generally 1 to 9.
- the preliminary dispersion of a monomer composition into a liquid dispersion medium is effected by using a high shearing force mixer such as TK-homomixer.
- the preliminary dispersion may be conducted for 1 to 60 minutes.
- the monomer composition can contain a polymerization initiator already in this stage.
- a polymerization initiator can be added into a liquid medium containing monomer composition particles adjusted to a polymerization temperature, thereby to effect suspension polymerization.
- the liquid dispersion prepared in the preliminary dispersion step is pressurized to 10 kg/m 2 or above so as to be ejected into a low pressure section through a gap or nozzle to be dispersed into fine particles. Below 10 kg/cm 2 , the pressure difference between the high pressure and low pressure sections is small, so that the ejection speed of the dispersion becomes insufficient and an effective granulation or dispersion effect cannot be attained.
- the dispersion is pressurized to 100-700 kg/cm 2 , particularly about 300-650 kg/cm 2 so as to provide a pressure difference between the high pressure and low pressure sections of about 100 kg/cm 2 or above, particularly about 300-650 kg/cm 2 .
- the monomer composition in the dispersion jetted or ejected at a high speed may well be dispersed into a particle size of about 1-10 ⁇ under the adjusting action of the fine powdery dispersion stabilizer.
- the dispersion may be recycled to the pressuring step to be granulated again.
- the number of recycling (the number of passes) may preferably be 2-10.
- coarse particles are converted into fine particles, and particles with a prescribed size are protected by the fine powdery dispersion stabilizer with an enhanced dispersion stabilization ability, so that a possibility of further reduction in size is very low and the resultant particle size distribution becomes very sharp.
- the liquid temperature in the granulation step may be adjusted to such a temperature as to provide a viscosity of 1-1,000,000 cps, preferably 10-100,000 cps, of the monomer composition, so that the resultant monomer composition particles have a particle size of 1-10 ⁇ which provides a weight average particle size of 1-10 ⁇ of a toner for developing.
- the liquid dispersion medium water or an aqueous medium consisting predominantly of water is used, so that the temperature of the liquid dispersion may preferably be set to 20°-80° C., particularly 40°-70° C.
- the liquid dispersion medium may preferably be present in an amount of 100-5000 wt. parts, preferably 200-1000 wt. parts per 100 wt. parts of the monomer composition; and the fine powdery dispersion stabilizer may be used in an amount of 0.1-15 wt. %, preferably 1-10 wt. %, further preferably 3-8 wt. %, based on the liquid dispersion medium.
- monomer composition particles with a uniform size of about 1-10 ⁇ in terms of a weight-average particle size can be formed by using a fine powdery dispersion stabilizer in an amount on the order of about 1/2-1/10 according to the present invention. It is also possible to effect the granulation in a shorter period than before.
- the polymerizable monomer applicable to the present invention may be those having a reactive double bond such as CH 2 ⁇ C ⁇ .
- examples thereof include: styrene and its derivatives such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, p-methoxystyrene, p-phenylstyrene, p-chlorostyrene, 3,4-dichlorostyrene, p-ethylstyrene, 2,4-dimethylstyrene, p-n-butylstyrene, p-tert-butylstyrene, p-n-hexylstyrene, p-n-octylstyrene, p-n-nonylstyrene, p-n-decylstyrene, and p-n-dode
- a low-softening point compound having a releasing characteristic including waxes such as paraffin wax; and low-molecular weight polyolefins such as low-molecular weight polyethylene and low-molecular weight polypropylene in order to improve the fixability and anti-offset characteristic in the hot-roller fixation.
- the amount of addition thereof may be 1-300 wt. parts per 100 wt. parts of the polymerizable monomer.
- low softening point compound examples include paraffins, waxes, low-molecular weight polyolefins, modified waxes having aromatic group, natural waxes, long-chain carboxylic acids having a long hydrocarbon chain (CH 3 --CH 2 ) 11 or --CH 2 -- 12 or longer aliphatic chains) including 12 or more carbon atoms, and esters thereof.
- Different low-softening point compounds can be mixed.
- Examples of commercially available products include Paraffin Wax (Nihon Sekiyu K.K.), Paraffin Wax (Nihon Seiro K.K.), Microwax (Nihon Sekiyu K.K.), Microcrystalline Wax (Nihon Seiro K.K.), Hard Paraffin Wax (Nihon Seiro K.K.), PE-130 (Hoechst), Mitsui Hi-Wax 110P (Mitsui Sekiyu Kagaku K.K.), Mitsui Hi-Wax 220P (ditto), Mitsui Hi-Wax 660P (ditto), Mitsui Hi-Wax 320P (ditto), Mitsui Hi-Wax 410P (ditto), Mitsui Hi-Wax 420P (ditto), Hiletz T-100X (ditto), Hiletz T-200X (ditto), Hiletz T-300X (ditto), Petrosin 80 (dit
- polymerizable monomer composition it is also possible to incorporate a crosslinking agent as exemplified below in order to produce a crosslinked polymer.
- a crosslinking agent as exemplified below
- crosslinking agent may appropriately include: divinylbenzene, divinylnaphthalene, divinyl ether, divinyl sulfone, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, ethylene glycol dimethacrylate, polyethylene glycol dimethacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, 1,3-butylene glycol dimethacrylate, 1,6-hexane glycol dimethacrylate, neopentyl glycol dimethacrylate, dipropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, 2,2'-bis(4-methacryloxydiethoxyphenyl)propane, 2,2'-bis(4-acryloxydiethoxyphenyl)propane, trimethylolpropane trimethacrylate, trimethylolpropane triacrylate, tetramethylolmethane tetraacrylate, dibromone
- the amount of use of the crosslinking agent may suitably be 0.001-15 wt. %, preferably 0.1-10 wt. %, of the polymerizable monomer.
- the monomer composition contains a colorant.
- the colorant may comprise known dyes or pigments such as carbon black or grafted carbon black obtained by coating the surface of carbon black with a resin.
- the colorant may be contained in a proportion of 0.1-30 wt. % based on the amount of the polymerizable monomer.
- a charge controller or a fluidity improver as desired into the toner (internal addition).
- Such a charge controller or a fluidity improver can also be mixed with the toner particles (external addition).
- the charge controller may for example be a metal complex of an organic compound having a carboxyl group or a nitrogen-containing group, a metal-containing dye, or a nigrosine.
- the fluidity improver or a cleaning aid for the surface of a latent image-bearing member may for example be colloidal silica or an aliphatic acid metal salt. It is also possible to incorporate a filler such as calcium carbonate or fine powdery silica in an amount of 0.5-20 wt. % in the toner for the purpose of extension. Further, it is possible to add a fluidity improver such as polytetrafluoroethylene fine powder or zinc stearate powder in order to disintegrate the agglomerate of the toner particles and improve the fluidity.
- a filler such as calcium carbonate or fine powdery silica in an amount of 0.5-20 wt. % in the toner for the purpose of extension.
- a fluidity improver such as polytetrafluoroethylene fine powder or zinc stearate powder in order to disintegrate the agglomerate of the toner particles and improve the fluidity.
- the magnetic particles usable in the present invention may be a substance magnetizable when placed in a magnetic field, such as powder of a ferromagnetic metal such as iron, cobalt and nickel, or an alloy or compound thereof such as magnetite, hematite and ferrite.
- the magnetic particles may have a particle size of 0.05-5 ⁇ , preferably 0.1-1 ⁇ . In order to produce a small particle size toner, it is preferred to use magnetic particles of 0.8 ⁇ or smaller.
- the content of the magnetic particles may suitably be 5-70 wt. %, preferably 10-60 wt.
- the magnetic particles have been treated with a treating agent such as silane coupling agent or titanate coupling agent or with an appropriate reactive resin.
- a treating amount of 5 wt. % or less, preferably 0.1-3 wt. %, may provide a sufficient dispersibility in the polymerizable monomer while not exerting a bad influence on the toner properties. It is also possible to use a mixture of lipophilic magnetic particles and hydrophilic magnetic particles.
- the resultant polymerization toner is caused to have a low moisture resistance, and suffers from degradation in developing characteristic and anti-blocking property under high temperature-high humidity conditions.
- a substantially water-insoluble polymerization initiator in order to produce a polymerization toner with excellent environmental characteristics, it is preferred to use a substantially water-insoluble polymerization initiator.
- the substantially water-insoluble polymerization initiator preferably used in the present invention has a solubility of 1 g or less in 100 g of water, preferably 0.5 g or less in 100 g of water, particularly preferably 0.2 g or less in 100 g of water, respectively at room temperature.
- the solubility is more than 1 g in 100 g of water
- the decomposition product of the initiator remaining on the surfaces of the polymerization toner particles undesirably lowers the moisture resistance of the polymerization toner.
- the polymerization initiator used in the present invention is soluble in the polymerizable monomer and has a property of being well dissolved in the monomer in an ordinarily used range of amount (1-10 wt. parts per 100 wt. parts of the monomer).
- Examples of the polymerization initiator usable in the present invention may include: azo- or diazo-type polymerization initiators such as 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 1,1'-azobis(cyclohexane-1-carbonitrile), 2,2'-azobis-4-methoxy-2,4-dimethylvaleronitrile, etc.; and peroxide-type polymerization initiators such as benzoyl peroxide, methyl ethyl ketone peroxide, isopropyl peroxycarbonate, cumene hydroperoxide, 2,4-dichlorobenzoyl peroxide and lauroyl peroxide.
- azo- or diazo-type polymerization initiators such as 2,2'-azobis-(2,4-dimethylvaleronitrile), 2,2'-azobisisobutyronitrile, 1,1'-azobis(cyclohexane-1-
- the polymerization initiator has a melting point equal to or lower than the polymerization temperature (generally, 50° C. or above). It is also preferred to use two or more polymerization initiators in mixture in order to control the molecular weight and molecular weight of the resultant polymer or in order to control the reaction time.
- the amount of use of the polymerization initiator may be in the range of 0.1-20 wt. parts, preferably 1-10 wt. parts, per 100 wt. parts of the polymerizable monomer. Below 0.1 wt. part, it is difficult to distribute or provide the initiator evenly to individual monomer composition particles. Above 20 wt. parts is excessive to provide too low a molecular weight of the polymerization product and to increase the tendency that the polymerization occurs ununiformly.
- the suspension polymerization is generally carried out at a polymerization temperature of 50° C. or higher, and the upper limit temperature may be set in consideration of the decomposition speed of the polymerization initiator. Too high a polymerization temperature is not desirable because the polymerization is decomposed too rapidly.
- the temperature of the aqueous medium containing the particles is adjusted to a polymerization temperature (e.g. 55°-70° C.), thereby to cause suspension polymerization.
- a polymerization temperature e.g. 55°-70° C.
- a polar polymer (inclusive of copolymer) or cyclized rubber is added to a polymerizable monomer to be polymerized, a preferable polymerization toner having a pseudo-capsule structure can be obtained.
- the polar polymer or cyclic rubber may preferably be added in an amount of 0.5-50 wt. parts, preferably 1-40 wt. parts, per 100 wt. parts of the polymerizable monomer. Below 0.5 wt. part, it is difficult to obtain a desired pseudo-capsule structure. Above 50 wt. parts, there arises an increased tendency that the characteristics of the polymerization toner are lowered because the amount of the polymerizable monomer becomes insufficient.
- a polymerizable monomer composition containing the polar polymer or cyclized rubber thus added is suspended in an aqueous medium containing a dispersant dispersed therein having a chargeability to a polarity opposite to that of the polar polymer to be polymerized.
- the cationic polymer (inclusive of copolymer), anionic polymer (inclusive of copolymer) or anionic cyclized rubber thus contained in the polymerizable monomer composition exerts an electrostatic force at the surface of toner-forming particles with the oppositely chargeable anionic or cationic dispersant dispersed in the aqueous medium, so that the dispersant covers the surface of the particles to prevent coalescence of the particles with each other and to stabilize the dispersion.
- a sort of shell is formed to provide the particles with a pseudo-capsule structure.
- Examples of the polar polymer (inclusive of copolymer and cyclized rubber) and the fine powdery dispersant or dispersion stabilizer having a chargeability usable in the present invention may be raised hereinbelow.
- the polar polymer having a weight-average molecular weight of 5,000-500,000 as measured by GPC (gel permeation chromatography) is preferred because of good solubility in the polymerizable monomer and characteristic of providing a durable toner.
- Cationic polymers polymers of nitrogen-containing monomers such as dimethylaminoethyl methacrylate and diethylaminoethyl acrylate; copolymers of styrene and such a nitrogen-containing monomer; and a ternary copolymer of styrene; an unsaturated carboxylic acid ester and such a nitrogen-containing monomer.
- Anionic polymers polymers or copolymers of anionic monomers inclusive of nitrile monomers such as acrylonitrile, halogen-containing monomers such as vinyl chloride, unsaturated carboxylic acid such as acrylic acid, unsaturated dibasic acids, and unsaturated dibasic acid anhydrides; and copolymers of styrene and such as anionic monomer. Cyclized rubber may also be used as an anionic polymer.
- the fine powdery dispersion stabilizer may preferably be hardly water-soluble or substantially water-insoluble inorganic fine powder capable of stabilizing the dispersion of the monomer composition particles in an aqueous medium.
- the amount of addition of the dispersant may preferably be 0.1-50 wt. %, particularly 1-20 wt. %, based on the water.
- Anionic dispersant colloidal silica such as Aerosil #200, #300 (Nihon Aerosil K.K.), Nipsil E-220A (Nihon Silica); and Finesil T-32 (Tokuyama Soda K.K.)
- Cationic dispersant aluminum oxide, magnesium hydroxide and hydrophilic positively chargeable silica fine powder such as aminoalkyl-modified colloidal silica obtained through treatment with a coupling agent.
- a fine powdery dispersion stabilizer is used, but it is not necessary required to use a polar polymer or a fine powdery dispersant having chargeability opposite thereto in a liquid medium.
- dispersion stabilizer examples include polyvinyl alcohol, gelatin, methyl cellulose, methyl hydropropyl cellulose, ethyl cellulose, sodium carboxymethyl cellulose, polyacrylic acid and salts thereof, starch, gum alginic acid salts, zein, casein, tricalcium phosphate, talc, barium sulfate, bentonite, aluminum hydroxide, ferric hydroxide, titanium hydroxide and thorium hydroxide.
- a dispersion stabilizer include polyvinyl alcohol, gelatin, methyl cellulose, methyl hydropropyl cellulose, ethyl cellulose, sodium carboxymethyl cellulose, polyacrylic acid and salts thereof, starch, gum alginic acid salts, zein, casein, tricalcium phosphate, talc, barium sulfate, bentonite, aluminum hydroxide, ferric hydroxide, titanium hydroxide and thorium hydroxide.
- One or more of these compounds may
- the inorganic dispersion stabilizer In order to effect uniform dispersion of the inorganic dispersion stabilizer, it is possible to add a surfactant within an extent of not adversely affecting the process of the present invention.
- the surfactant is used to promote the above mentioned dispersion stabilizer to show the prescribed function.
- Such a surfactant include: sodium dodecylbenzenesulfonate, sodium tetradecylsulfate, sodium pentadecylsulfate, sodium octylsulfate, sodium allyl-alkyl-polyethersulfonate, sodium oleate, sodium laurate, sodium caprate, sodium caproate, potassium stearate, calcium oleate, sodium 3,3-disulfonediphenylurea-4,4-diazo-bis-amino-8-naphthol-6-sulfonate, ortho-carboxybenzene-azo-dimethylaniline, sodium 2,2,5,5-tetramethyl-triphenylmethane-4,4- diazo-bis- ⁇ -naphthol-disulfonate, and others.
- a Broensted acid such as hydrochloric acid
- a Broensted acid such as hydrochloric acid
- the addition of a Broensted acid such as hydrochloric acid in the aqueous medium is effective in enhancing the effect of an anionic polymer (including copolymer) or cyclized rubber.
- the polymerization toner according to the present invention is applicable to the known dry system methods for developing electrostatic images including the two-component developing methods such as the cascade method, the magnetic brush method, the microtoning method and the two-component AC bias developing method; the one-component developing methods using a magnetic toner such as the electroconductive one-component developing method, the insulating one-component developing method and the jumping developing method; the powder cloud method and the fur brush method; the nonmagnetic one-component developing method wherein the toner is carried on a toner-carrying member to be conveyed to a developing position and subjected to development thereat; and the electric field curtain method wherein the developer is conveyed by an electric field curtain to a developing position and subjected to development thereat.
- the polymerization toner of the present invention is especially suitably applicable to the developing method, wherein a small particle size toner having a weight-average molecular weight of about 2-8 ⁇ with a sharp particle size as a requisite is used.
- the above ingredients were mixed at 30° C. by means of an attritor to prepare a monomer composition.
- the viscosity of the monomer composition at 60° C. was 300 cps.
- the thus obtained monomer composition was charged in a 2 l-stainless steel vessel which already contained 5 g of amino-modified silica (obtained by treating 100 wt. parts of Aerosil 200 with 5 wt. parts of aminopropyltriethoxysilane), 600 g of distilled water and 20 g of 0.1N-hydrochloric acid, and the mixture was stirred at 60° C. for 10 minutes by means of a TK-homomixer (mfd.
- the dispersion was subjected to cooling, dehydration, washing with water, dehydration and drying to obtain a polymerization toner.
- the resultant toner showed a volume-average particle size of 4.9 ⁇ , and contained 5% by volume of fine particles with sizes below 2.52 ⁇ and 3% by volume of coarse particles with sizes over 8.0 ⁇ according the particle size measurement by means of a Coulter counter with an aperture of 100 ⁇ , thus showing a very narrow distribution.
- An image-bearing member 8 has a selenium photosensitive member 19, which was rotated at a peripheral speed of 100 mm/sec, the maximum potential of an electrostatic image formed on the image bearing member was +750 V.
- Opposite the image-bearing member 8 was disposed a sleeve 9 having an outer diameter of 20 mm and rotated at a peripheral speed of 100 mm/sec.
- a magnetic flux of 1000 Gauss was exerted to the surface of the sleeve (developer-carrying member) 9 with a magnet roller 10 having poles of N 1 , N 2 , S 1 and S 2 .
- a layer of the developer in a thickness of 200 ⁇ m was formed.
- the sleeve 9 and the image bearing member 8 were disposed at gap of 300 ⁇ m.
- the bias voltage applied to the sleeve comprised a DC component of +200 V, and an AC component of 3.0 KHz and 1400 Vpp.
- the electrostatic image was satisfactorily developed.
- the developed toner image was electrostatically transferred to plain paper, and fixed by passing through a hot roller fixing apparatus composed of a fixing roller surfaced with a silicone rubber layer and a pressure roller (nip width: 9 mm, paper moving speed of 300 mm/sec) under a pressure of 7 kg/cm 2 and at a fixing temperature of 150° C.
- the resultant fixed image was free of fog and showed an image density (Dmax) of 1.44.
- a toner T mixed with an external additive was quantitatively supplied to a lower chamber by means of an elastic member 14 and a supply roller 15, and mixed with a carrier to form a developer 11.
- a DC bias was supplied from a DC bias supply 12, and an AC bias was supplied from an AC bias supply.
- a developer regulating member 17 also functioned as an outer wall of the developing apparatus.
- a polymerization toner was prepared in the same manner as in Example 1 except that the stirring by means of the TK homomixer was carried out for 60 minutes, and the injection pressure of the piston-type high-pressure homogenizer was changed to 400 kg/cm 2 .
- the resultant toner showed a volume-average particle size of 2.1 ⁇ , and contained 3% by volume of fine particles with sizes below 1.26 ⁇ and 3% by volume of coarse particles with sizes over 5.04 ⁇ according the particle size measurement by means of a Coulter counter with an aperture of 50 ⁇ , thus showing a very narrow distribution.
- a polymerization toner was prepared in the same manner as in Example 1 except that the amount of the amino-modified silica was charged to 1 g and the ejection pressure of the piston-type homogenizer was changed to 200 kg/cm 2 .
- the resultant toner showed a volume-average particle size of 9.3 ⁇ , and contained 5% by volume of fine particles with sizes of below 5.04 ⁇ and 5% by volume of coarse particles with sizes of over 16 ⁇ .
- a polymerization toner was prepared in the same manner as in Example 1 except that the amount of the amino-modified silica was charged to 10 g and the granulation through dispersion was conducted by using only the TK-homomixer for 60 minutes without using the high-pressure homogenizer.
- the resultant toner showed a volume-average particle size of 11.0 ⁇ , and contained 15% by volume of fine particles with sizes of below 6.35 ⁇ and 15% by volume of coarse particles with sizes of over 16 ⁇ , thus showing a broader particle size distribution.
- a developer was prepared and evaluated with respect to the electrophotographic characteristics in the same manner as in Example 1 except that the above toner was used.
- the resultant image was accompanied with more fog than in Example 1 and showed a somewhat lower image density of 1.30.
- a polymerization toner was prepared in the same manner as in Example 1 except that the amount of the amino-modified silica was charged to 25 g and the granulation through dispersion was conducted by using only the TK-homomixer for 60 minutes without using the high-pressure homogenizer.
- the resultant toner showed a volume-average particle size of 5.1 ⁇ , and contained 20% by volume of fine particles with sizes of below 2.52 ⁇ and 15% by volume of coarse particles with sizes of over 8 ⁇ , thus showing a broader particle size distribution.
- Example 1 was repeated except that the ejection pressure of the high-pressure homogenizer was charged to 8 kg/cm 2 , whereby the granulation efficiency was extremely low.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Developing Agents For Electrophotography (AREA)
- Polymerisation Methods In General (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61045917A JPH0719076B2 (ja) | 1986-03-03 | 1986-03-03 | 静電荷像現像用重合トナ−の製造方法 |
JP61-45917 | 1986-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4702988A true US4702988A (en) | 1987-10-27 |
Family
ID=12732596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/018,535 Expired - Lifetime US4702988A (en) | 1986-03-03 | 1987-02-25 | Process for producing toner for developing electrostatic images |
Country Status (4)
Country | Link |
---|---|
US (1) | US4702988A (enrdf_load_stackoverflow) |
JP (1) | JPH0719076B2 (enrdf_load_stackoverflow) |
DE (1) | DE3706706A1 (enrdf_load_stackoverflow) |
FR (1) | FR2595097B1 (enrdf_load_stackoverflow) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816366A (en) * | 1987-02-13 | 1989-03-28 | Canon Kabushiki Kaisha | Process for producing toner through suspension polymerization |
US4937167A (en) * | 1989-02-21 | 1990-06-26 | Xerox Corporation | Process for controlling the electrical characteristics of toners |
US4972200A (en) * | 1988-03-24 | 1990-11-20 | Canon Kabushiki Kaisha | Image forming method and apparatus utilizing a voltage to change the adhesiveness of the ink to perform an ink cleaning step |
US5043404A (en) * | 1989-04-21 | 1991-08-27 | Xerox Corporation | Semisuspension polymerization processes |
US5089295A (en) * | 1990-11-05 | 1992-02-18 | Xerox Corporation | Suspension polymerization processes and toner compositions thereof |
US5164282A (en) * | 1989-04-17 | 1992-11-17 | Xerox Corporation | Processes for the preparation of toners |
US5278018A (en) * | 1991-05-22 | 1994-01-11 | Xerox Corporation | Magnetic toner compositions containing charge enhancing additive particles |
US5474870A (en) * | 1993-05-24 | 1995-12-12 | Hodogaya Chemical Co., Ltd. | Toner for developing electrostatic image and process for the preparation thereof |
US5665506A (en) * | 1995-01-31 | 1997-09-09 | Hodogaya Chemical Co., Ltd. | Toner for the development of electrostatic image and process for the preparation thereof |
US5804349A (en) * | 1996-10-02 | 1998-09-08 | Xerox Corporation | Acrylonitrile-modified toner compositions and processes |
US6093770A (en) * | 1998-02-02 | 2000-07-25 | Xerox Corporation | Polymers and processes thereof |
US6406747B1 (en) | 2000-11-28 | 2002-06-18 | Xerox Corporation | Methods of encapsulating cores using ink jets or fogs |
US20080225210A1 (en) * | 2007-03-08 | 2008-09-18 | Fujifilm Corporation | Optical Compensation Film, Polarizing Plate, and Liquid Crystal Display Device |
US20080311501A1 (en) * | 2007-06-18 | 2008-12-18 | Sharp Kabushiki Kaisha | Toner particles, method of manufacturing the same, two-component developer, developing device, and image forming apparatus |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4996127A (en) * | 1987-01-29 | 1991-02-26 | Nippon Carbide Kogyo Kabushiki Kaisha | Toner for developing an electrostatically charged image |
JP2736976B2 (ja) * | 1988-07-21 | 1998-04-08 | キヤノン株式会社 | 静電荷像現像用重合トナーの製造方法 |
JP2736975B2 (ja) * | 1988-07-21 | 1998-04-08 | キヤノン株式会社 | 静電荷像現像用重合トナーの製造方法 |
SE9101674L (sv) * | 1991-05-31 | 1992-12-01 | Berol Nobel Ab | Dispersion |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4259465A (en) * | 1978-05-01 | 1981-03-31 | Gaf Corporation | Bimodal coextendant suspension polymerization system |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7706989A (nl) * | 1976-08-02 | 1978-02-06 | Xerox Corp | Werkwijze ter vorming van toners door polymerisa- tie. |
JPS5918697B2 (ja) * | 1980-08-27 | 1984-04-28 | コニカ株式会社 | 静電荷像現像用トナ− |
GB2091435A (en) * | 1980-12-18 | 1982-07-28 | Konishiroku Photo Ind | Toner for developing electrostatic latent images |
US4430251A (en) * | 1981-09-29 | 1984-02-07 | Hoffert Manufacturing Co., Inc. | High energy emulsifier |
US4592990A (en) * | 1982-12-29 | 1986-06-03 | Canon Kabushiki Kaisha | Process for producing toner |
-
1986
- 1986-03-03 JP JP61045917A patent/JPH0719076B2/ja not_active Expired - Fee Related
-
1987
- 1987-02-25 US US07/018,535 patent/US4702988A/en not_active Expired - Lifetime
- 1987-03-02 DE DE19873706706 patent/DE3706706A1/de active Granted
- 1987-03-02 FR FR878702779A patent/FR2595097B1/fr not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4259465A (en) * | 1978-05-01 | 1981-03-31 | Gaf Corporation | Bimodal coextendant suspension polymerization system |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4816366A (en) * | 1987-02-13 | 1989-03-28 | Canon Kabushiki Kaisha | Process for producing toner through suspension polymerization |
US4972200A (en) * | 1988-03-24 | 1990-11-20 | Canon Kabushiki Kaisha | Image forming method and apparatus utilizing a voltage to change the adhesiveness of the ink to perform an ink cleaning step |
US4937167A (en) * | 1989-02-21 | 1990-06-26 | Xerox Corporation | Process for controlling the electrical characteristics of toners |
US5164282A (en) * | 1989-04-17 | 1992-11-17 | Xerox Corporation | Processes for the preparation of toners |
US5043404A (en) * | 1989-04-21 | 1991-08-27 | Xerox Corporation | Semisuspension polymerization processes |
US5089295A (en) * | 1990-11-05 | 1992-02-18 | Xerox Corporation | Suspension polymerization processes and toner compositions thereof |
US5278018A (en) * | 1991-05-22 | 1994-01-11 | Xerox Corporation | Magnetic toner compositions containing charge enhancing additive particles |
US5474870A (en) * | 1993-05-24 | 1995-12-12 | Hodogaya Chemical Co., Ltd. | Toner for developing electrostatic image and process for the preparation thereof |
US5665506A (en) * | 1995-01-31 | 1997-09-09 | Hodogaya Chemical Co., Ltd. | Toner for the development of electrostatic image and process for the preparation thereof |
US5804349A (en) * | 1996-10-02 | 1998-09-08 | Xerox Corporation | Acrylonitrile-modified toner compositions and processes |
US6093770A (en) * | 1998-02-02 | 2000-07-25 | Xerox Corporation | Polymers and processes thereof |
US6406747B1 (en) | 2000-11-28 | 2002-06-18 | Xerox Corporation | Methods of encapsulating cores using ink jets or fogs |
US20080225210A1 (en) * | 2007-03-08 | 2008-09-18 | Fujifilm Corporation | Optical Compensation Film, Polarizing Plate, and Liquid Crystal Display Device |
US20080311501A1 (en) * | 2007-06-18 | 2008-12-18 | Sharp Kabushiki Kaisha | Toner particles, method of manufacturing the same, two-component developer, developing device, and image forming apparatus |
Also Published As
Publication number | Publication date |
---|---|
FR2595097B1 (fr) | 1992-07-03 |
JPH0719076B2 (ja) | 1995-03-06 |
JPS62203167A (ja) | 1987-09-07 |
DE3706706A1 (de) | 1987-10-08 |
DE3706706C2 (enrdf_load_stackoverflow) | 1991-06-13 |
FR2595097A1 (fr) | 1987-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4816366A (en) | Process for producing toner through suspension polymerization | |
US4702988A (en) | Process for producing toner for developing electrostatic images | |
US4626489A (en) | Process for producing toner for development of electrostatic images by stepwise suspension polymerization | |
US4845007A (en) | Process for producing toner through suspension polymerization | |
US4804610A (en) | Process for producing toner by suspension polymerization method | |
US4912010A (en) | Process for producing toner | |
EP0834779B1 (en) | Process for producing toner for developing electrostatically charged images | |
US4789617A (en) | Production of toner through polymerization | |
US5952144A (en) | Production process of toner for development of electrostatic latent image | |
JP2736975B2 (ja) | 静電荷像現像用重合トナーの製造方法 | |
JPS63195659A (ja) | 静電荷像現像用トナ−の製造方法 | |
JP2505773B2 (ja) | 画像形成方法及び装置 | |
JPH0782248B2 (ja) | 重合トナーの製造方法 | |
JPS63198075A (ja) | 重合トナ−の製造方法 | |
JPS62266559A (ja) | トナ−の製造方法 | |
JPS63195661A (ja) | 静電荷像現像用トナ−の製造方法 | |
JPS63165869A (ja) | 静電荷像現像用トナ−の製造方法 | |
JPS63113561A (ja) | 重合トナ−の製造方法 | |
JPH0713762B2 (ja) | トナ−の製造方法 | |
JP2736976B2 (ja) | 静電荷像現像用重合トナーの製造方法 | |
JPH1020547A (ja) | 重合トナー | |
JPS63195660A (ja) | 静電荷像現像用トナ−の製造方法 | |
JPS62299862A (ja) | 静電荷像現像用トナ−の製造方法 | |
JPS63247760A (ja) | 重合トナ−の製造方法 | |
JPS63243962A (ja) | 静電荷像現像剤 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CANON KABUSHIKI KAISHA, 3-30-2 SHIMOMARUKO, OHTA-K Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNORS:FUKUMOTO, HIROSHI;OHNISHI, TOSHIKAZU;ARAHARA, KOHZOH;REEL/FRAME:004673/0422 Effective date: 19870218 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |