US3921818A - Crane suspension control apparatus - Google Patents

Crane suspension control apparatus Download PDF

Info

Publication number
US3921818A
US3921818A US455906A US45590674A US3921818A US 3921818 A US3921818 A US 3921818A US 455906 A US455906 A US 455906A US 45590674 A US45590674 A US 45590674A US 3921818 A US3921818 A US 3921818A
Authority
US
United States
Prior art keywords
crane
signal
trolley
speed
control system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US455906A
Other languages
English (en)
Inventor
Toshio Yamagishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Application granted granted Critical
Publication of US3921818A publication Critical patent/US3921818A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/90Specific system operational feature
    • Y10S388/904Stored velocity profile

Definitions

  • FIG. 7 FIG. 8
  • This invention relates to a method and system for controlling the positioning of a suspension type crane and more particularly to an improved method and system for suppressing swinging motions of a suspension rope of a trolley of the crane and for stopping the trolley at a correct target position when the swing of the rope is reduced to zero or substantially to zero
  • a suspension type crane is accelerated or decelerated during its transverse running, the rope suspending a load undergoes a pendulum motion.
  • pendulum motion or swinging motion can be suppressed by the operation of the operator of the crane.
  • equation 13 expresses the pendulum motion of the rope and the load.
  • phase surface locus takes the form of a circle having its center at the origin and a radius
  • both swing angle 0 and angular velocity of the swinging motion become zero so that it will be clear that during the succeeding interval in which the trolley runs at a constant speed the swing angle of the rope is always maintained zero.
  • equation 39 is a complicated equation in terms of implicit functions including complicated trigonometrical functions
  • a complicated and expensive electronic computor is necessary for the simultaneous solution of equations 32, 34 and 39. Incorporation of such an expensive computer into the control system of a crane increases the cost thereof so that at present the control system is not provided with such computer but merely depends upon a mathematical analysis.
  • the inventor has solved equations 32, 34 and 39 with an electronic computer utilizing the data regarding the rope length and the transverse running speed of the trolley and found that a high accuracy sufficient for the practical use can be obtained from the following equation 40 in which interval (t, t,,) is approximated as the explicit functions of Vmax, and 1.
  • t t, and t 2 can be obtained as follows from equations 32 and 34.
  • time t (or 1 represents an instant at which the transverse running speed of the trolley reaches a predetermined ultimate value and at which the difference between the ultimate speed commanded by the trolley controller and the actual running speed of the trolley reduces to substantially zero. Accordingly, by terminating the acceleration or deceleration by detecting this condition it will be not necessary to calculate t by using equation 42. In other words, it is sufficient to calculate (t t and (t I alone by using equations 40 and 41.
  • FIG. 12 shows the relationship between the switching time t and the rope length obtained by solving equations 32, 34 and 39 for the rope length of from 7.5m to 22.5m and the trolley running speed of from 31.25 m/min. to lm/min.
  • Straight lines shown in FIG. 12 show the solution of equation 40.
  • FIG. 12 shows that even when the switching time is calculated according to equation 40 of approximation, it is possible to realize sufficiently high practical accuracy for the ranges of the rope length variation and the trolley speed variation encounted in the actual use.
  • Equations 29, and 31 also show that the stroke of the trolley (the area of the lefthand shaded portion in FIG. 1) during interval t t in which the trolley has accelerated to a maximum speed Vmax after starting is equal to the stroke (the area of the righthand shaded portion in FIG. 1) during interval t t, in which the trolley has decelerated from Vmax to standstill.
  • This method of operation is the result of approximation of the above described analysis in terms of the maximum speed and the length of the rope.
  • Another object of this invention is to provide a novel method and system for controlling a suspension type crane capable of initiating the deceleration at a correct 10 time for stopping it at a predetermined target position without any swinging motion of the rope.
  • Still another object of this invention is to provide a novel method and system of controlling a suspension type crane capable of operating the same with a minumum time without permitting any swing to the rope while the crane is running at a constant speed and when the crane is stopped, thereby increasing the cargo efficiency.
  • a further object of this invention is to provide a novel acceleration-dcce[eration pattern signal generating circuit suitable for use in this invention.
  • a method of controlling a suspension type crane which is moved transversely while suspending a load by means of a rope wherein the crane is accelerated at least two times at spaced points to a predetermined maximum speed during the acceleration period, the swing of the rope is minimized when the predetermined maximum speed is reached, the crane is run at the predetermined maximum speed for a predetermined interval, the crane is decelerated from the maximum speed at least two times at spaced points during the deceleration period, and the crane is stopped when the swing of the rope is reduced to a minimum, characterized in that the areas of the acceleration and deceleration periods of the crane are made equal.
  • a control system for a suspension type crane running in the transverse direction characterized by comprising means for providing a start command signal, means responsive to the start command signal for determining a maximum transverse running speed of the crane corresponding to the starting position and a predetermined target position of the crane, means for providing a deceleration command signal when the crane reaches a point a predetermined distance before the target position, which is determined by the maximum transverse running speed, means for generating a deceleration command signal, and means responsive to the start command signal or the deceleration command signal for providing a predetermined accelerationdeceleration pattern signal corresponding to the maximum transverse running speed, whereby the running speed of the crane is controlled so as to stop the crane at the target position.
  • FIG. 1 is a diagram showing a typical transverse running speed pattern of the trolley of a suspension type crane which can be realized by the control system of this invention
  • FIGS. 2 to 11 inclusive are diagrams useful to explain the principle of this invention.
  • FIG. 12 is a graph showing the relationship between the switching time and the rope length calculated for various rope lengths and trolley speeds which are used actually;
  • FIG. 13 is a block diagram of one embodiment of the novel control system of this invention.
  • FIG. 14 is a block diagram of a modified embodiment of this invention.
  • FIG. 15 shows a modified speed pattern
  • FIG. 16 is a block diagram of a crane control system
  • FIG. 17 is a block diagram showing one example of the acceleration-deceleration switching time operating circuit utilized in this invention.
  • FIG. 18 is a diagram for explaining the operation of the operating circuit shown in FIG. 17;
  • FIG. 19 shows a block diagram of the speed reference generating circuit controlled by the operating circuit shown in FIG. 17.
  • FIG. is a diagram for explaining the operation of the speed reference generating circuit shown in FIG. 19.
  • FIG. 13 shows the construction of one embodiment of the control system of this invention which comprises a deceleration command signal generator A which generates a deceleration commandsignal in accordance with the deviation A L of the present position L from the target position L0 for providing a transverse running speed pattern as shown in FIG. 1, a maximum transverse running speed determining unit B which determines the maximum transverse running speed Vmax in accordance with a deviation A L corresponding to the distance L0 to the target position and rope length 1 (for the reason to be described later, rope length is not taken into consideration at the present stage of the description).
  • an acceleration-deceleration pattern generator C connected to receive the output from the maximum transverse running speed determining unit B when the deceleration command signal generator A operates for forming the transverse running speed pattern shown in FIG. 1, and a speed controller D for controlling the speed ofa motor M for driving the trolley in accordance with the output from the acceleration-deceleration pattern generator C.
  • the deceleration command signal generator A will firstly be described.
  • Intervals (t, t and (t can be obtained from the following equations.
  • the deceleration command signal generator A stores a signal corresponding to distance S and operates to compare the deviation AL L0 L) of the present position L of the trolley from the target postion L0, with signal S for producing a deceleration command signal when AL becomes equal to S.
  • the deceleration command signal can be generated by switching the speed command for the acce[eration-deceleration pattern generator C from Vmax to 0, as shown in FIG. 13.
  • the maximum transverse running speed determining unit B will now be described. While in the foregoing description it was explained that the maximum transverse running speed Vmax is prescribed, as can be noted, from equation 43 where the maximum speed Vmax and rope length 1 are given it is possible to determine acceleration and decleration intervals 1 t r, t t t t t t and 1 r Accordingly, where the values of Vmax and l are given, the distance over which the trolley runs between starting and completion of acceleration, and the distance over which the trolley runs from the maximum speed until it stops will also be determined.
  • the purpose of the maximum transverse running speed determining unit B is to determine such an optimum maximum transverse running speed.
  • the maximum speed Vmax can be derived from equations 42, 43 and 44 by putting (In lieu of equation 44, equation 45 can also be used). For this reason, in FIG. 12 the distance between the starting position and the target position is designated by Lo/2. As shown in FIG. 12, since the maximum speed Vmax does not vary so much with the rope length 1, it is possible to simplify the control device by ignoring the effect of length 1.
  • FIG. 13 shows such simplified construction wherein a signal representing 1 is not applied to the maximum transverse running speed determining unit B.
  • the acceleration-deceleration pattern generator C it is comprised essentially of integrators and is constructed and operated to generate a predetermined acceleration-deceleration pattern signal as will be described later in detail in connection with FIGS. 17 to 20.
  • the deceleration command signal generator A switches the input to the acceleration-deceleration pat tern generator C from signal Vmax to a reference signal 0 at time 2
  • a signal representing the rope length l is also applied to the pattern generator C for

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Ship Loading And Unloading (AREA)
US455906A 1973-04-02 1974-03-28 Crane suspension control apparatus Expired - Lifetime US3921818A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3766573A JPS5414389B2 (xx) 1973-04-02 1973-04-02

Publications (1)

Publication Number Publication Date
US3921818A true US3921818A (en) 1975-11-25

Family

ID=12503915

Family Applications (1)

Application Number Title Priority Date Filing Date
US455906A Expired - Lifetime US3921818A (en) 1973-04-02 1974-03-28 Crane suspension control apparatus

Country Status (5)

Country Link
US (1) US3921818A (xx)
JP (1) JPS5414389B2 (xx)
AR (1) AR211224A1 (xx)
BR (1) BR7402613D0 (xx)
GB (1) GB1462428A (xx)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121293A (en) * 1976-02-28 1978-10-17 Ferranti Limited Indication means for indicating suitable conditions for the transfer of loads between two stations movable relative to each other in a vertical plane
EP0089662A1 (de) * 1982-03-22 1983-09-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Einrichtung an Hebezeugen für die selbsttätige Steuerung der Bewegung des Lastträgers mit Beruhigung des Pendels der an ihm hängenden Last
US4512711A (en) * 1981-09-21 1985-04-23 Asea Aktiebolag Unloading of goods, such as bulk goods from a driven, suspended load-carrier
DE3513007A1 (de) * 1984-04-11 1985-12-19 Hitachi, Ltd., Tokio/Tokyo Verfahren und anordnung zur automatischen steuerung eines krans
FR2571867A1 (fr) * 1984-10-11 1986-04-18 Bertin & Cie Procede et dispositif pour limiter le ballant d'une charge librement suspendue sous un support mobile.
EP0242400A1 (en) * 1985-08-28 1987-10-28 The Hokkaidi Electric Power Co., Inc. Hanging-type transport apparatus for bolt-pulling machine and apparatus for controlling the positioning thereof
DE3714570A1 (de) * 1986-05-02 1987-11-05 Mitsubishi Electric Corp Schwingungen entgegenwirkende steuerung fuer einen haengekran
US4717029A (en) * 1985-08-16 1988-01-05 Hitachi, Ltd. Crane control method
DE3722738A1 (de) * 1986-07-11 1988-01-28 Hitachi Ltd Kransteuerverfahren
US4808895A (en) * 1987-11-30 1989-02-28 Toshiba Machine Co., Ltd. Acceleration control apparatus
US4997095A (en) * 1989-04-20 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Methods of and system for swing damping movement of suspended objects
EP0473784A1 (en) * 1990-03-23 1992-03-11 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for controlling stopping of turning of upper swing unit for construction machines, and angle of inclination computing apparatus
EP0481501A1 (en) * 1990-10-18 1992-04-22 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method and apparatus for controlling slewing stop of upper slewing body in construction machine
WO1994011293A1 (en) * 1992-11-17 1994-05-26 Hytoenen Kimmo Method for the control of a harmonically oscillating load
WO1994018107A1 (en) * 1993-02-01 1994-08-18 Hytoenen Kimmo Method and equipment for controlling the operations of a crane
EP0685779A1 (en) * 1994-06-03 1995-12-06 Toyota Jidosha Kabushiki Kaisha Method of computing drive pattern for suppressing vibration of industrial robot
US5529193A (en) * 1991-04-11 1996-06-25 Hytoenen; Kimmo Crane control method
US5550733A (en) * 1994-03-25 1996-08-27 Korea Atomic Energy Research Institute Velocity control method for preventing oscillations in crane
WO1997013717A1 (en) * 1995-10-12 1997-04-17 Wallace Walter J Jr Method and apparatus for controlling a crane
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
CN1043334C (zh) * 1994-03-28 1999-05-12 三菱重工业株式会社 一种卷扬物件摇摆阻尼控制装置
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US6050429A (en) * 1996-12-16 2000-04-18 Habisohn; Chris X. Method for inching a crane without load swing
US6102221A (en) * 1996-01-26 2000-08-15 Habisohn; Chris Xavier Method for damping load oscillations on a crane
US6135301A (en) * 1994-03-28 2000-10-24 Mitsubishi Jukogyo Kabushiki Kaisha Swaying hoisted load-piece damping control apparatus
WO2001087762A1 (de) * 2000-05-15 2001-11-22 Tax Technical Consultancy Gmbh Verfahren zum korrigieren des zustands eines lastträgers
US6768421B1 (en) 2003-01-31 2004-07-27 Veritainer Corporation Container crane radiation detection systems and methods
US20040156477A1 (en) * 2003-01-31 2004-08-12 Paul Bjorkholm Radiation scanning of cargo conveyances at seaports and the like
WO2005007553A1 (en) * 2003-07-17 2005-01-27 Kci Konecranes Plc Method for controlling a crane
US20050016005A1 (en) * 1999-12-14 2005-01-27 Voecks Larry A. Apparatus and method for measuring and controlling pendulum motion
US20080271329A1 (en) * 1999-12-14 2008-11-06 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US20090312953A1 (en) * 2008-06-17 2009-12-17 Veritainer Corporation Mitigation of Nonlinear Background Radiation During Real Time Radiation Monitoring of Containers at a Quayside Crane
US20100128852A1 (en) * 2008-11-24 2010-05-27 Veritainer Corporation Detector Characterization and Calibration
US20110089388A1 (en) * 2008-06-23 2011-04-21 Jussi Kiova Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
WO2011060640A1 (zh) * 2009-11-20 2011-05-26 湖南三一智能控制设备有限公司 吊钩姿态检测装置和起重机
US8687764B2 (en) 2010-04-14 2014-04-01 Uday S. Roy Robotic sensor
US20140202970A1 (en) * 2013-01-22 2014-07-24 National Taiwan University Fast crane and operation method for same
CN103991801A (zh) * 2014-05-12 2014-08-20 中联重科股份有限公司 塔机及其吊钩防摇控制方法、装置和系统
EP2987759A1 (de) * 2014-08-18 2016-02-24 Siemens Aktiengesellschaft Kran mit definierter Pendelbewegung bei Erreichen eines Zielorts
CN110775818A (zh) * 2019-09-25 2020-02-11 南京航空航天大学 一种基于机器视觉的起重机防摇摆控制方法
CN110950241A (zh) * 2019-12-20 2020-04-03 博睿斯重工股份有限公司 一种智能起重机的电子防摇方法
US10865075B2 (en) * 2017-09-21 2020-12-15 Manitowoc Crane Group France Dynamic optimization of a crane load curve
US20210284507A1 (en) * 2018-07-25 2021-09-16 Tadano Ltd. Crane and control system for crane
WO2023179583A1 (zh) * 2022-03-24 2023-09-28 江苏苏港智能装备产业创新中心有限公司 一种抑制抓斗摇摆的控制方法、装置、设备及存储介质
WO2024010745A1 (en) * 2022-07-06 2024-01-11 Magnetek, Inc. Dynamic maximum frequency in a slow-down region for a material handling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114955882B (zh) * 2022-05-24 2023-08-18 山东大学 桥式起重机防摇摆控制方法、系统及控制器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806610A (en) * 1953-10-27 1957-09-17 Raymond C Goertz Anti-swing crane
US3351213A (en) * 1964-12-08 1967-11-07 Davy And United Instr Ltd Control systems
US3517830A (en) * 1967-10-10 1970-06-30 Vilkko Antero Virkkala Cranes
US3850308A (en) * 1970-05-09 1974-11-26 Siemens Ag Apparatus for accommodating the pendulum action of a load carried by a rope from a traveller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2806610A (en) * 1953-10-27 1957-09-17 Raymond C Goertz Anti-swing crane
US3351213A (en) * 1964-12-08 1967-11-07 Davy And United Instr Ltd Control systems
US3517830A (en) * 1967-10-10 1970-06-30 Vilkko Antero Virkkala Cranes
US3850308A (en) * 1970-05-09 1974-11-26 Siemens Ag Apparatus for accommodating the pendulum action of a load carried by a rope from a traveller

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121293A (en) * 1976-02-28 1978-10-17 Ferranti Limited Indication means for indicating suitable conditions for the transfer of loads between two stations movable relative to each other in a vertical plane
US4512711A (en) * 1981-09-21 1985-04-23 Asea Aktiebolag Unloading of goods, such as bulk goods from a driven, suspended load-carrier
EP0089662A1 (de) * 1982-03-22 1983-09-28 Fried. Krupp Gesellschaft mit beschränkter Haftung Einrichtung an Hebezeugen für die selbsttätige Steuerung der Bewegung des Lastträgers mit Beruhigung des Pendels der an ihm hängenden Last
DE3210450A1 (de) * 1982-03-22 1983-10-13 BETAX Gesellschaft für Beratung und Entwicklung technischer Anlagen mbH, 8000 München Einrichtung an hebezeugen fuer die selbsttaetige steuerung der bewegung des lasttraegers mit beruhigung des pendelns der an ihm haengenden last
US4603783A (en) * 1982-03-22 1986-08-05 Betax Gesellschaft Fur Beratung Und Entwicklung Technischer Anlagen Mbh Device on hoisting machinery for automatic control of the movement of the load carrier
DE3513007A1 (de) * 1984-04-11 1985-12-19 Hitachi, Ltd., Tokio/Tokyo Verfahren und anordnung zur automatischen steuerung eines krans
FR2571867A1 (fr) * 1984-10-11 1986-04-18 Bertin & Cie Procede et dispositif pour limiter le ballant d'une charge librement suspendue sous un support mobile.
WO1986002341A1 (fr) * 1984-10-11 1986-04-24 Bertin & Cie. Procede et dispositif pour limiter le ballant d'une charge librement suspendue sous un support mobile
US4717029A (en) * 1985-08-16 1988-01-05 Hitachi, Ltd. Crane control method
EP0242400A4 (fr) * 1985-08-28 1987-12-08 Hokkaido Electric Power Appareil de transport du type suspendu pour machine d'extraction de goujons, et appareil permettant de commander le positionnement de celui-ci.
EP0242400A1 (en) * 1985-08-28 1987-10-28 The Hokkaidi Electric Power Co., Inc. Hanging-type transport apparatus for bolt-pulling machine and apparatus for controlling the positioning thereof
DE3714570A1 (de) * 1986-05-02 1987-11-05 Mitsubishi Electric Corp Schwingungen entgegenwirkende steuerung fuer einen haengekran
FR2598141A1 (fr) * 1986-05-02 1987-11-06 Mitsubishi Electric Corp Dispositif de commande de suppression des oscillations dans une grue du type a suspension.
DE3722738A1 (de) * 1986-07-11 1988-01-28 Hitachi Ltd Kransteuerverfahren
US4756432A (en) * 1986-07-11 1988-07-12 Hitachi, Ltd. Crane control method
US4808895A (en) * 1987-11-30 1989-02-28 Toshiba Machine Co., Ltd. Acceleration control apparatus
US4997095A (en) * 1989-04-20 1991-03-05 The United States Of America As Represented By The United States Department Of Energy Methods of and system for swing damping movement of suspended objects
EP0473784A1 (en) * 1990-03-23 1992-03-11 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for controlling stopping of turning of upper swing unit for construction machines, and angle of inclination computing apparatus
EP0473784A4 (en) * 1990-03-23 1992-09-23 Kabushiki Kaisha Kobe Seiko Sho Method of and apparatus for controlling stopping of turning of upper swing unit for construction machines, and angle of inclination computing apparatus
US5251768A (en) * 1990-03-23 1993-10-12 Kabushiki Kaisha Kobe Seiko Sho Method and device for controlling braking of an upper rotary body of a construction machine and a device for calculating the inclination angle of the upper rotary body
EP0481501A1 (en) * 1990-10-18 1992-04-22 KABUSHIKI KAISHA KOBE SEIKO SHO also known as Kobe Steel Ltd. Method and apparatus for controlling slewing stop of upper slewing body in construction machine
US5272877A (en) * 1990-10-18 1993-12-28 Kabushiki Kaisha Kobe Seiko Sho Method and apparatus for controlling swing stop of upper swing body in construction machine
US5529193A (en) * 1991-04-11 1996-06-25 Hytoenen; Kimmo Crane control method
WO1994011293A1 (en) * 1992-11-17 1994-05-26 Hytoenen Kimmo Method for the control of a harmonically oscillating load
GB2290393A (en) * 1993-02-01 1995-12-20 Kimmo Hytoenen Method and equipment for controlling the operations of a crane
GB2290393B (en) * 1993-02-01 1996-05-08 Kimmo Hytoenen Method and equipment for controlling the operations of a crane
WO1994018107A1 (en) * 1993-02-01 1994-08-18 Hytoenen Kimmo Method and equipment for controlling the operations of a crane
US5550733A (en) * 1994-03-25 1996-08-27 Korea Atomic Energy Research Institute Velocity control method for preventing oscillations in crane
CN1043334C (zh) * 1994-03-28 1999-05-12 三菱重工业株式会社 一种卷扬物件摇摆阻尼控制装置
US6234332B1 (en) * 1994-03-28 2001-05-22 Mitsubishi Jukogyo Kabushiki Kaisha Swaying hoisted load-piece damping control apparatus
US6135301A (en) * 1994-03-28 2000-10-24 Mitsubishi Jukogyo Kabushiki Kaisha Swaying hoisted load-piece damping control apparatus
EP0685779A1 (en) * 1994-06-03 1995-12-06 Toyota Jidosha Kabushiki Kaisha Method of computing drive pattern for suppressing vibration of industrial robot
US5627440A (en) * 1994-06-03 1997-05-06 Toyota Jidosha Kabushiki Kaisha Method of computing drive pattern for suppressing vibration of industrial robot
CN1096409C (zh) * 1995-10-12 2002-12-18 杰特克起重机控制公司 控制和操纵集装箱起重机或其他类似起重机的方法和装置
WO1997013717A1 (en) * 1995-10-12 1997-04-17 Wallace Walter J Jr Method and apparatus for controlling a crane
US5909817A (en) * 1995-10-12 1999-06-08 Geotech Crane Controls, Inc. Method and apparatus for controlling and operating a container crane or other similar cranes
US5713477A (en) * 1995-10-12 1998-02-03 Wallace, Jr.; Walter J. Method and apparatus for controlling and operating a container crane or other similar cranes
US6102221A (en) * 1996-01-26 2000-08-15 Habisohn; Chris Xavier Method for damping load oscillations on a crane
US5908122A (en) * 1996-02-29 1999-06-01 Sandia Corporation Sway control method and system for rotary cranes
US5785191A (en) * 1996-05-15 1998-07-28 Sandia Corporation Operator control systems and methods for swing-free gantry-style cranes
US6050429A (en) * 1996-12-16 2000-04-18 Habisohn; Chris X. Method for inching a crane without load swing
US7845087B2 (en) 1999-12-14 2010-12-07 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US7121012B2 (en) 1999-12-14 2006-10-17 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US7395605B2 (en) 1999-12-14 2008-07-08 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US20080271329A1 (en) * 1999-12-14 2008-11-06 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
US20050016005A1 (en) * 1999-12-14 2005-01-27 Voecks Larry A. Apparatus and method for measuring and controlling pendulum motion
US20070033817A1 (en) * 1999-12-14 2007-02-15 Voecks Larry A Apparatus and method for measuring and controlling pendulum motion
WO2001087762A1 (de) * 2000-05-15 2001-11-22 Tax Technical Consultancy Gmbh Verfahren zum korrigieren des zustands eines lastträgers
US7783003B2 (en) 2003-01-31 2010-08-24 Varian Medical Systems, Inc. Rotating carriage assembly for use in scanning cargo conveyances transported by a crane
US6768421B1 (en) 2003-01-31 2004-07-27 Veritainer Corporation Container crane radiation detection systems and methods
US20060115043A1 (en) * 2003-01-31 2006-06-01 Clayton James E Rotating carriage assembly for use in scanning cargo conveyances transported by a crane
US7274767B2 (en) 2003-01-31 2007-09-25 Varian Medical Systems Technologies, Inc. Rotating carriage assembly for use in scanning cargo conveyances transported by a crane
US7317782B2 (en) 2003-01-31 2008-01-08 Varian Medical Systems Technologies, Inc. Radiation scanning of cargo conveyances at seaports and the like
US20080084963A1 (en) * 2003-01-31 2008-04-10 Clayton James E Rotating carriage assembly for use in scanning cargo conveyances transported by a crane
US20040156477A1 (en) * 2003-01-31 2004-08-12 Paul Bjorkholm Radiation scanning of cargo conveyances at seaports and the like
US7484632B2 (en) 2003-07-17 2009-02-03 Kci Konecranes Plc Method for controlling a crane
WO2005007553A1 (en) * 2003-07-17 2005-01-27 Kci Konecranes Plc Method for controlling a crane
CN100418872C (zh) * 2003-07-17 2008-09-17 Kci科恩起重机公开有限公司 控制起重机的方法
US20060175276A1 (en) * 2003-07-17 2006-08-10 Kci Konecranes Plc Method for controlling a crane
US20090312953A1 (en) * 2008-06-17 2009-12-17 Veritainer Corporation Mitigation of Nonlinear Background Radiation During Real Time Radiation Monitoring of Containers at a Quayside Crane
US8651301B2 (en) * 2008-06-23 2014-02-18 Konecranes Plc Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
US20110089388A1 (en) * 2008-06-23 2011-04-21 Jussi Kiova Method of controlling rotation speed of motor of speed-controllable hoist drive, and hoist drive
US20100128852A1 (en) * 2008-11-24 2010-05-27 Veritainer Corporation Detector Characterization and Calibration
WO2011060640A1 (zh) * 2009-11-20 2011-05-26 湖南三一智能控制设备有限公司 吊钩姿态检测装置和起重机
CN101723239B (zh) * 2009-11-20 2012-05-02 三一汽车制造有限公司 吊钩姿态检测装置和起重机
US8627575B2 (en) 2009-11-20 2014-01-14 Hunan Sany Intelligent Control Equipment Co., Ltd. Hook pose detecting equipment and crane
US8687764B2 (en) 2010-04-14 2014-04-01 Uday S. Roy Robotic sensor
US9802793B2 (en) * 2013-01-22 2017-10-31 National Taiwan University Fast crane and operation method for same
US20140202970A1 (en) * 2013-01-22 2014-07-24 National Taiwan University Fast crane and operation method for same
CN103991801A (zh) * 2014-05-12 2014-08-20 中联重科股份有限公司 塔机及其吊钩防摇控制方法、装置和系统
CN103991801B (zh) * 2014-05-12 2016-02-17 中联重科股份有限公司 塔机及其吊钩防摇控制方法、装置和系统
EP2987759A1 (de) * 2014-08-18 2016-02-24 Siemens Aktiengesellschaft Kran mit definierter Pendelbewegung bei Erreichen eines Zielorts
US10865075B2 (en) * 2017-09-21 2020-12-15 Manitowoc Crane Group France Dynamic optimization of a crane load curve
US20210284507A1 (en) * 2018-07-25 2021-09-16 Tadano Ltd. Crane and control system for crane
US11858784B2 (en) * 2018-07-25 2024-01-02 Tadano Ltd. Crane and control system for crane
CN110775818A (zh) * 2019-09-25 2020-02-11 南京航空航天大学 一种基于机器视觉的起重机防摇摆控制方法
CN110775818B (zh) * 2019-09-25 2020-10-27 南京航空航天大学 一种基于机器视觉的起重机防摇摆控制方法
CN110950241A (zh) * 2019-12-20 2020-04-03 博睿斯重工股份有限公司 一种智能起重机的电子防摇方法
WO2023179583A1 (zh) * 2022-03-24 2023-09-28 江苏苏港智能装备产业创新中心有限公司 一种抑制抓斗摇摆的控制方法、装置、设备及存储介质
WO2024010745A1 (en) * 2022-07-06 2024-01-11 Magnetek, Inc. Dynamic maximum frequency in a slow-down region for a material handling system
US11932519B2 (en) 2022-07-06 2024-03-19 Magnetek, Inc. Dynamic maximum frequency in a slow-down region for a material handling system

Also Published As

Publication number Publication date
GB1462428A (en) 1977-01-26
AU6735574A (en) 1975-10-02
AR211224A1 (es) 1977-11-15
BR7402613D0 (pt) 1974-11-19
JPS49124761A (xx) 1974-11-29
JPS5414389B2 (xx) 1979-06-06

Similar Documents

Publication Publication Date Title
US3921818A (en) Crane suspension control apparatus
US4756432A (en) Crane control method
KR0156269B1 (ko) 리프팅기 내에서 평행하게 이동가능한 캐리지로부터 케이블에 매달린 하중물의 이동을 제어하는 장치
JPS6241189A (ja) クレ−ン制御方式
GB1356986A (en) Apparatus for the displacement of an object between two points of a predetermined path
US3629560A (en) Apparatus for controlled deceleration in numerical positioning
JPH0742072B2 (ja) 懸垂式クレーンにおける振れ止め制御装置
US4602196A (en) Measurement method, and apparatus therefor
JPS6138118B2 (xx)
JP2569446B2 (ja) 吊り荷の振れ止め運転制御方法
JPS582917B2 (ja) トロリウンテンセイギヨソウチ
JP2666959B2 (ja) 懸垂式クレーンの振れ止め制御方法
JP3132757B2 (ja) クレーン制御方法
JPH09267989A (ja) クレーン吊り荷の振れ止め制御方法
US5323097A (en) Method for producing a speed reference signal for crane motor control
JPH0356395A (ja) 天井クレーンにおける振れ止め制御装置
JPH09183589A (ja) クレーンの振れ止め・位置決め制御方法
JPS6223714B2 (xx)
JP2837313B2 (ja) クレーンの振れ止め・位置決め制御装置
JP2799955B2 (ja) 吊り荷運搬用クレーンの振れ止め制御方法及び装置
JPS5912085A (ja) クレ−ン吊り荷の振れ止め制御方法
JP2799670B2 (ja) 吊り荷運搬用クレーンの振れ止め制御方法及び装置
JP2772883B2 (ja) クレーンの振れ止め・位置決め制御装置及び制御方法
JPH02132097A (ja) 天井クレーンにおける振れ止め制御方法
JPS57185517A (en) Control system for moving body