US4645546A - Semiconductor substrate - Google Patents
Semiconductor substrate Download PDFInfo
- Publication number
- US4645546A US4645546A US06/754,298 US75429885A US4645546A US 4645546 A US4645546 A US 4645546A US 75429885 A US75429885 A US 75429885A US 4645546 A US4645546 A US 4645546A
- Authority
- US
- United States
- Prior art keywords
- silicon
- semiconductor substrate
- layer
- oxygen concentration
- silicon layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/322—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
- H01L21/3221—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/06—Gettering
Definitions
- This invention relates to a semiconductor substrate adapted for the manufacture of a semiconductor integrated circuit such as the LSI and VLSI types, and, more particularly, to a silicon semiconductor substrate.
- the LSI type silicon substrate has been provided by a wafer cut out of a single crystal silicon ingot grown by the Czochralski (abbreviated as "CZ") method.
- CZ Czochralski
- the ordinary CZ method has the following drawback. Since a quartz crucible is applied, the quartz is melted into a molten mass of silicon. As a result, oxygen is carried into a single crystal silicon ingot to the extent of 1.0 ⁇ 10 18 cm -3 . Later, the semiconductor substrate cut out of said single crystal silicon ingot is subjected to heat treatment at a temperature of about 900° to 1000° C., applied in the LSI manufacturing process.
- an intrinsic gettering (IG) wafer (hereinafter referred to as the "IG wafer") has been proposed.
- This wafer is prepared by letting the oxygen content of the activated element region escape to the outside by applying high temperature heat treatment and by depositing crystallized substances (fine defects) capable of gettering harmful metals, in the interior of said wafer.
- the IG wafer can, indeed, withstand the occurrence of dislocation or stacking fault near its surface.
- the IG wafer cannot completely eliminate the defects of a thin oxidized membrane (gate oxidized membrane).
- the Czochralski method involving the concurrent application of a magnetic field, (abbreviated as "MCZ method") has been developed.
- This MCZ method can restrict the convection of a molten mass of silicon by the application of a magnetic field, thereby stabilizing the solid-liquid interface and controlling the oxygen concentration in the single crystal silicon ingot. Therefore, it is possible to ensure the growth of a single crystal silicon ingot containing less than 7 ⁇ 10 17 cm -3 .
- the above-mentioned MCZ method prevents SiO 2 from being crystallized out, thereby preventing the occurrence of dislocation and stacking fault.
- said MCZ wafer fails to obtain the intrinsic gettering effect which is generally ensured by the semiconductor substrate cut out of the single crystal silicon ingot grown by the ordinary CZ method.
- the MCZ method has a very weak resistance to contamination occurring during the manufacture of LSI; presenting difficulties in the formation of a highly stable element.
- heat treatment of 1000° C. is applied to a wafer cut out of a silicon ingot grown by the above-mentioned MCZ method, extremely fine defects (represented by black circles is FIG. 1) are produced in a region of low oxygen concentration (less than 6 ⁇ 10 17 cm -3 ), though oxidized crystallized masses and stacking faults, illustrated by blank squares in FIG. 1, do not appear.
- the causes of the appearance of the above-mentioned extremely fine dot-like defects are not yet clearly defined. At any rate, this phenomenon is peculiar to the low-oxygen silicon crystal provided by the MCZ method.
- This invention has been accomplished in view of the above-mentioned circumstances, and is intended to provide a semiconductor substrate which is saved from the occurrence of dislocation, stacking fault or warping resulting from heat treatment applied during the manufacture, a substrate capable of withstanding the unwanted production of extremely fine defects peculiar to a low-oxygen silicon crystal, and which further indicates a great resistance to various contaminations taking place during its manufacture.
- this invention provides a silicon semiconductor substrate which has an oxygen concentration ranging between 3 ⁇ 10 17 cm -3 and 7 ⁇ 10 17 cm -3 , and is provided with a gettering layer on the backside.
- oxygen concentration is defined to mean the value measured by the infrared ray method specified in ASTM (1984) according to the following formula:
- a gettering layer deposited on the backside of a semiconductor substrate embodying this invention may be prepared from a nonsingle crystal silicon layer, namely, a polycrystalline silicon layer, amorphous silicon layer or a layer of high density and stacking fault.
- FIG. 1 is a coordinate system showing the relationship between the oxygen concentration in a silicon wafer and the occurrence of extremely fine dot type defects appearing on the surface of a heated treated wafer as well as between said oxygen concentration and the stacking defect;
- FIG. 2 is a coordinate system indicating the relationship between the frequency of heat treating the silicon substrate and the extent to which a wafer is warped;
- FIG. 3 is a coordinate system illustrating the relationship between the oxygen concentration in the silicon substrate and the occurrence of extremely fine dot type defects appearing in a repeatedly heat-treated substrate;
- FIG. 4 diagrammatically indicates the distribution of the withstand voltage of an oxide layer deposited on the surface of a silicon substrate having an oxygen concentration of 5.6 ⁇ 10 17 cm -3 ;
- FIG. 5 diagrammatically shows the distribution of the withstand voltage of the oxidized surface of a silicon substrate provided with a polycrystalline silicon layer on the backside;
- FIG. 6 diagrammatically sets forth the relationship between the extent of the stacking fault appearing on the backside of a silicon substrate and the extent of extremely fine dot type detects produced in a repeatedly heat-treated silicon substrate.
- This invention provides a silicon semiconductor substrate manufactured by the MCZ method and capable of providing a stable solid-liquid interface containing oxygen ranging from 3 ⁇ 10 17 cm -3 to 7 ⁇ 10 17 cm -3 ; provided, on its rear surface, with a nonsingle crystal silicon layer or a stacking default used as a gettering source for adsorbing a harmful metal, and characterized by an ability to withstand the occurrence of dislocation and stacking default resulting from heat treatment; equally capable of preventing the generation of extremely fine dot-shaped defects peculiar to a low oxygen crystal as well as the warping arising from said heat treatment applied during the manufacture of said semiconductor substrate, and possessing the capacity to resist contamination occurring during said manufacture.
- the nonsingle crystal silicon layer acts to generate stacking fault capable of performing a gettering action on the backside of the substrate during its heat treatment.
- the nonsingle crystal silicon layer is defined to mean a polycrystalline silicon layer and amorphous silicon layer. However, the amorphous silicon layer is ultimately converted into a polycrystalline silicon layer in the subsequent heat treatment of the semiconductor substrate.
- the stacking fault (the so-called soft damage) provided on the backside of the semiconductor substrate performs the gettering action in the heat treatment of the semiconductor substrate. It is preferred that the density of the stacking fault appearing on the backside of the semiconductor substrate be higher than 3 ⁇ 10 4 cm -2 . If the density of said stacking fault falls below said level, the gettering action cannot be fully obtained. It is further preferred that the density of said stacking fault be higher than 1 ⁇ 10 5 cm -2 .
- the deposition of an amorphous silicon layer on the backside of the silicon semiconductor substrate may be carried out by any known process. It is generally sufficient if said amorphous silicon layer is deposited by the CVD process with a thickness of, for example, more than 1000 ⁇ . As far as the intended object of the present invention is concerned, no limitation is imposed on the upper limit of said specified thickness.
- the aforementioned stacking default may be provided on the backside of the silicon semiconductor substrate by any optical process selected from among lapping, grinding, needle scribing or bombardment with particles of, for example, SiO 2 or Al 2 O 3 .
- Curves a-e given in FIG. 2 represent the warpages of said substrate samples A-E.
- FIG. 2 shows that a substrate A, having a smaller oxygen concentration than 3 ⁇ 10 17 cm -3 (curve a), and a substrate E, having a larger oxygen concentration than 7 ⁇ 10 17 cm -3 (curve e), indicate a more noticeable warpage as the heat treatment was repeated with increasing frequency, and, in contrast, that the substrates B-D, having an oxygen concentration ranging between 3 ⁇ 10 17 cm -3 and 7 ⁇ 10 17 cm -3 (curves b-d), were reduced in warpage.
- FIG. 4 shows the withstand voltage property of the silicon substrate G.
- FIG. 5 represents the withstand voltage property of the silicon substrate C. As seen from FIGS. 4 and 5, the deposition of a polycrystalline silicon layer on the backside of a semiconductor substrate noticeably improved the distribution of the withstand voltage property of an oxide layer.
- a silicon wafer having an oxygen concentration of 5.6 ⁇ 10 17 cm -3 and crystal plane orientation (100) was cut out of a single crystal ingot grown by the MCZ process. Later, machining warpage was purposely produced by lapping on the backside of said wafer. Heat treatment was then applied. As a result, a silicon substrate was formed whose oxygen density ranged between 1 ⁇ 10 2 cm -2 -1 ⁇ 10 6 cm -2 and which was provided with a stacking fault.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59-145348 | 1984-07-13 | ||
JP59145348A JPS6124240A (ja) | 1984-07-13 | 1984-07-13 | 半導体基板 |
Publications (1)
Publication Number | Publication Date |
---|---|
US4645546A true US4645546A (en) | 1987-02-24 |
Family
ID=15383105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US06/754,298 Expired - Lifetime US4645546A (en) | 1984-07-13 | 1985-07-12 | Semiconductor substrate |
Country Status (2)
Country | Link |
---|---|
US (1) | US4645546A (enrdf_load_html_response) |
JP (1) | JPS6124240A (enrdf_load_html_response) |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5130260A (en) * | 1990-07-13 | 1992-07-14 | Mitsubishi Materials Corporation | Method of gettering unintentional mobile impurities in silicon wafer by using a damaged layer exposed to the reverse surface thereof |
US5332441A (en) * | 1991-10-31 | 1994-07-26 | International Business Machines Corporation | Apparatus for gettering of particles during plasma processing |
US5360748A (en) * | 1992-01-24 | 1994-11-01 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device |
US5389551A (en) * | 1991-02-21 | 1995-02-14 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor substrate |
EP0798771A3 (en) * | 1996-03-28 | 1997-10-08 | Shin-Etsu Handotai Company Limited | Silicon wafer comprising an amorphous silicon layer and method of manufacturing the same by plasma enhanced chemical vapor deposition (PECVD) |
US5894037A (en) * | 1995-11-22 | 1999-04-13 | Nec Corporation | Silicon semiconductor substrate and method of fabricating the same |
US6059887A (en) * | 1997-04-03 | 2000-05-09 | Purex Co., Ltd. | Process for cleaning the interior of semiconductor substrate |
DE10052411A1 (de) * | 2000-10-23 | 2002-05-16 | Mitsubishi Material Silicon | Siliciumwafer und Wärmebehandlungsverfahren desselben und der wärmebehandelte Siliciumwafer |
US6458672B1 (en) | 1997-05-12 | 2002-10-01 | Silicon Genesis Corporation | Controlled cleavage process and resulting device using beta annealing |
US6486041B2 (en) | 1997-05-12 | 2002-11-26 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US6500732B1 (en) | 1999-08-10 | 2002-12-31 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US6513564B2 (en) | 1999-08-10 | 2003-02-04 | Silicon Genesis Corporation | Nozzle for cleaving substrates |
US6544862B1 (en) | 2000-01-14 | 2003-04-08 | Silicon Genesis Corporation | Particle distribution method and resulting structure for a layer transfer process |
US6548382B1 (en) | 1997-07-18 | 2003-04-15 | Silicon Genesis Corporation | Gettering technique for wafers made using a controlled cleaving process |
US20030124815A1 (en) * | 1999-08-10 | 2003-07-03 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US20080003782A1 (en) * | 2006-07-03 | 2008-01-03 | Semiconductor Components Industries, Llc | Multilayer gettering structure for semiconductor device and method |
US20080038901A1 (en) * | 1997-05-12 | 2008-02-14 | Silicon Genesis Corporation | Controlled Process and Resulting Device |
US20080153220A1 (en) * | 2003-11-18 | 2008-06-26 | Silicon Genesis Corporation | Method for fabricating semiconductor devices using strained silicon bearing material |
US20080179547A1 (en) * | 2006-09-08 | 2008-07-31 | Silicon Genesis Corporation | Method and structure for fabricating solar cells using a thick layer transfer process |
US20080290347A1 (en) * | 2004-12-14 | 2008-11-27 | Yong Jin Kim | Gallium Nitride Semiconductor and Method of Manufacturing the Same |
US20100044595A1 (en) * | 2008-08-25 | 2010-02-25 | Silicon Genesis Corporation | Race track configuration and method for wafering silicon solar substrates |
US20100317140A1 (en) * | 2009-05-13 | 2010-12-16 | Silicon Genesis Corporation | Techniques for forming thin films by implantation with reduced channeling |
US8193039B2 (en) | 2010-09-24 | 2012-06-05 | Advanced Micro Devices, Inc. | Semiconductor chip with reinforcing through-silicon-vias |
CN102487072A (zh) * | 2010-12-02 | 2012-06-06 | 合晶科技股份有限公司 | 硅晶片背面的封装结构 |
US8293619B2 (en) | 2008-08-28 | 2012-10-23 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled propagation |
US8993410B2 (en) | 2006-09-08 | 2015-03-31 | Silicon Genesis Corporation | Substrate cleaving under controlled stress conditions |
US9362439B2 (en) | 2008-05-07 | 2016-06-07 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled shear region |
US9437561B2 (en) | 2010-09-09 | 2016-09-06 | Advanced Micro Devices, Inc. | Semiconductor chip with redundant thru-silicon-vias |
US10825692B2 (en) | 2018-12-20 | 2020-11-03 | Advanced Micro Devices, Inc. | Semiconductor chip gettering |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0633235B2 (ja) * | 1989-04-05 | 1994-05-02 | 新日本製鐵株式会社 | 酸化膜耐圧特性の優れたシリコン単結晶及びその製造方法 |
JP5188673B2 (ja) * | 2005-06-09 | 2013-04-24 | 株式会社Sumco | Igbt用のシリコンウェーハ及びその製造方法 |
JP4760729B2 (ja) | 2006-02-21 | 2011-08-31 | 株式会社Sumco | Igbt用のシリコン単結晶ウェーハ及びigbt用のシリコン単結晶ウェーハの製造方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3811975A (en) * | 1971-01-08 | 1974-05-21 | Philips Corp | Method of manufacturing a semiconductor device and device manufactured by the method |
US3997368A (en) * | 1975-06-24 | 1976-12-14 | Bell Telephone Laboratories, Incorporated | Elimination of stacking faults in silicon devices: a gettering process |
US4053335A (en) * | 1976-04-02 | 1977-10-11 | International Business Machines Corporation | Method of gettering using backside polycrystalline silicon |
EP0066461A2 (en) * | 1981-05-29 | 1982-12-08 | Hitachi, Ltd. | Semiconductor wafer and method of manufacturing the same |
JPS57211737A (en) * | 1981-06-23 | 1982-12-25 | Nec Corp | Manufacture of semiconductor substrate |
US4375125A (en) * | 1980-03-07 | 1983-03-01 | U.S. Philips Corporation | Method of passivating pn-junction in a semiconductor device |
US4472210A (en) * | 1983-01-07 | 1984-09-18 | Rca Corporation | Method of making a semiconductor device to improve conductivity of amorphous silicon films |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627940A (en) * | 1979-08-14 | 1981-03-18 | Fujitsu Ltd | Manufacture of semiconductor elements |
-
1984
- 1984-07-13 JP JP59145348A patent/JPS6124240A/ja active Granted
-
1985
- 1985-07-12 US US06/754,298 patent/US4645546A/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3811975A (en) * | 1971-01-08 | 1974-05-21 | Philips Corp | Method of manufacturing a semiconductor device and device manufactured by the method |
US3997368A (en) * | 1975-06-24 | 1976-12-14 | Bell Telephone Laboratories, Incorporated | Elimination of stacking faults in silicon devices: a gettering process |
US4053335A (en) * | 1976-04-02 | 1977-10-11 | International Business Machines Corporation | Method of gettering using backside polycrystalline silicon |
US4375125A (en) * | 1980-03-07 | 1983-03-01 | U.S. Philips Corporation | Method of passivating pn-junction in a semiconductor device |
EP0066461A2 (en) * | 1981-05-29 | 1982-12-08 | Hitachi, Ltd. | Semiconductor wafer and method of manufacturing the same |
JPS57211737A (en) * | 1981-06-23 | 1982-12-25 | Nec Corp | Manufacture of semiconductor substrate |
US4472210A (en) * | 1983-01-07 | 1984-09-18 | Rca Corporation | Method of making a semiconductor device to improve conductivity of amorphous silicon films |
Non-Patent Citations (14)
Title |
---|
Arst et al, "Increased Oxygen Precipitation in CZ Silicon Wafers Covered by Polysilicon" J. Elec. Mats, vol. 13, No. 5, Sep. 1984 pp. 763-778. |
Arst et al, Increased Oxygen Precipitation in CZ Silicon Wafers Covered by Polysilicon J. Elec. Mats, vol. 13, No. 5, Sep. 1984 pp. 763 778. * |
Beyer et al, "Gettering and Barrier Technique" IBM Tech. Disc. Bull., vol. 19, No. 6, Nov. 1976 pp. 2050-2051. |
Beyer et al, Gettering and Barrier Technique IBM Tech. Disc. Bull., vol. 19, No. 6, Nov. 1976 pp. 2050 2051. * |
Craven et al, "Internal Gettering in Silicon", Solid State Tech. Jul. 1981 pp. 55-61. |
Craven et al, Internal Gettering in Silicon , Solid State Tech. Jul. 1981 pp. 55 61. * |
Craven et al., "The Effects of Multiple Oxidation on Polysilicon Enhanced Gettered Wafters", ECS Ext. Abstract 83-2, Abstract No. 308, pp. 484-485. |
Craven et al., The Effects of Multiple Oxidation on Polysilicon Enhanced Gettered Wafters , ECS Ext. Abstract 83 2, Abstract No. 308, pp. 484 485. * |
Pak et al, Phosphorus Diffusion Gettering IBM Tech. Disc. Bull., vol. 18, No. 7, Dec. 1975, p. 2183. * |
Schlosser et al, "A New Method of Impurity Gettering in Polycrystalline Solarcells" Conf. Record 16th IEEE Photovoltaic Specialists Conf. Jan. 1983, pp. 532-536. |
Schlosser et al, A New Method of Impurity Gettering in Polycrystalline Solarcells Conf. Record 16th IEEE Photovoltaic Specialists Conf. Jan. 1983, pp. 532 536. * |
Suzuki, et al., CZ Silicon Crystals Grown in a Transverse Magnetic Field, Semiconductor Silicon, p. 90, 1981. * |
Tice et al, "Precipitation of Oxygen and Intrinsic Gettering in Silicon" Defects In Semiconductors, North Holland, Inc. 1981, pp. 367-380. |
Tice et al, Precipitation of Oxygen and Intrinsic Gettering in Silicon Defects In Semiconductors, North Holland, Inc. 1981, pp. 367 380. * |
Cited By (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5130260A (en) * | 1990-07-13 | 1992-07-14 | Mitsubishi Materials Corporation | Method of gettering unintentional mobile impurities in silicon wafer by using a damaged layer exposed to the reverse surface thereof |
US5389551A (en) * | 1991-02-21 | 1995-02-14 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor substrate |
US5332441A (en) * | 1991-10-31 | 1994-07-26 | International Business Machines Corporation | Apparatus for gettering of particles during plasma processing |
US5433258A (en) * | 1991-10-31 | 1995-07-18 | International Business Machines Corporation | Gettering of particles during plasma processing |
US5360748A (en) * | 1992-01-24 | 1994-11-01 | Kabushiki Kaisha Toshiba | Method of manufacturing a semiconductor device |
US5894037A (en) * | 1995-11-22 | 1999-04-13 | Nec Corporation | Silicon semiconductor substrate and method of fabricating the same |
EP0798771A3 (en) * | 1996-03-28 | 1997-10-08 | Shin-Etsu Handotai Company Limited | Silicon wafer comprising an amorphous silicon layer and method of manufacturing the same by plasma enhanced chemical vapor deposition (PECVD) |
US5970365A (en) * | 1996-03-28 | 1999-10-19 | Shin-Etsu Handotai., Ltd. | Silicon wafer including amorphous silicon layer formed by PCVD and method of manufacturing wafer |
US6059887A (en) * | 1997-04-03 | 2000-05-09 | Purex Co., Ltd. | Process for cleaning the interior of semiconductor substrate |
US7759217B2 (en) | 1997-05-12 | 2010-07-20 | Silicon Genesis Corporation | Controlled process and resulting device |
US20080286945A1 (en) * | 1997-05-12 | 2008-11-20 | Silicon Genesis Corporation | Controlled process and resulting device |
US6486041B2 (en) | 1997-05-12 | 2002-11-26 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US7776717B2 (en) | 1997-05-12 | 2010-08-17 | Silicon Genesis Corporation | Controlled process and resulting device |
US6511899B1 (en) | 1997-05-12 | 2003-01-28 | Silicon Genesis Corporation | Controlled cleavage process using pressurized fluid |
US7846818B2 (en) | 1997-05-12 | 2010-12-07 | Silicon Genesis Corporation | Controlled process and resulting device |
US6528391B1 (en) | 1997-05-12 | 2003-03-04 | Silicon Genesis, Corporation | Controlled cleavage process and device for patterned films |
US7348258B2 (en) | 1997-05-12 | 2008-03-25 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US20080038901A1 (en) * | 1997-05-12 | 2008-02-14 | Silicon Genesis Corporation | Controlled Process and Resulting Device |
US6558802B1 (en) | 1997-05-12 | 2003-05-06 | Silicon Genesis Corporation | Silicon-on-silicon hybrid wafer assembly |
US20030113983A1 (en) * | 1997-05-12 | 2003-06-19 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US6458672B1 (en) | 1997-05-12 | 2002-10-01 | Silicon Genesis Corporation | Controlled cleavage process and resulting device using beta annealing |
US6632724B2 (en) | 1997-05-12 | 2003-10-14 | Silicon Genesis Corporation | Controlled cleaving process |
US7371660B2 (en) | 1997-05-12 | 2008-05-13 | Silicon Genesis Corporation | Controlled cleaving process |
US6790747B2 (en) | 1997-05-12 | 2004-09-14 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US20050070071A1 (en) * | 1997-05-12 | 2005-03-31 | Silicon Genesis Corporation | Method and device for controlled cleaving process |
US20070123013A1 (en) * | 1997-05-12 | 2007-05-31 | Silicon Genesis Corporation | Controlled process and resulting device |
US20050186758A1 (en) * | 1997-05-12 | 2005-08-25 | Silicon Genesis Corporation | Controlled cleaving process |
US7410887B2 (en) | 1997-05-12 | 2008-08-12 | Silicon Genesis Corporation | Controlled process and resulting device |
US7160790B2 (en) | 1997-05-12 | 2007-01-09 | Silicon Genesis Corporation | Controlled cleaving process |
US6890838B2 (en) | 1997-07-18 | 2005-05-10 | Silicon Genesis Corporation | Gettering technique for wafers made using a controlled cleaving process |
US20040097055A1 (en) * | 1997-07-18 | 2004-05-20 | Silicon Genesis Corporation | Gettering technique for wafers made using a controlled cleaving process |
US6548382B1 (en) | 1997-07-18 | 2003-04-15 | Silicon Genesis Corporation | Gettering technique for wafers made using a controlled cleaving process |
US6513564B2 (en) | 1999-08-10 | 2003-02-04 | Silicon Genesis Corporation | Nozzle for cleaving substrates |
US7056808B2 (en) | 1999-08-10 | 2006-06-06 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US6500732B1 (en) | 1999-08-10 | 2002-12-31 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US20030124815A1 (en) * | 1999-08-10 | 2003-07-03 | Silicon Genesis Corporation | Cleaving process to fabricate multilayered substrates using low implantation doses |
US6544862B1 (en) | 2000-01-14 | 2003-04-08 | Silicon Genesis Corporation | Particle distribution method and resulting structure for a layer transfer process |
DE10052411A1 (de) * | 2000-10-23 | 2002-05-16 | Mitsubishi Material Silicon | Siliciumwafer und Wärmebehandlungsverfahren desselben und der wärmebehandelte Siliciumwafer |
DE10052411B4 (de) * | 2000-10-23 | 2008-07-31 | Mitsubishi Materials Silicon Corp. | Wärmebehandlungsverfahren eines Siliciumwafers und der wärmebehandelte Siliciumwafer |
US20080153220A1 (en) * | 2003-11-18 | 2008-06-26 | Silicon Genesis Corporation | Method for fabricating semiconductor devices using strained silicon bearing material |
US20080290347A1 (en) * | 2004-12-14 | 2008-11-27 | Yong Jin Kim | Gallium Nitride Semiconductor and Method of Manufacturing the Same |
US20080003782A1 (en) * | 2006-07-03 | 2008-01-03 | Semiconductor Components Industries, Llc | Multilayer gettering structure for semiconductor device and method |
US7737004B2 (en) | 2006-07-03 | 2010-06-15 | Semiconductor Components Industries Llc | Multilayer gettering structure for semiconductor device and method |
US20080179547A1 (en) * | 2006-09-08 | 2008-07-31 | Silicon Genesis Corporation | Method and structure for fabricating solar cells using a thick layer transfer process |
US7811900B2 (en) | 2006-09-08 | 2010-10-12 | Silicon Genesis Corporation | Method and structure for fabricating solar cells using a thick layer transfer process |
US8993410B2 (en) | 2006-09-08 | 2015-03-31 | Silicon Genesis Corporation | Substrate cleaving under controlled stress conditions |
US9640711B2 (en) | 2006-09-08 | 2017-05-02 | Silicon Genesis Corporation | Substrate cleaving under controlled stress conditions |
US9356181B2 (en) | 2006-09-08 | 2016-05-31 | Silicon Genesis Corporation | Substrate cleaving under controlled stress conditions |
US11444221B2 (en) | 2008-05-07 | 2022-09-13 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled shear region |
US9362439B2 (en) | 2008-05-07 | 2016-06-07 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled shear region |
US20100044595A1 (en) * | 2008-08-25 | 2010-02-25 | Silicon Genesis Corporation | Race track configuration and method for wafering silicon solar substrates |
US8330126B2 (en) | 2008-08-25 | 2012-12-11 | Silicon Genesis Corporation | Race track configuration and method for wafering silicon solar substrates |
US8293619B2 (en) | 2008-08-28 | 2012-10-23 | Silicon Genesis Corporation | Layer transfer of films utilizing controlled propagation |
US8329557B2 (en) | 2009-05-13 | 2012-12-11 | Silicon Genesis Corporation | Techniques for forming thin films by implantation with reduced channeling |
US20100317140A1 (en) * | 2009-05-13 | 2010-12-16 | Silicon Genesis Corporation | Techniques for forming thin films by implantation with reduced channeling |
US9437561B2 (en) | 2010-09-09 | 2016-09-06 | Advanced Micro Devices, Inc. | Semiconductor chip with redundant thru-silicon-vias |
US11469212B2 (en) | 2010-09-09 | 2022-10-11 | Advanced Micro Devices, Inc. | Semiconductor chip with redundant thru-silicon-vias |
US12094853B2 (en) | 2010-09-09 | 2024-09-17 | Advanced Micro Devices, Inc. | Semiconductor chip with redundant thru-silicon-vias |
US8338961B2 (en) | 2010-09-24 | 2012-12-25 | Advanced Micro Devices, Inc. | Semiconductor chip with reinforcing through-silicon-vias |
US8193039B2 (en) | 2010-09-24 | 2012-06-05 | Advanced Micro Devices, Inc. | Semiconductor chip with reinforcing through-silicon-vias |
CN102487072A (zh) * | 2010-12-02 | 2012-06-06 | 合晶科技股份有限公司 | 硅晶片背面的封装结构 |
US10825692B2 (en) | 2018-12-20 | 2020-11-03 | Advanced Micro Devices, Inc. | Semiconductor chip gettering |
US11393697B2 (en) | 2018-12-20 | 2022-07-19 | Advanced Micro Devices, Inc | Semiconductor chip gettering |
Also Published As
Publication number | Publication date |
---|---|
JPS6124240A (ja) | 1986-02-01 |
JPH0475655B2 (enrdf_load_html_response) | 1992-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645546A (en) | Semiconductor substrate | |
US5539245A (en) | Semiconductor substrate having a gettering layer | |
US4661166A (en) | Method of manufacturing semiconductor device using a Czochralski wafer and multiple heat treatment | |
JP4685231B2 (ja) | シリコンウェーハの製造方法 | |
JPS6310573A (ja) | 半導体装置の製造方法 | |
JP3381816B2 (ja) | 半導体基板の製造方法 | |
US4401506A (en) | Process for producing semiconductor device | |
KR20000006046A (ko) | 실리콘에피택셜웨이퍼의제조방법 | |
KR860000228B1 (ko) | 반도체 기판과 그 제조방법 | |
JPH09283529A (ja) | 半導体基板の製造方法およびその検査方法 | |
US5574307A (en) | Semiconductor device and method of producing the same | |
EP0496382B1 (en) | Intrinsic gettering for a semiconducteur epitaxial wafer | |
JPH0969526A (ja) | 半導体装置の製造方法 | |
EP0284107A2 (en) | Method of strengthening silicon wafer | |
JPS63198334A (ja) | 半導体シリコンウエ−ハの製造方法 | |
JPH05152304A (ja) | 半導体基板の製造方法 | |
JP2774855B2 (ja) | ゲッタリング効果増強シリコン基板及びその製造方法 | |
JPH0324058B2 (enrdf_load_html_response) | ||
JPH023539B2 (enrdf_load_html_response) | ||
JPH09223699A (ja) | シリコンウェーハとその製造方法 | |
JPS6012775B2 (ja) | 異質基板上への単結晶半導体層形成方法 | |
JPS6312376B2 (enrdf_load_html_response) | ||
KR0169281B1 (ko) | 반도체 실리콘 기판과 그 제조방법 | |
KR890004873B1 (ko) | 반도체 웨이퍼의 초기 산소농도 | |
JPS60176241A (ja) | 半導体基板の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: KABUSHIKI KAISHA TOSHIBA, 72 HORIKAWA-CHO, SAIWAI- Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:MATSUSHITA, YOSHIAKI;REEL/FRAME:004431/0204 Effective date: 19850618 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |