US3859757A - Grinding machine with belts - Google Patents
Grinding machine with belts Download PDFInfo
- Publication number
- US3859757A US3859757A US328737A US32873773A US3859757A US 3859757 A US3859757 A US 3859757A US 328737 A US328737 A US 328737A US 32873773 A US32873773 A US 32873773A US 3859757 A US3859757 A US 3859757A
- Authority
- US
- United States
- Prior art keywords
- pressure
- workpiece
- grinding
- belt
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B21/00—Machines or devices using grinding or polishing belts; Accessories therefor
- B24B21/04—Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces
- B24B21/06—Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces involving members with limited contact area pressing the belt against the work, e.g. shoes sweeping across the whole area to be ground
Definitions
- ABSTRACT A belt grinding machine, including a workpiece conveyor mechanism, an endless grinding belt circulating above the conveyor transversely or longitudinally of the direction of movement of the workpiece, a resilient pressure member, associated with the said grinding belt to move and hold the grinding belt against the surface of a workpiece to be ground, a plurality of double acting pressure medium-operated cylinders and pistons arranged at intervals in the direction of the grinding movement of the belt, wherein each pressure medium operated cylinder is secured by its piston rod directly to the pressure member and is provided with a duct feeding a pressure medium moving the piston to a raised position of the grinding belt, and a duct feeding a mediumfor moving the piston to a working position of the grinding belt, and a control valve feeding the medium for the grinding pressure to the cylinder against the lifting pressure, or evacuating the medium from the cylinder, inserted
- the present invention concerns a grinding machine with means for conveying workpieces therethrough.
- the machine comprises a conveyor mechanism including belts, chains or. the likemoving the workpieces to be ground, an endless grinding belt circulating transversely or longitudinally with respect to the direction of movement of the workpieces and located-above the conveyor mechanism, and a resilient pressure member associated with this grinding belt to urge it against the surface of the workpieces to be ground.
- the said member includes a plurality of double acting cylinders operated by a pressure medium and arranged at adjacent spaced intervals along the direction of movement of the grinding belt.
- Such belt grinding machines which are known in various forms more particularly for grindng flat workpieces having regular or irregular shapes, are usually provided, with a complicated and expensive mechanical control device for moving the grinding belt towards the workpieces to be ground and away from the workpieces to an inoperative position. In spite of this complication, these machines do not give perfect grinding results, particularly in the case of somewhat uneven workpiece surfaces.
- the belt grinding machine is to be constructed with a simply designed and reliably operating pulse transmitterfor parts which move the grinding belt.
- the grinding belt is to be moved by simple, reliable and smoothly operating means positively controlled in its type of movement by the configuration of the workpiece.
- a further object resides in the simple, economical and durable construction of a grinding belt support enabling the operative surface of the grinding belt to be adapted to the surface of the workpiece to be ground.
- a further object is seen in the provision of grinding belt pressure elements rendering possible grinding of both plane and uneven workpiece surfaces.
- each said cylinder secured by its piston rod directly to said pressure member, is provided with a duct feeding a pressure medium to move the piston to a raised position of the grinding belt and a duct feeding a medium to move the piston to a working position of the grinding belt, a control valve which feeds the medium for the grinding pressure to said cylinder against the lifting pressure, or evacuates it from said cylinder is interposed in said duct effecting the raised position of the grinding belt and is connected by means of an electrical switching and control device to a time relay adjustable in dependence on the presence of a workpiece to a scanning member actuating said switching and control device.
- a belt grinding machine wherein the two actuated piston surfaces of the piston vertically reciprocated at right angles to the plane of movement of the workpiece, of each said cylinder are connected by way of said duct each to a pressure medium chamber extending over all adjacent said cylinders, preferably a closed pipe sealed at the ends, and, from the lower pressure medium pipe of the two superimposed said pipes, a me dium is fed-continuously loading the lower actuating surface of said piston and holding or bringing it in a lifted position and from the upper pipe a medium is fed, greater in pressure, loading the: upper piston surface and bringing said piston into a working position dependent on the movement of the workpiece, whilst a valve, preferably a magnetic valve, is inserted in said pressure medium duct for the pressure movement, said valve being controllable dependently on the workpiece, wherein the said control valve associated with each said cylinder is connected by way of an adjustable switching and control device, preferably a time-relay, with a contact switch which holds on a
- a belt grinding machine of the present invention is fitted with control means for the respective operating and resting positions of the grinding belt, which control means presses the grinding belt against a workpiece surface to be ground and lifts it from the workpiece when the grinding process is finished.
- the pressure member holding the grinding belt against the workpiece is moved by means of hydraulic cylinders under control of means for sensing the pressure of the workpiece. Electrical switching and control devices are actuated so that the resilient pressure member only adapts itself to the surface of the workpiece, its capacity to do so being improved by providing separate movement of each individual cylinder. The pressure member is thus moved flexibly against the workpiece by the individual cylinders, with the result that any irregularities in the surface of the workpiece are compensated.
- each piston of the cylinders has the same pressure exerted on each piston of the cylinders, and since each piston can effect a certain stroke, compensation for tolerances in the workpiece surface is possible within this range; one piston may extend further than another in the direction of the workpiece surface and thus individual portions of the grinding belt are brought by the pressure member into contact with the workpiece surface to be ground.
- Each hydraulic cylinder is controlled by its own sensing member which senses the edge of the workpiece and then initiates the pressure movement of the driving belt with a delayed action.
- adjacent cylinders can be moved independently of each other by one or more sensing members and one or more coordinated electrical switching and control devices.
- the control means is economically designed by the avoidance of complicated mechanical means and the provision of time relays as switching and control devices, and is greatly improved in its operation compared with conventional control means.
- FIG. 1 is a perspective view of a belt grinding machine of the present invention
- FIG. 2 is a side view in partial section of the pressure member
- FIG. 3 is a plan view of the pressure member arranged above the conveyor.
- FIG. 4 is a front view of the pressure member showing the pressure operated cylinders.
- a belt grinding machine for grinding regularly or irregularly shaped plate-like workpieces 10, which may have an even or somewhat uneven surface, has a machine frame 11, a motor-driven conveyor 12, shown as including endless belts, the conveyor moving the workpieces to be ground, in a continuous process. Above this conveyor 12 is mounted an endless grinding belt l3 which circulates transversely to the direction of movement of the workpieces and is motor-driven independently of the conveyor 12. The belt is held against the workpiece 10 in the grinding position by a resilient pressure member 14, extending substantially over the lower length of the grinding belt 13 between its two guide pulleys 15, or between guide pulleys 49 of a laminated pressure belt 48.
- This pressure member 14 has a plurality of fluid pressure operated cylinders 16 which are arranged adjacent each other at uniformly spaced intervals along the direction of movement of the grinding belt and effect a movement of the pressure member 14 into a grinding position (the grinding belt 13 is pressed against the workpiece surface to be ground) or into a raised position (no grinding contact between grinding belt 13 and workpiece surface).
- Each cylinder 16 is attached to the pressure member 14 by its piston rod 17 which is displaceable at right angles to the plane of movement of the workpiece; this piston rod 17 is actuated by a double-acting piston 18 in cylinder 16 which may be displaced backward or forward by a pressurised fluid, preferably air, though it may also be oil or other liquid. This moves the pressure member 14 into a resting or operative position.
- Each cylinder 16 is provided with ducts feeding the pressure medium to produce a raised or working position of the grinding belt.
- a control valve 19 which supplies the medium for applying grinding pressure to the pressure operated cylinder 16 or evacuates it from the cylinder.
- the valve is actuated by a relay 20 and a senser 21.
- each pressure operated cylinder 16 is divided into two chambers 22, 23 by double acting piston 18. It is provided, near the chamber 22 adjacent to the pressure member 14, with a duct 25 connecting this chamber 22 to a pressure medium chamber 24, and near its chamber 23 with a duct 26 which connects the chamber 23 to a pressure medium chamber 27 and the control valve 19.
- the two pressure medium chambers 24, 27 are separated from each other and extend across all the pressure operated cylinders. These two pressure medium chambers are of rectangular cross section, the depth of which corresponds to the length of each cylinder.
- Two spaced apart supporting brackets 28 are disposed on extension arms 11a on the machine chassis 11 above the grinding belt 13. They carry on their rear sides the two superimposed chambers 24, 27 and on their front sides, a support member 29 on which the sensers are mounted.
- each pressure medium cylinder 16 is provided at its lower end with a projecting piston rod 17, displaceable in a vertical plane and, at its upper.
- each chamber 24, 27 is traversed by a connecting means, preferably a bolt 31, 32 which acts to keep the cylinders 16 in contact with the chambers 24, 27 and thus with the holding brackets 28, and also effects a flow path between the chambers 24, 27 and respective ducts 25, 26.
- a connecting means preferably a bolt 31, 32 which acts to keep the cylinders 16 in contact with the chambers 24, 27 and thus with the holding brackets 28, and also effects a flow path between the chambers 24, 27 and respective ducts 25, 26.
- each bolt 31, 32 provided with an axial blind bore 33, 34 extending in the longitudinal direction of the bolt, the bores being connected to the chambers 24, 27 by several transverse bores 35, 36 formed in the portion of the bolts extending within the chambers 24, 27.
- Each of the two bolts 31, 32 for each pressure medium cylinder 16 screws into the housing 30 of the cylinders and the ducts 33, 34 then communicate with the ducts 25, 26 of the housing 30.
- the duct 25 is an angle member which is connected with the bolt duct 33 and terminates in the bottom of the chamber 22.
- the duct 26 is composed of two parts, angled part connected to the bolt duct 34 and communicating with the control valve 19 and a part extending from the control valve 19 and terminating in the bottom of the housing opposed to the angled duct 25.
- the scanning member 21 is a scanning roller journalled to rotate on a switching lever 37a of a contact switch 37.
- the contact switches 37 are mounted with the interposition of spacers 38, on a vertically adjustable supporting rail 39 which is secured by means of the spacers 38 to the support member 29.
- Each contact switch 37 is connected by an electrical lead 40 to a switching and control device 20 and each switching and control device 20 is connected by an electrical lead 41 to the control valve 19 whch is electro-magnetically operated.
- a control valve 19 is associated with each pressure medium cylinder 16, senser 21 is provided with a contact switch 37 and a time delay relay 20, and .each pressure medium cylinder and piston is actuated independently of the other cylinders.
- a scanning member 21 with contact switch 37 and a time relay 20 is provided in common to several pressure medium cylinders 16 so that the control valves of several cylinders are controlled by one scanning member 21.
- the two chambers 24, 27, as supply means for all the cylinders 16, are each connected by a pipe with a pressure reducing valve, to a pressure medium supply.
- the chamber 24 there is always a pressure medium which transmits its force through the bores 35, the duct 33 and the duct 25 in the housing 30 to the chamber 22 so that there is always a pressure medium in the chamber 22 acting on the underside of each piston 18. If there is no workpiece passing through the machine, the contact roller 21 is not actuated and the control valve 19 is not operated, so that the pressure medium (compressed air) in the chamber 22 displaces the piston 18 into a resting position, the pressure member 14 being in the upper resting position. The piston 18 is held against a stop 30a of housing 30 in this resting position by the compressed air.
- the lowest position of the piston 18 is determined by a stop 30b on the housing 30.
- the pressure of the medium in the chamber 22 then returns the piston 18 and the pressure member 14 to the upper resting position.
- the resilient pressure member 14 is formed as a beam which has a cross bar 42 which is secured to the piston rods 17 and on which two spaced apart steel plates 24 are mounted by bolts 43.
- An air cushion 45 is located between the plates.
- a felt mat 46 is secured below the lower steel plate 44 by cementing the lower side (the side adjacent the grinding belt 13,) is covered by a sliding mat 47 secured at one end to the pressure member 14 and held at the other end with adjustable tension by a tensioning device.
- This pressure member 14 formed in such manner can act by its sliding mat 47 on the grinding belt 13 or bear against the grinding belt 13 with the interposition of an endless circulating laminated pressure belt 48.
- the air pressure in the air cushion 45 of the pressure member 14 corresponds to the pressure of the grinding belt 13 so that any tolerances (unevenesses) in the surface of the workpiece can be compensated by the elastic construction of the pressure member 14 within the air cushion 45.
- Each piston 18 has a certain stroke so that unevenesses in the workpiece surface are compensated by strokes of the pistons 18 of different length and the grinding belt 13 rests, due to the pistons 18, on the complete surface of the workpiece to grind it.
- FIG. 4 of the drawings shows the grinding of a hollow round workpiece surface; the pistons 18, due to the contact pressure are displaced downwardly to a varying extent, the pistons. 18 being lowered in their lowest position to the portion of the surface which is deepest and the pistons lowered to a portion of the surface which is not so deep being lowered to a lesser extent.
- the pressure of all the pressure operated cylinders 16 is the same over the pressure member 14, only individual portions of the pressure member are pressed further down against the workpiece 10 according to the surface of said workpiece.
- relays 20 having five poles and accommodated in the switch cabinet 50 so that not only the contact switches directly operated by the workpiece 10 and hence the associated cylinders 16 are operated, but also a plurality of adjacently disposed cylinders 16; this ensures that the edges of the work pieces are also exactly ground.
- two or more groups of pressure operated cylinders may be combined so that they are controlled by respective scanning members. This enables a double or multi-track feeding of the machine to be possible in the grinding of regularly shaped workpieces.
- a belt grinding machine comprising a grinding belt, a flexible pressure member for pressing an operative portion of said belt from a normally maintained inactive position downwardly against a workpiece conveyed in a first direction beneath said operative portion of said belt, said pressure member extending transversely of said first direction entirely across the width of the surface of the workpiece to be ground, a plurality of double acting, fluid pressure motors each having a first and a second internal chamber divided from each other by a piston having a rod projecting from the first chamber end of sad motor, the rods of said motors being connected to said pressure member at spaced locations transversely of said first direction and operable upon actuation of the associated motor to raise or lower the section of said pressure member connected thereto, a first pressure source commonly connected to all of said first chambers to urge said pistons and the connected pressure member toward a position of maximum elevation wherein said grinding belt is in said inactive position, a second pressure source maintained at a pressure higher than that of said first source, valve means on each motor operable to selectively connect the second chamber
- each of said pressure sources comprises an elongate tank extending transversely of said motors and fixedly secured to each of said motors.
- each of said motors has a first passage communicating with said first chamber and a second passage communicating with its valve means, first and second bolt means fixedly securing said first and second tanks respectively to said motors, said bolt means being respectively received in said first and second passages and placing said passages respectively in fluid communication with said first and second tanks.
- each of said bolt means comprises a shank having a threaded end threadably received in the motor passage, means defining an axial bore in said shank extending from the threaded end partially the length of the bolt, and a cross bore intersecting the axial bore establishing communication between the axial bore and the interior of the tank.
- a machine as defined in-claim 4 wherein said first passage opens into said first chamber at the end from 'which said rod projects and said second passage communicates with said valve means, each motor having a third passage extending from its valve means into said second chamber at the end of said second chamber remote from said rod.
- a machine as defined in claim 5 further comprising stop means in each motor establishing opposite end limits of movement of its piston.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2222616A DE2222616C3 (de) | 1972-05-09 | 1972-05-09 | Druckbalken für eine Langbandschleifmaschine |
Publications (1)
Publication Number | Publication Date |
---|---|
US3859757A true US3859757A (en) | 1975-01-14 |
Family
ID=5844444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US328737A Expired - Lifetime US3859757A (en) | 1972-05-09 | 1973-02-01 | Grinding machine with belts |
Country Status (10)
Country | Link |
---|---|
US (1) | US3859757A (enrdf_load_stackoverflow) |
JP (1) | JPS4922696A (enrdf_load_stackoverflow) |
AT (1) | AT322398B (enrdf_load_stackoverflow) |
CH (1) | CH544620A (enrdf_load_stackoverflow) |
DE (1) | DE2222616C3 (enrdf_load_stackoverflow) |
ES (1) | ES404716A1 (enrdf_load_stackoverflow) |
GB (1) | GB1400089A (enrdf_load_stackoverflow) |
IT (1) | IT958388B (enrdf_load_stackoverflow) |
PL (1) | PL79477B1 (enrdf_load_stackoverflow) |
SE (1) | SE396568B (enrdf_load_stackoverflow) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2637343A1 (de) * | 1976-08-19 | 1978-02-23 | Zeidler Kg Maschf Heinrich | Vorrichtung zum schleifen der fuesse von tellern oder sonstigem flachgeschirr |
US4512110A (en) * | 1981-12-10 | 1985-04-23 | Timesavers, Inc. | Endless abrasive belts |
US4527359A (en) * | 1984-04-23 | 1985-07-09 | Timesavers, Inc. | Segmented platen with diaphragm cylinder control |
US4601134A (en) * | 1984-01-21 | 1986-07-22 | Karl Heesemann Maschinenfabrik Gmbh & Co. Kg | Belt grinder having pressure pads with individually variable contact pressures |
US4621459A (en) * | 1984-04-23 | 1986-11-11 | Timesavers, Inc. | Segmented platen with diaphragm cylinder control |
US4635405A (en) * | 1983-05-18 | 1987-01-13 | Timesavers, Inc. | Continuous arcuate feed assembly |
US4719721A (en) * | 1986-12-18 | 1988-01-19 | Timesavers, Inc. | Conveyor bed assembly and vacuum platen |
US5016400A (en) * | 1989-03-31 | 1991-05-21 | Georg Weber | Pressure bar for a belt grinding machine |
WO2002032623A1 (en) * | 2000-10-16 | 2002-04-25 | Viet S.P.A. | Pressing device for sanding machine |
US20080182491A1 (en) * | 2003-08-22 | 2008-07-31 | Kundig Ag | Device and control unit for belt sanding systems |
US20080207097A1 (en) * | 2005-09-12 | 2008-08-28 | Lissmac Maschinebau Und Diamantwerkzeuge Gmbh | Apparatus for machining a workpiece |
CN101885159A (zh) * | 2009-05-15 | 2010-11-17 | 罗伯特.博世有限公司 | 磨具压紧单元和具有磨具压紧单元的带式磨削机 |
CN102666012A (zh) * | 2009-11-27 | 2012-09-12 | 利玛机器制造有限公司 | 用于加工工件的加工平台和设备 |
US20130102234A1 (en) * | 2010-07-02 | 2013-04-25 | Sms Siemag Aktiengesellschaft | Polishing Device |
CN108838845A (zh) * | 2017-03-15 | 2018-11-20 | 广东省陶瓷研究所 | 用于对陶瓷承烧板进行翻新的机械装置 |
US20190126426A1 (en) * | 2017-11-01 | 2019-05-02 | Wen-Chi Chang | Pressing device for sanding machines |
US20190283201A1 (en) * | 2016-11-04 | 2019-09-19 | Infinititech Srl | Equipment for surface processing of plate-shaped elements |
US20200047305A1 (en) * | 2018-08-09 | 2020-02-13 | Viet Italia S.R.L. | Sanding machine for the sanding/finishing panels made of wood, metal, or the like |
CN112025500A (zh) * | 2020-08-28 | 2020-12-04 | 晟光科技股份有限公司 | 一种高精度lcd显示屏的加工设备及其加工工艺 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2634829C3 (de) * | 1976-08-03 | 1982-04-01 | Böttcher & Gessner GmbH, 2000 Hamburg | Druckbalken für Bandschleifmaschinen |
DE2706088C3 (de) * | 1977-02-12 | 1982-09-02 | Böttcher & Gessner GmbH, 2000 Hamburg | Druckbalken für Bandschleifmaschine |
DE2706019C3 (de) * | 1977-02-12 | 1982-07-15 | Böttcher & Gessner GmbH, 2000 Hamburg | Druckbalken für Bandschleifmaschinen |
JPS5485595U (enrdf_load_stackoverflow) * | 1977-11-30 | 1979-06-16 | ||
JPS5571797A (en) * | 1978-11-21 | 1980-05-30 | Fuji Oil Co Ltd | Manufacture of cacao butter substitute fat |
JPH07115290B2 (ja) * | 1991-03-15 | 1995-12-13 | 長谷川鉄工株式会社 | ピンチローラー付ベルトサンダー |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3221448A (en) * | 1960-10-22 | 1965-12-07 | Heesemann Karl | Belt grinding machine |
US3374583A (en) * | 1965-09-20 | 1968-03-26 | Walter Jacobi & Sons Inc | Apparatus for finishing surfaces |
US3694966A (en) * | 1970-11-06 | 1972-10-03 | Karl Heesemann | Belt grinding machine |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1502449B2 (de) * | 1965-10-22 | 1976-12-02 | Heesemann, Karl, 4970 Bad Oeynhausen | Druckbalken fuer eine langbandschleifmaschine |
-
1972
- 1972-05-09 DE DE2222616A patent/DE2222616C3/de not_active Expired
- 1972-06-07 SE SE7207492A patent/SE396568B/xx unknown
- 1972-06-15 CH CH893172A patent/CH544620A/de not_active IP Right Cessation
- 1972-06-16 AT AT517572A patent/AT322398B/de not_active IP Right Cessation
- 1972-06-16 IT IT50934/72A patent/IT958388B/it active
- 1972-06-30 JP JP47065077A patent/JPS4922696A/ja active Pending
- 1972-07-10 ES ES404716A patent/ES404716A1/es not_active Expired
- 1972-08-29 PL PL1972157492A patent/PL79477B1/pl unknown
-
1973
- 1973-01-25 GB GB376773A patent/GB1400089A/en not_active Expired
- 1973-02-01 US US328737A patent/US3859757A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3221448A (en) * | 1960-10-22 | 1965-12-07 | Heesemann Karl | Belt grinding machine |
US3374583A (en) * | 1965-09-20 | 1968-03-26 | Walter Jacobi & Sons Inc | Apparatus for finishing surfaces |
US3694966A (en) * | 1970-11-06 | 1972-10-03 | Karl Heesemann | Belt grinding machine |
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2637343A1 (de) * | 1976-08-19 | 1978-02-23 | Zeidler Kg Maschf Heinrich | Vorrichtung zum schleifen der fuesse von tellern oder sonstigem flachgeschirr |
US4512110A (en) * | 1981-12-10 | 1985-04-23 | Timesavers, Inc. | Endless abrasive belts |
US4635405A (en) * | 1983-05-18 | 1987-01-13 | Timesavers, Inc. | Continuous arcuate feed assembly |
US4601134A (en) * | 1984-01-21 | 1986-07-22 | Karl Heesemann Maschinenfabrik Gmbh & Co. Kg | Belt grinder having pressure pads with individually variable contact pressures |
US4527359A (en) * | 1984-04-23 | 1985-07-09 | Timesavers, Inc. | Segmented platen with diaphragm cylinder control |
US4621459A (en) * | 1984-04-23 | 1986-11-11 | Timesavers, Inc. | Segmented platen with diaphragm cylinder control |
US4719721A (en) * | 1986-12-18 | 1988-01-19 | Timesavers, Inc. | Conveyor bed assembly and vacuum platen |
US5016400A (en) * | 1989-03-31 | 1991-05-21 | Georg Weber | Pressure bar for a belt grinding machine |
WO2002032623A1 (en) * | 2000-10-16 | 2002-04-25 | Viet S.P.A. | Pressing device for sanding machine |
US7438628B2 (en) * | 2003-08-22 | 2008-10-21 | Stephan Kundig | Device and control unit for belt sanding systems |
US20080182491A1 (en) * | 2003-08-22 | 2008-07-31 | Kundig Ag | Device and control unit for belt sanding systems |
US7614935B2 (en) * | 2005-09-12 | 2009-11-10 | Lissmac Maschinebau Und Diamantwerkzeuge Gmbh | Apparatus for machining a workpiece |
EP1924403B2 (de) † | 2005-09-12 | 2013-01-30 | LISSMAC Maschinenbau GmbH | Vorrichtung zum entgratenden oder abschleifenden bearbeiten eines band- oder plattenförmigen metallischen werkstücks |
US20080207097A1 (en) * | 2005-09-12 | 2008-08-28 | Lissmac Maschinebau Und Diamantwerkzeuge Gmbh | Apparatus for machining a workpiece |
CN101885159A (zh) * | 2009-05-15 | 2010-11-17 | 罗伯特.博世有限公司 | 磨具压紧单元和具有磨具压紧单元的带式磨削机 |
US8574036B2 (en) * | 2009-11-27 | 2013-11-05 | Lissmac Maschinenbau Gmbh | Machining station and apparatus for machining a workpiece |
US20120295523A1 (en) * | 2009-11-27 | 2012-11-22 | Lissmac Maschinebau GmbH | Machining station and apparatus for machining a workpiece |
CN102666012A (zh) * | 2009-11-27 | 2012-09-12 | 利玛机器制造有限公司 | 用于加工工件的加工平台和设备 |
CN102666012B (zh) * | 2009-11-27 | 2014-12-10 | 利玛机器制造有限公司 | 用于加工工件的加工平台和设备 |
US20130102234A1 (en) * | 2010-07-02 | 2013-04-25 | Sms Siemag Aktiengesellschaft | Polishing Device |
US20190283201A1 (en) * | 2016-11-04 | 2019-09-19 | Infinititech Srl | Equipment for surface processing of plate-shaped elements |
CN108838845A (zh) * | 2017-03-15 | 2018-11-20 | 广东省陶瓷研究所 | 用于对陶瓷承烧板进行翻新的机械装置 |
US20190126426A1 (en) * | 2017-11-01 | 2019-05-02 | Wen-Chi Chang | Pressing device for sanding machines |
US20200047305A1 (en) * | 2018-08-09 | 2020-02-13 | Viet Italia S.R.L. | Sanding machine for the sanding/finishing panels made of wood, metal, or the like |
US11548112B2 (en) * | 2018-08-09 | 2023-01-10 | Biesse S.P.A. | Sanding machine for the sanding/finishing panels made of wood, metal, or the like |
CN112025500A (zh) * | 2020-08-28 | 2020-12-04 | 晟光科技股份有限公司 | 一种高精度lcd显示屏的加工设备及其加工工艺 |
Also Published As
Publication number | Publication date |
---|---|
JPS4922696A (enrdf_load_stackoverflow) | 1974-02-28 |
DE2222616A1 (de) | 1973-11-22 |
PL79477B1 (enrdf_load_stackoverflow) | 1975-06-30 |
GB1400089A (en) | 1975-07-16 |
CH544620A (de) | 1973-11-30 |
ES404716A1 (es) | 1975-06-16 |
SE396568B (sv) | 1977-09-26 |
DE2222616C3 (de) | 1981-10-01 |
AT322398B (de) | 1975-05-26 |
DE2222616B2 (de) | 1981-02-19 |
IT958388B (it) | 1973-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3859757A (en) | Grinding machine with belts | |
US3911627A (en) | Belt grinding machine adapted to grind a flat or curved surface | |
US2746447A (en) | Block splitting machine | |
EP0328220B1 (en) | Apparatus for transporting articles | |
EP0288815B1 (en) | Sealing sytem for a converyor table with vacuum clamping for cutting machines | |
US3653293A (en) | Press unloader | |
CN105563277B (zh) | 实木地板表面横砂的制造机械 | |
US4210046A (en) | Cross beam press and control | |
US3215071A (en) | Automatic work holding apparatus | |
KR200472599Y1 (ko) | 고중량 판재 절단장치 | |
US3485430A (en) | Stock feeder | |
US7811016B2 (en) | Flatbed printing machine | |
US2801458A (en) | Power feed mechanism for hot or cold saws | |
US3741458A (en) | Hydraulic controller for strip material feeder | |
US2065380A (en) | Machine for cutting sheets of rubber, linoleum, and the like | |
US4041820A (en) | Veneer clipper | |
US3297318A (en) | Means and method for stacking sheets of paperboard or cardboard | |
GB1179176A (en) | Belt Sanding and Polishing Machine. | |
GB2164889A (en) | Cutting system | |
GB2190880A (en) | Engraved plate printing press | |
JPH0338069B2 (enrdf_load_stackoverflow) | ||
DE3138476A1 (de) | Horizontalbandsaegemaschine | |
CN210317970U (zh) | 一种银亮材生产线的运输小车的液压油路 | |
US4243084A (en) | Door sizing machine | |
EP1719586B1 (en) | Presser device. |