US3928837A - Ceramic oxide resistor element - Google Patents
Ceramic oxide resistor element Download PDFInfo
- Publication number
- US3928837A US3928837A US503846A US50384674A US3928837A US 3928837 A US3928837 A US 3928837A US 503846 A US503846 A US 503846A US 50384674 A US50384674 A US 50384674A US 3928837 A US3928837 A US 3928837A
- Authority
- US
- United States
- Prior art keywords
- mno
- resistance
- resistance element
- ceramic oxide
- shaped body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 36
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims abstract description 7
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract 6
- 229910052593 corundum Inorganic materials 0.000 claims abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 claims abstract 2
- 239000004020 conductor Substances 0.000 claims description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 20
- 229910052697 platinum Inorganic materials 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- 229910052737 gold Inorganic materials 0.000 claims description 6
- 239000010931 gold Substances 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 description 34
- 238000010438 heat treatment Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 6
- 238000003825 pressing Methods 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- 230000032683 aging Effects 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- KNIUHBNRWZGIQQ-UHFFFAOYSA-N 7-diethoxyphosphinothioyloxy-4-methylchromen-2-one Chemical compound CC1=CC(=O)OC2=CC(OP(=S)(OCC)OCC)=CC=C21 KNIUHBNRWZGIQQ-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000012752 auxiliary agent Substances 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 239000000976 ink Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910001260 Pt alloy Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- MCMNRKCIXSYSNV-UHFFFAOYSA-N ZrO2 Inorganic materials O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 1
- 230000003679 aging effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000004814 ceramic processing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000002431 foraging effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 235000008216 herbs Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000009740 moulding (composite fabrication) Methods 0.000 description 1
- 230000001473 noxious effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007569 slipcasting Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01C—RESISTORS
- H01C7/00—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
- H01C7/04—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
- H01C7/042—Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
- H01C7/043—Oxides or oxidic compounds
- H01C7/046—Iron oxides or ferrites
Definitions
- a ceramic oxide thennistor having a negative temperature coefiicient at elevated temperatures comprising about 30% to 100% Fe O and 0% to 70% A1 0,. 1t preferably also contains MnO.
- the invention also includes a process for manufacturing said thermistor.
- a 4 A a s a CERAMIC OXIDE RESISTOR ELEMENT RELATED PATENTS AND APPLICATIONS U.S. Pat. No. 3,759,232, issued Sept. 18, i973.
- the present invention provides ceramic oxide resistors having negative temperature coefficients for use at elevated temperatures, primarily above 400C.
- the invention also provides processes for producing such resistors.
- thermistors Resistance elements which change the resistance characteristics with change in temperature are known as thermistors.
- Such thermistors do not, however, satisfactorily fulfill the desired requirements for such resistor elements because of the variations in the properties of the resistor element and the variation in the control (regulating) constant B.
- the commercially known resistor elements having negative temperature characteristics exhibit irreversible changes in the resistance characteristics at temperatures above 400C and thus have high aging sensitivity, which is an undesirable characteristic.
- a resistance element particularly for use at temperatures between about 400C and about l,lC which has as steep a characteristic resistance curve as possible concomitant with a control constant B of at least 8,500 K. It is also desired that the characteristic resistance curve, considering its position and steepness, should not change during a long period of service, i.e., its aging sensitivity should be low. It is also desired that the resistance at a specified temperature may be varied, preferably over wide limits, dependent upon the intended use. It is also desired that the variation of the characteristic resistance curves should be small as a result of manufacturing tolerances and additionally that the production yield should be high and the cost economic.
- the present invention provides a ceramic oxide thermistor having a negative temperature coefficient at elevated temperatures.
- the said ceramic oxide thermistor (resistance element) comprises Fe,0, and may contain AI,O,.
- the compositions comprise between about 30% and 100% by weight Fe,0, and between 70% to 0% by weight Al,0,.
- the compositions, particularly those for use at temperatures above 600C, preferably also contain MnO.
- the thermistors are shaped bodies of the ceramic oxide and contain at least two electrical conductors in electric contact with said shaped body. The two conductors are spaced apart so that when an electric current is passed serially through the conductors and the intervening shaped body, the
- the invention also provides a process for manufacturing the ceramic oxide thermistors by finely grinding the oxide materials and heating at temperatures below l,400C.
- the process preferably comprises finely grinding the oxide materials and then heating to form a calcined material which is subsequently finely ground and then again heated at temperatures close to l,400C to form the desired shaped thermistor element. This may be followed by a thermal aftertreatment.
- MnO n-dielectric oxide
- the inclusion in the ceramic oxide composition of MnO has the effect of making the characteristic resistance curve steeper. It also decreases the aging sensitivity of the resistor element, particularly at specified MnO contents.
- the MnO concentration should be in the range defined by the following formula:
- IIIF P I wherein X is a c bnstant from about 0.3 to 12 and preferably 0.9 to 4.5.
- C,,,O is the MnO concentration (in percentage by weight) based upon the total mo, and AIzOa (if any).
- C is the mo, concentration in parts by weight also based upon the total Fe O and M 0, (if any).
- FIG. I is a graph of the variation of specific resistance with changes in temperature for a number of ceramic oxide thermistors having different MnO contents.
- FIG. 2 is a graph of the control constant B for the temperature range of 700900C, and also the temperature coefficient at 850C, for compositions having varied MnO contents.
- FIG. 3 discloses the percentage change in resistance after service for compositions having different MnO contents.
- FIGS. 4, S and 6 depict different embodiments of the thermistors of the present invention.
- the thermistors of the present invention which are resistance elements are useful for measuring temperature since the resistance varies with the temperature.
- the resistance-temperature characteristic curves are as steep as possible, particularly with these negative temperature coefficient thermistors. This is commonly expressed by reference to the constant control B which is defined by the following equation:
- R, and R are the resistance values at the temperatures T, and T, respectively, these temperatures being measured in K (Kelvin degrees), and e is the basis of the natural logarithm.
- the temperature coefficient of the resistor may be calculated from the B-value and the temperature which is being measured in K (Kelvin) by the following equation:
- the resistance for ceramic oxide bodies of the present invention can be varied b'y'the relative 'content of the Fe,0, and AI,O,; and also by the content of the MnO. with the resistance varying in the range of about 100 cm to 20 M cm, at a temperature of about 500C.
- the MnO content of the ceramic oxide resistor composition also affects the value of the control constant B and the temperature coefficient.
- FIGS. 1 and 2 depict theaffect of MnO on the characteristic resistant curves and also the control constant B and temperature coefficients' of the ceramic oxide resistors.
- the specific'resistance is plotted on a logarithmic scale against the' temperature for a ceramic mixture composition containing 50% by weight of M 0 the specified MnO content from 0% up to 2%, and the balance Fe O
- FIG. 1 discloses that the characteristic curve of the compositions is more level (less steep) for the composition which does not contain MnO than for the other compositions which contain from 0.1% to 2% of MnO.
- the graph also depicts the affect of the MnO content on the resistance value, i.e., the greater the MnO content, the smaller the specific resistance.
- FIG. 2 depicts the control constant B for the temperature range of 700-900C for compositions having varied MnO contents.
- the MnO contents are for the same compositions as in FIG. 1.
- FIG. 2 also discloses the temperature coefficient at 850C for these compositions.
- FIG. 2 discloses that the values for both the control constant B and for the temperature coefficient (both plotted on the ordinate) are considerably higher for the compositions containing MnO than for the composition which does not contain MnO.
- FIG. 3 illustrates the change in resistance of the resistor compositions of FIG. 1 after 100 hours of heat treatment at 1,000C in air.
- the ordinate reports the resistance in a percentage which is compared to the resistance of the same composition before the heat treatment.
- FIG. 3 illustrates that the resistor compositions containing 0.4 and 1% by weight MnO have only a relatively small deviation from the original resistance value after I00 hours. Those compositions having smaller and larger MnO contents have larger variations in the resistance after the heat treatment. It is advantageous that such compositions are subjected to a postprocessing heat treatment to stabilize the resistance, as described hereinafter.
- FIG. 4 illustrates a cylindrical-shaped ceramic oxide body 410 having metal (preferably gold, silver or platinum) contact layers on each end 411 and'411'. Wires 412 and 412' which are electrical conductors are welded or soldered to metal contact 411 and 411', respectively.
- metal preferably gold, silver or platinum
- FIG. 5 illustrates a cylindrical oxide thermistor 510 having electrically conducting platinum or platinum alloy wires 512 and 512' sintered into opposed ends of the body 510.
- FIG. 6 illustrates a thermistor composition 610 which is a coating on ceramic substrate 613.
- the substrate 613 is especially made of high alumina ceramic with an alumina content of at least 99.5% by weight.
- Strips of electrically conducting material 612 and 612 are in electrical contact with the ceramic oxide resistor 610.
- the ceramic oxide 610 may be applied as a coating composition to the substrate 613 and the conducting strips 612 and 612' may be applied in the form of conductive inks.
- the entire article is then subjected to a high temperature heat treatment and the vehicles for the coating composition 610 and the conductive inks 612 and 612 are volatilized to provide the finished article.
- Powdered hematite (Fe o may be used as the source of Fe O calcined alumina may be used as the source ofAl O- and MnO or other manganese compounds which decompose to the oxide when heated, as the source of MnO.
- the raw materials are mixed in ceramic mixing apparatus in the desired percentage and then ground in grinding mills following known ceramic procedures. It is preferred in order to obtain a more homogeneous product that the mixed oxide should be ground and then calcined at temperatures of from about 900 to 1,200C and then again ground to produce a composition having the desired sintering activity. During heating (sintering or calcining) of the compositions, the temperature should not exceed l,400C. When heated at higher temperatures than 1,400C, there is increased production of mo, which results in a large drop in the specific resistance value. Additionally, compositions containing increased amounts of Fe O exhibit increased tendency for aging, i.e., the resistance value changes during aging.
- the oxide composition which had been mixed and ground and then calcined at from 900 to l,200C as aforesaid was then again ground.
- This ground material is then treated so as to be susceptible to pressing and preparation of a green mass by addition of organic binding and pressing auxiliary agents to the ground ceramic powder, as known in the art.
- the ground powder admixed with said auxiliary agents is then pressed into cylindrical bodies.
- the green cylindrical bodies are then coated at their faces with a platinum-containing composition.
- the pressing bodies may be subjected to an intermediate heating at a temperature of about 800C and then the end surfaces coated with the platinum compositions.
- the bodies are then preferably sintered in saggers of high alumina content at sintering temperatures of between about l,200 to 1,300C for about I to l0 hours in air.
- the resistance of some compositions changes with subsequent heating at elevated temperatures for prolonged periods of service. It is particularly advantageous that those ceramic oxide compositions having a MnO content of less than about 0.2% by weight undergo a post-heat treatment of about l,l00C in air for a period of at least 50 hours to stabilize the values of specific resistance.
- all known ceramic processing methods may be used to produce the ceramic oxide compositions and articles of the present invention. Thus, extrusion forming, slip casting, printing of a paste through a screen on ceramic substrates, and other suitable processing methods used in ceramic technology may be utilized.
- Gold contact layers may be used instead of the exemplified platinum contact layers for surface temperatures up to a maximum of 800C.
- Silver contact layers may be used for maximum surface temperatures of about 500C.
- Such gold and silver contact layers must be applied to the ceramic oxide resistors (also commonly referred to herein as "thermistors") after the said bodies have been formed and sintered at elevated temperatures.
- the gold or silver compositions are applied in spaced apart configuration on the ceramic oxide shaped body and then again heated to burn in and form the metallic contact layer which adheres to the ceramic body. This latter processing may also be utilized to form contact layers on the shaped ceramic oxide body. Electrical contacts (wires) are then connected to the contact layers, usually by soldering, welding or pressing.
- a platinum-forming composition No. 1308 from Firma Demetron was coated on oppossed ends of the pressed green mass which was then sintered at l,250C in air for 1 hour. The sintering heating rate and cooling rate was approximately 300C per hour. Platinum wires were 6 98% Fe O (No. 1352 WP from Maschinenfabriken Bayer) 2.0% MnO (No. 13234 from Firma Riedel de Haen). The resistors were tested as in Example I and the following-determined:
- the ceramic oxide resistors of the present invention are particularly useful for measuring temperature because of their thermistor characteristics. They have particular utility in the new systems for eliminating (or substantially minimizing) toxic materials from exhaust gases, particularly, those utilizing catalysts and reactors which have optimum operating characteristics at elevated temperatures. They must, however, be protected against overheating.
- the ceramic oxide resistors of the present invention have proven especially suitable for use in control and regulation of temperatures in the range of 350C to l,l00C in such systems because of the applicable reproducible characteristics as indicated by their characteristic curves. They have good service lives because they only have a minor aging effect and as a practical matter the service characteristics do not change, resulting in excellent reproducibility and high accuracy of measurement.
- control constant B 700-900C H300 K
- EXAMPLE 2 l A ceramic oxide resistance element having a negative temperature coefficient at temperatures above about 200C comprising a shaped body comprising Fe O about 50% by weight of Al,0, and MnO in weight percent based on the total 5e 0,, and M 0, within the range of ["EgO wherein X is from 0.3 to 12, and wherein C o is the concentration of Fe,O in parts by weight based on the total Fe O and Al,0;,; and
- the resistance element of claim 6 wherein said electrical conductors are silver conductors.
- shaped body contains about 0.2% MnO and about 5.
- the resistance element of claim 1 wherein said shaped body contains about 0.4% MnO and about shaped body comprises about 50% M 0 between 0.l 49.6% no. and 2% MnO, and the balance no. 10.
- the resistance element of claim 6 wherein said shaped body contains about 2% MnO and about 48% shaped body contains about 0.1% MnO and about 10 Fe O 49.9% Fe O Page 'I of 5 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 3,928,837 Dated December 23, 1975 Inventor(s) Friedrich J. ESPER; Karl-Hermann FRIESE;
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Thermistors And Varistors (AREA)
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE2348589A DE2348589C2 (de) | 1973-09-27 | 1973-09-27 | Oxidkeramischer Widerstand |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3928837A true US3928837A (en) | 1975-12-23 |
Family
ID=5893807
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US503846A Expired - Lifetime US3928837A (en) | 1973-09-27 | 1974-09-06 | Ceramic oxide resistor element |
Country Status (12)
| Country | Link |
|---|---|
| US (1) | US3928837A (cg-RX-API-DMAC7.html) |
| JP (1) | JPS5060795A (cg-RX-API-DMAC7.html) |
| AU (1) | AU7375074A (cg-RX-API-DMAC7.html) |
| BE (1) | BE820395A (cg-RX-API-DMAC7.html) |
| BR (1) | BR7408013D0 (cg-RX-API-DMAC7.html) |
| CH (1) | CH598680A5 (cg-RX-API-DMAC7.html) |
| DE (1) | DE2348589C2 (cg-RX-API-DMAC7.html) |
| FR (1) | FR2246031B3 (cg-RX-API-DMAC7.html) |
| GB (1) | GB1480817A (cg-RX-API-DMAC7.html) |
| IT (1) | IT1022270B (cg-RX-API-DMAC7.html) |
| NL (1) | NL7412718A (cg-RX-API-DMAC7.html) |
| SE (1) | SE394761B (cg-RX-API-DMAC7.html) |
Cited By (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4058787A (en) * | 1975-04-04 | 1977-11-15 | Hitachi, Ltd. | Temperature sensor |
| US4503418A (en) * | 1983-11-07 | 1985-03-05 | Northern Telecom Limited | Thick film resistor |
| US4531110A (en) * | 1981-09-14 | 1985-07-23 | At&T Bell Laboratories | Negative temperature coefficient thermistors |
| EP0294691A1 (en) * | 1987-06-12 | 1988-12-14 | Mitsubishi Jukogyo Kabushiki Kaisha | Resistance temperature detector |
| US5000662A (en) * | 1988-10-07 | 1991-03-19 | Fujikura, Ltd. | Flat resistance for blower control unit of automobile air conditioner |
| US5177341A (en) * | 1987-02-25 | 1993-01-05 | Thorn Emi Plc | Thick film electrically resistive tracks |
| EP0527576A3 (en) * | 1991-08-08 | 1993-04-28 | Kabushiki Kaisha TEC | Fixing device |
| US5254968A (en) * | 1992-06-15 | 1993-10-19 | General Motors Corporation | Electrically conductive plastic speed control resistor for an automotive blower motor |
| US5521576A (en) * | 1993-10-06 | 1996-05-28 | Collins; Franklyn M. | Fine-line thick film resistors and resistor networks and method of making same |
| US5605715A (en) * | 1993-12-09 | 1997-02-25 | The Erie Ceramic Arts Company | Methods for making electrical circuit devices |
| US5929746A (en) * | 1995-10-13 | 1999-07-27 | International Resistive Company, Inc. | Surface mounted thin film voltage divider |
| US20020195956A1 (en) * | 2001-05-08 | 2002-12-26 | Molnar Stephen Michael | Device for detecting an electrically conductive particle |
| US20040056756A1 (en) * | 2002-09-23 | 2004-03-25 | Dempsey Dennis A. | Impedance network with minimum contact impedance |
| US20070063813A1 (en) * | 2005-09-20 | 2007-03-22 | Analog Devices, Inc. | Film resistor and a method for forming and trimming a film resistor |
| CN103073267A (zh) * | 2012-12-26 | 2013-05-01 | 山东中厦电子科技有限公司 | 一种低电阻率、高b值负温度系数热敏材料及其制备方法 |
| US20150136754A1 (en) * | 2013-11-05 | 2015-05-21 | Keith Yester | Wireless Heating System for Motorcycles |
| US20170110225A1 (en) * | 2014-03-26 | 2017-04-20 | Heraeus Sensor Technology Gmbh | Ceramic carrier and sensor element, heating element and sensor module, each with a ceramic carrier and method for manufacturing a ceramic carrier |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2258646A (en) * | 1939-05-17 | 1941-10-14 | Bell Telephone Labor Inc | Resistance material |
| US2616859A (en) * | 1945-03-16 | 1952-11-04 | Hartford Nat Bank & Trust Co | Electrical resistor |
| US2626445A (en) * | 1950-06-07 | 1953-01-27 | Steatite Res Corp | Heavy-metal oxide resistors and process of making same |
| US2674583A (en) * | 1949-12-23 | 1954-04-06 | Bell Telephone Labor Inc | High temperature coefficient resistors and methods of making them |
| US2720573A (en) * | 1951-06-27 | 1955-10-11 | Dick O R Lundqvist | Thermistor disks |
| US3359632A (en) * | 1965-02-10 | 1967-12-26 | Victory Engineering Corp | Method of making a thermistor |
| US3477055A (en) * | 1967-12-22 | 1969-11-04 | Gen Motors Corp | Thermistor construction |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE631867C (de) * | 1933-10-19 | 1936-06-27 | Patra Patent Treuhand | Widerstandskoerper mit hohem negativem Temperaturkoeffizienten des elektrischen Widerstandes |
| DE976937C (de) * | 1943-06-26 | 1964-08-20 | Siemens Ag | Verfahren zur Herstellung eines gesinterten elektrischen Widerstandskoerpers |
| NL6614015A (cg-RX-API-DMAC7.html) * | 1966-10-05 | 1968-04-08 |
-
1973
- 1973-09-27 DE DE2348589A patent/DE2348589C2/de not_active Expired
-
1974
- 1974-08-19 CH CH1130274A patent/CH598680A5/xx not_active IP Right Cessation
- 1974-08-20 FR FR7428604A patent/FR2246031B3/fr not_active Expired
- 1974-09-06 US US503846A patent/US3928837A/en not_active Expired - Lifetime
- 1974-09-25 IT IT27657/74A patent/IT1022270B/it active
- 1974-09-26 BR BR8013/74A patent/BR7408013D0/pt unknown
- 1974-09-26 SE SE7412125A patent/SE394761B/xx unknown
- 1974-09-26 GB GB41846/74A patent/GB1480817A/en not_active Expired
- 1974-09-26 JP JP49110954A patent/JPS5060795A/ja active Pending
- 1974-09-26 NL NL7412718A patent/NL7412718A/xx not_active Application Discontinuation
- 1974-09-26 AU AU73750/74A patent/AU7375074A/en not_active Expired
- 1974-09-26 BE BE148947A patent/BE820395A/xx unknown
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2258646A (en) * | 1939-05-17 | 1941-10-14 | Bell Telephone Labor Inc | Resistance material |
| US2616859A (en) * | 1945-03-16 | 1952-11-04 | Hartford Nat Bank & Trust Co | Electrical resistor |
| US2674583A (en) * | 1949-12-23 | 1954-04-06 | Bell Telephone Labor Inc | High temperature coefficient resistors and methods of making them |
| US2626445A (en) * | 1950-06-07 | 1953-01-27 | Steatite Res Corp | Heavy-metal oxide resistors and process of making same |
| US2720573A (en) * | 1951-06-27 | 1955-10-11 | Dick O R Lundqvist | Thermistor disks |
| US3359632A (en) * | 1965-02-10 | 1967-12-26 | Victory Engineering Corp | Method of making a thermistor |
| US3477055A (en) * | 1967-12-22 | 1969-11-04 | Gen Motors Corp | Thermistor construction |
Cited By (25)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4058787A (en) * | 1975-04-04 | 1977-11-15 | Hitachi, Ltd. | Temperature sensor |
| US4531110A (en) * | 1981-09-14 | 1985-07-23 | At&T Bell Laboratories | Negative temperature coefficient thermistors |
| US4503418A (en) * | 1983-11-07 | 1985-03-05 | Northern Telecom Limited | Thick film resistor |
| US5177341A (en) * | 1987-02-25 | 1993-01-05 | Thorn Emi Plc | Thick film electrically resistive tracks |
| EP0294691A1 (en) * | 1987-06-12 | 1988-12-14 | Mitsubishi Jukogyo Kabushiki Kaisha | Resistance temperature detector |
| US4929092A (en) * | 1987-06-12 | 1990-05-29 | Mitsubishi Jukogyo Kabushiki Kaisha | Resistance temperature detector |
| US5000662A (en) * | 1988-10-07 | 1991-03-19 | Fujikura, Ltd. | Flat resistance for blower control unit of automobile air conditioner |
| EP0527576A3 (en) * | 1991-08-08 | 1993-04-28 | Kabushiki Kaisha TEC | Fixing device |
| US5280329A (en) * | 1991-08-08 | 1994-01-18 | Tokyo Electric Co., Ltd. | Fixing device |
| US5254968A (en) * | 1992-06-15 | 1993-10-19 | General Motors Corporation | Electrically conductive plastic speed control resistor for an automotive blower motor |
| US5521576A (en) * | 1993-10-06 | 1996-05-28 | Collins; Franklyn M. | Fine-line thick film resistors and resistor networks and method of making same |
| US5605715A (en) * | 1993-12-09 | 1997-02-25 | The Erie Ceramic Arts Company | Methods for making electrical circuit devices |
| US5929746A (en) * | 1995-10-13 | 1999-07-27 | International Resistive Company, Inc. | Surface mounted thin film voltage divider |
| US20020195956A1 (en) * | 2001-05-08 | 2002-12-26 | Molnar Stephen Michael | Device for detecting an electrically conductive particle |
| US6859024B2 (en) * | 2001-05-08 | 2005-02-22 | Telstra New Wave Pty Ltd. | Device for detecting an electrically conductive particle |
| US20040056756A1 (en) * | 2002-09-23 | 2004-03-25 | Dempsey Dennis A. | Impedance network with minimum contact impedance |
| US7057491B2 (en) * | 2002-09-23 | 2006-06-06 | Analog Devices, Inc. | Impedance network with minimum contact impedance |
| US20070063813A1 (en) * | 2005-09-20 | 2007-03-22 | Analog Devices, Inc. | Film resistor and a method for forming and trimming a film resistor |
| US7598841B2 (en) | 2005-09-20 | 2009-10-06 | Analog Devices, Inc. | Film resistor and a method for forming and trimming a film resistor |
| US7719403B2 (en) | 2005-09-20 | 2010-05-18 | Analog Devices, Inc. | Film resistor and a method for forming and trimming a film resistor |
| CN103073267A (zh) * | 2012-12-26 | 2013-05-01 | 山东中厦电子科技有限公司 | 一种低电阻率、高b值负温度系数热敏材料及其制备方法 |
| CN103073267B (zh) * | 2012-12-26 | 2014-07-02 | 山东中厦电子科技有限公司 | 一种低电阻率、高b值负温度系数热敏材料及其制备方法 |
| US20150136754A1 (en) * | 2013-11-05 | 2015-05-21 | Keith Yester | Wireless Heating System for Motorcycles |
| US20170110225A1 (en) * | 2014-03-26 | 2017-04-20 | Heraeus Sensor Technology Gmbh | Ceramic carrier and sensor element, heating element and sensor module, each with a ceramic carrier and method for manufacturing a ceramic carrier |
| US10529470B2 (en) * | 2014-03-26 | 2020-01-07 | Heraeus Nexensos Gmbh | Ceramic carrier and sensor element, heating element and sensor module, each with a ceramic carrier and method for manufacturing a ceramic carrier |
Also Published As
| Publication number | Publication date |
|---|---|
| CH598680A5 (cg-RX-API-DMAC7.html) | 1978-05-12 |
| FR2246031B3 (cg-RX-API-DMAC7.html) | 1976-03-12 |
| JPS5060795A (cg-RX-API-DMAC7.html) | 1975-05-24 |
| GB1480817A (en) | 1977-07-27 |
| BR7408013D0 (pt) | 1975-07-15 |
| DE2348589C2 (de) | 1982-04-01 |
| BE820395A (fr) | 1975-01-16 |
| SE7412125L (cg-RX-API-DMAC7.html) | 1975-04-01 |
| FR2246031A1 (cg-RX-API-DMAC7.html) | 1975-04-25 |
| NL7412718A (nl) | 1975-04-02 |
| IT1022270B (it) | 1978-03-20 |
| SE394761B (sv) | 1977-07-04 |
| AU7375074A (en) | 1976-04-01 |
| DE2348589A1 (de) | 1975-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3928837A (en) | Ceramic oxide resistor element | |
| US4677415A (en) | Ceramic humidity sensor | |
| US3950273A (en) | Medium temperature thermistor | |
| JPH0799102A (ja) | サーミスタ用磁器組成物およびサーミスタ素子 | |
| US3044968A (en) | Positive temperature coefficient thermistor materials | |
| US4460497A (en) | Voltage stable nonlinear resistor containing minor amounts of aluminum and selected alkali metal additives | |
| EP0418810B1 (en) | Thermistor element and gas sensor using the same | |
| US4647895A (en) | Ceramic temperature sensor | |
| US4743881A (en) | Ceramic temperature sensor | |
| Battault et al. | Aging of iron manganite negative temperature coefficient thermistors | |
| KR20000011830A (ko) | 서미스터 | |
| US4010118A (en) | High temperature hot conductors | |
| US4010121A (en) | High temperature hot conductors | |
| US4010120A (en) | High temperature hot conductors | |
| US2694050A (en) | Thermally sensitive resistor | |
| JP3569810B2 (ja) | 高温用サーミスタ | |
| US4231902A (en) | Thermistor with more stable beta | |
| JPS5934141A (ja) | 電気抵抗式空燃比感応材料 | |
| JPS5950352A (ja) | 窒素酸化物検出素子 | |
| SU504251A1 (ru) | Материал дл токопровод щей фазы резисторов | |
| JPS6322601B2 (cg-RX-API-DMAC7.html) | ||
| JP2583935B2 (ja) | サーミスタ用酸化物半導体 | |
| JPS5945964A (ja) | セラミツク抵抗材料 | |
| KR20160061457A (ko) | La 산화물을 주성분으로 하는 온도센서용 서미스터 세라믹 조성물 | |
| CN114999753A (zh) | 一种锰/镧/铁改性氧化钨基负温度系数热敏电阻材料 |