US3854418A - Improvements in rack-and-pinion systems - Google Patents
Improvements in rack-and-pinion systems Download PDFInfo
- Publication number
- US3854418A US3854418A US00336950A US33695073A US3854418A US 3854418 A US3854418 A US 3854418A US 00336950 A US00336950 A US 00336950A US 33695073 A US33695073 A US 33695073A US 3854418 A US3854418 A US 3854418A
- Authority
- US
- United States
- Prior art keywords
- pinion
- rack
- resilient
- proximal face
- face
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/26—Racks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61B—RAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
- B61B13/00—Other railway systems
- B61B13/04—Monorail systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H55/00—Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
- F16H55/02—Toothed members; Worms
- F16H55/06—Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/19—Gearing
- Y10T74/19642—Directly cooperating gears
- Y10T74/1967—Rack and pinion
Definitions
- the invention is of use more particularly, but not exclusively, in transport systems of the kind comprising a machine which is moved along a rack by means of a machine-mounted pinion meshing with the rack.
- the invention is of use inter alia for transport systems in which a ground effect machine is borne and- /or guided along a track with the inter-position of at least one pressure fluid cushion at a pressure above the ambient pressure or of at least one pressure fluid layer at a pressure below the ambient pressure.
- the rack in a rack-and-pinion system of the kind described, the rack comprises a rigid longitudinal base adapted to withstand the forces which the pinion applies to the rack, and a resilient element in band or strip or similar form adhering to the rigid base over the whole length thereof and which receives the force of the said pinion.
- the resilient element can be made of a substance based on natural or synthetic rubber or a resilient silicone.
- the resilient element provides damping which helps to provide a considerable reduction in the noise made by the rack-and-pinion system, besides helping to increase the maximum starting torque by gradual storage thereof in the resilient element, in the form of deformation stresses.
- the rigid base of the rack can comprise one or more superposed layers which can be secured to one another by any known means.
- One layer of the rigid base can be a corrugated metal sheet.
- the space between the same and a subfoundation plate also forming part of the rigid base can be filled with different filling materials to damp vibrations of the metal sheet and of the rack teeth.
- filling materials there can be mentioned sand, concrete, fibres which may or may not be agglomerated, polyurethane and similar materials.
- the rigid base may be formed with protruding portions having the rough shape of the teeth.
- the resilient element can be secured to the rigid base by any known means, for example by adhesion. If required, the resilient element can have projecting or recessed portions adapted to engage with corresponding recessed or projecting portions of an adjacent element forming part of the rack. The resilient element covers the rigid base over the whole of its operative length.
- the resilient element can be shaped into corrugations adapted to engage the toothed pinion.
- the resilient element can have a protective lining of a substance, such as metal sheet, which is harder than the resilient element. It can also have provision for reducing the coefficient of friction between the rack and the pinion.
- FIGS. 1 5 are diagrammatic views, in cross-section and partial cross-section, of rack-and-pinion systems 5 forming part of a transport system comprising a track and a machine movable therealong;
- FIG. 6 is a view, in a vertical section parallel to the rack, of a pinion meshing with metal teeth borne by a resilient element which forms a damping seating for the teeth, the resilient element itself covering a rigid base;
- FIG. 7 is a view, in a vertical section parallel to the rack, of a corrugated rigid base covered by a resilient element
- FIG. 8 is a view similar to FIG. 7 showing a resilient element whose thickness varies along a corrugation
- FIG. 9 is a view similar to FIGS. 7 and 8 showing the interposition of filling material in the gap between two parts of the rigid base;
- FIG. 10 is a view similar to FIGS. 7 to 9 of a rack in which the resilient element has a protective covering
- FIG. 11 is a view similar to FIGS. 7 to 10 of a rack coated with a layer of material which has a low coefficient of friction in its contact with the pinion.
- FIGS. 1 to 6 show a transport system comprising a ground effect machine borne and guided by a track 17 with the interposition of fluid cushions.
- the track 17 in shape resembles an inverted T having, for example, a substantially horizontal bearing portion 117 and a susbstantially vertical central guiding portion 217.
- the fluid cushions are confined by chambers l5, 16, for example of the plenum chamber kind, supplied with fluid at a pressure above the ambient pressure by means (not shown).
- the machine 25 can be borne and/or guided by means of fluid layers whose pressure is below the ambient pressure.
- the machine 25 is driven along the track 17 through the agency of two racks 1 each meshing with a pinion 2.
- Each pinion 2 is rigidly secured to a shaft 9 driven by a motor 6 through a speed reducer 27.
- Each rack 1 extends parallel to the length of the track 17.
- FIGS. 3 5 show arrangements in which each rack 1 is disposed at an inclination to the track 17 and meshes with an inclined pinion 2. These arrangements are advantageous, particularly for limiting rolling movement of the machine 25. To this end, the line on which the plane 64 containing the pinion 2 intersects the longitudinal centre-plane of the machine is, with advantage, near the roll axis thereof.
- each rack l is secured to the central guiding portion 217 of the track 17.
- FIG. 6 there is shown a rack l meshing with a pinion 2.
- the rack has a rigid longitudinal base 11 which can withstand the forces applied by the pinion 2 and which in the example shown in FIGS. 1 to 5 forms part of a track 17 co-operating with the machine 25.
- a resilient element 3 in band or strip or similar form has a substantially planar surface which is connected, for example by adhesion, to a corresponding planar surface of the base 11 over the whole length thereof.
- the element 3 can be either continuous or comprise a number of sections abutting one another in end-to-end relationship.
- the element 3 can be made, for example, of natural rubber or a synthetic rubber such as neoprene or perbunan or viton or of a resilient silicone. If required, some resilient synthetic or natural plastic substances are suitable for the element 3.
- That face of the resilient element 3 which is opposite the face adhering to the base 11 is substantially planar and bears metal teeth 4 co-operating with the pinion 2. Via the teeth 4, therefore, the resilient element 3 receives the force of the moving element 2 and thus acts as a seating providing resilient damping.
- the element 3 is in engagement with at least one adjacent element, for example, the teeth 4 or the rigid base 11, by way of projecting or recessed parts 12 which co-operate with correspondingly recessed or projecting parts of such adjacent element.
- the teeth 4 can be integral with one another as shown in the lefthand part of FIG. 6; alternatively, and as shown in the right-hand part of FIG. 6, the teeth 4 can be independent integers and separated from one another by small gaps 31 to improve overall resilience.
- a resilient mounting of the pinion 2 by means of a resilient ring cooperating coaxially with a hub 7 and with a toothbearing rim 10 which forms part of the pinion.
- the hub 7 is secured to the shaft 9 by a keyor cotter or the like 8.
- the ring 5 can be made of the same substance as the resilient element 3.
- An arrow F indicates the direction of pinion rotation, and an arrow f indicates the direction in which the machine moves.
- the rigid base of the rack 1 comprises two superposed layers 30, 34 which are connected together by bolts or screws 35.
- the proximal face (with respect to the pinion 2) of the rigid base 34 is shaped into corrugations 36 of the same ptitch as the teeth of the pinion 2.
- the resilient element 3 is of substantially constant thickness and is shaped on its distal face (with respect to the pinion) to match the corrugations 36, which it covers externally. On its proximal face (with respect to the pinion 2), the resilient element 3 is thus also shaped into corrugation which engage by direct contact the teeth of the pinion 2.
- the pinion 2 can be made, preferably, of a material marketed under the name of Nylon 6 or Nylon 66 or a similar material.
- the arrow F indicates the direction of pinion rotation.
- FIG. 8 shows a variant of the previous embodiment wherein the layer 30 of the rigid base forms part of the track.
- the shape of the corrugations 36 is somewhat different and the thickness of the resilient element 3 varies along a corrugation, increasing towards both the crest and root of the corrugation from the region N where the pitch circle of the pinion meets the rack.
- FIG. 9 shows a variant of the two immediately preceding embodiments wherein the rigid longitudinal base of the rack comprises a subfoundation 40 bearing a corrugated metal sheet 44 which is secured to the subfoundation 40 by means (not shown).
- the metal sheet 44 is relatively rigid and is corrugated before being positioned and before receiving the resilient element 3.
- the gap between the elements 40 and 44 is filled with a substance 28 such as sand or concrete or agglomerated or unagglomerated fibres or polyurethane or the like.
- the corrugated metal sheet 44 is covered by the resilient element 3; however, in the present case there is no direct contact between the resilient element and the pinion teeth, to which end a protective lining 45 for the resilient element is secured thereto, for example by adhesion, thus preventing premature wear of the element 3 as a result of friction and of possible overstressing by the pinion teeth.
- the lining 45 can be made of a thin but hard material based, for example, on hardened natural or synthetic rubber or on an appropriate hard plastics material.
- the lining 45 can be a corrugated metal sheeting.
- the material used for the covering 45 has a low coefficient of friction in the presence of the pinion teeth.
- the filling material 28 helps inter alia to damp vibrations of the sheet metal 44 and therefore of the rack teeth.
- the rigid longitudinal base takes the form of a planar sheet metal member 50.
- a corrugated lining 55 of substantially uniform thickness engages the teeth of the pinion 2.
- the resilient element 3 takes up all the space between the two sheet metal members 50, 55, to which it is secured, for example by adhesion, over the whole extent of the contacting surfaces.
- the resilient element 3 can be premoulded, then secured in position; alternatively, it can be moulded directly between the two members 50 and 55.
- the element 3 can be made of natural or synthetic rubber.
- the lining 55 may need to be fairly thick so as not to become permanently deformed by the pressure of the pinion teeth; in this case, however, the resilient material used for the element 3 can be relatively flexible.
- the lining 55 can be made of 4 mm thick mild steel for teeth having a pitch of 30 mm, with rubber having a Shore hardness of 60.
- FIG. 11 shows the same rack adapted for improved operation without lubrication; to this end, the rack is coated with a substance 56 which has a low coefficient of friction in the presence of the teeth of the associated pinion 2.
- the metal lining 55 can be treated with, for example, molybdenum disulfide or given the sulfinuz process or covered by a polyethylene film.
- a low-friction layer 56 can, with advantage, be a 0.2 mm thick film of the substance called Kletene" which is adhesively secured to the lining 55 with the interposition of a 0.4 mm thick intermediate layer of rubber.
- a rack according to the invention can be embodied by consecutive sections of reduced elementary length, for example, by 40-tooth sections. Joints between consecutive sections can be either at the corrugation roots, as at a place 57 in FIG. 10, or at the corrugation crests as at a place 58 in FIG. 11. It will be appreciated that the rack teeth or corrugations do not contact the pinion teeth at the places 57, 58.
- the abutting ends of the lining sections 55 are secured to one another, preferably by welding, to which end the resilient element 3 and the antifriction layer 56 are interrupted for some distance on either side of the joins to enable the weld to be made.
- a rack-and-pinion system including a rack and a toothed pinion in mutual meshing engagement, said rack comprising:
- a resilient longitudinal element having:
- proximal face with respect to the pinion, which proximal face is shaped into corrugations adapted to engage the teeth of the pinion.
- proximal face of the rigid longitudinal base, and said distal face of the resilient longitudinal element which rests thereupon, are also both shaped into corrugations having the same pitch as and coextensive with the said corrugations of said proximal face of the resilient longitudinal element.
- said rigid longitudinal base comprises a strip of corrugated sheetmetal having a proximal face with respect to the pinion, whereupon the said resilient longitudinal element rests, and a distal face with respect to the pinion.
- the thickness of the said resilient element is at a minimum in the region where the pitch circle of the pinion meets the rack, and increases from said region towards both the crest and the root of the said corrugation.
- said rigid longitudinal base comprises a substantially planar strip of sheet-metal which together with said strip of corrugated sheet-metal defines a space, which space is filled with said resilient longitudinal element.
- said resilient longitudinal element is made of resilient siliconebased material.
- a rack-and-pinion system for use as a means for driving a machine along a track, said system comprises a toothed pinion carried by the machine and a rack disposed along the track, said pinion and rack being in mutual meshing engagement, said rack comprising:
- a resilient longitudinal element having;
- proximal face with respect to the pinion, which proximal face is shaped into corrugations adapted to engage the teeth of the pinion.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Transportation (AREA)
- Gears, Cams (AREA)
- Transmission Devices (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US505074A US3901161A (en) | 1972-03-03 | 1974-09-11 | Transport systems equipped with a rack-and-pinion-type propelling mechanism |
| US505075A US3901162A (en) | 1972-03-03 | 1974-09-11 | Systems comprising a cogwheel and a longitudinal reaction member cooperating with the cogs thereon |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR7207481A FR2174430A5 (en) | 1972-03-03 | 1972-03-03 | Rail transport systems - with rubber layers in rack and pinion drives |
| FR7233405A FR2199839A6 (OSRAM) | 1972-09-21 | 1972-09-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3854418A true US3854418A (en) | 1974-12-17 |
Family
ID=26216955
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US00336950A Expired - Lifetime US3854418A (en) | 1972-03-03 | 1973-03-01 | Improvements in rack-and-pinion systems |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US3854418A (OSRAM) |
| JP (1) | JPS48100557A (OSRAM) |
| CA (1) | CA972582A (OSRAM) |
| CH (1) | CH569148A5 (OSRAM) |
| DE (1) | DE2309949A1 (OSRAM) |
| GB (2) | GB1424478A (OSRAM) |
| IT (1) | IT981089B (OSRAM) |
Cited By (35)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4030592A (en) * | 1976-01-20 | 1977-06-21 | Diagraph-Bradley Industries, Inc. | Stencil cutting apparatus |
| JPS52109214A (en) * | 1976-03-10 | 1977-09-13 | Siemens Ag | Runnin point rack for driven conveying vehicle |
| WO1980002534A1 (en) * | 1979-05-21 | 1980-11-27 | Centronics Data Computer | Self-propelled carriage assembly for printers and the like |
| US4257286A (en) * | 1978-03-22 | 1981-03-24 | Nippon Kogaku K.K. | Precision driving apparatus |
| US4266484A (en) * | 1978-02-11 | 1981-05-12 | Hauhinco Maschinenfabrik G. Hausherr, Jochums & Co. Kg | Rack-rail assembly for a mining machine |
| US4498556A (en) * | 1982-09-11 | 1985-02-12 | Access Engineering Ltd. | Vertically movable, road towable work platform |
| US4683805A (en) * | 1985-03-25 | 1987-08-04 | Flo-Tork, Inc. | Rotary actuator having integral piston assembly with floating rack |
| US4690177A (en) * | 1985-07-30 | 1987-09-01 | Lindauer Dornier Gesellschaft Mbh | Gripper rod for shuttleless looms |
| EP0258696A3 (en) * | 1986-08-21 | 1989-12-13 | Hasenclever Maschf Sms | Forging manipulator |
| US4944231A (en) * | 1988-02-29 | 1990-07-31 | Pipp Mobile Systems, Inc. | Mobile storage system with driving assemblies |
| US5024164A (en) * | 1988-02-29 | 1991-06-18 | Pipp Mobile Systems, Inc. | Mobile storage system with improved driving assemblies |
| US5150631A (en) * | 1990-09-13 | 1992-09-29 | Webasto Ag Fahrzeugtechnik | Flexible thermoplastic rack bar |
| US5398617A (en) * | 1992-12-03 | 1995-03-21 | Fata Automation S.P.A. | Overhead rail conveyor system with improved traction having elastically deforming wheel or rail portions |
| US5540111A (en) * | 1992-08-03 | 1996-07-30 | Franklin E. Barnett | Drive apparatus and method |
| US5542357A (en) * | 1994-03-18 | 1996-08-06 | Northrop Grumman Corporation | Linear turbine propulsion system |
| WO2000029199A1 (en) * | 1998-11-17 | 2000-05-25 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for cross-directional stretching of polymeric film and other nonwoven sheet material and materials produced therefrom |
| EP1089021A3 (fr) * | 1999-09-30 | 2001-06-20 | S.A. Defontaine | Système de liaison d'une couronne dentée de démarrage sur un support lié à l'arbre de sortie d'un moteur thermique |
| US6293164B1 (en) | 1999-06-30 | 2001-09-25 | Trw Inc. | Rack and pinion steering apparatus and method for manufacturing a helical pinion |
| US20110081208A1 (en) * | 2000-08-01 | 2011-04-07 | American Piledriving Equipment, Inc. | Automatically adjustable caisson clamp |
| US20110162859A1 (en) * | 2010-01-06 | 2011-07-07 | White John L | Pile driving systems and methods employing preloaded drop hammer |
| US20120304884A1 (en) * | 2009-09-30 | 2012-12-06 | Maurer Söhne Gmbh & Co. Kg | Transport system having a positive drive |
| US8434969B2 (en) | 2010-04-02 | 2013-05-07 | American Piledriving Equipment, Inc. | Internal pipe clamp |
| US20130160589A1 (en) * | 2010-09-24 | 2013-06-27 | Miba Sinter Austria Gmbh | Toothed wheel and backlash free gear train |
| US8496072B2 (en) | 2002-09-17 | 2013-07-30 | American Piledriving Equipment, Inc. | Preloaded drop hammer for driving piles |
| US20150034401A1 (en) * | 2011-02-21 | 2015-02-05 | Novus Finitor B.V. | Levitation System for a Train |
| US9157408B2 (en) | 2009-11-23 | 2015-10-13 | Robert Bosch Gmbh | Noise-optimized starter device |
| US9249551B1 (en) | 2012-11-30 | 2016-02-02 | American Piledriving Equipment, Inc. | Concrete sheet pile clamp assemblies and methods and pile driving systems for concrete sheet piles |
| US9371624B2 (en) | 2013-07-05 | 2016-06-21 | American Piledriving Equipment, Inc. | Accessory connection systems and methods for use with helical piledriving systems |
| US9874050B2 (en) | 2013-09-23 | 2018-01-23 | Knorr-Bremse Gesellschaft Mit Beschrankter Haftung | Sliding door module/pivoting sliding door module having floating mounting of a rack of a rack-and-pinion drive |
| US10273646B2 (en) | 2015-12-14 | 2019-04-30 | American Piledriving Equipment, Inc. | Guide systems and methods for diesel hammers |
| US10538892B2 (en) | 2016-06-30 | 2020-01-21 | American Piledriving Equipment, Inc. | Hydraulic impact hammer systems and methods |
| US10907719B2 (en) * | 2015-11-02 | 2021-02-02 | The Uab Research Foundation | Hybrid composite gear with enhanced strength and wear resistance |
| CN114312128A (zh) * | 2022-01-28 | 2022-04-12 | 中车长春轨道客车股份有限公司 | 齿轨轮及转向架 |
| CN116556118A (zh) * | 2023-04-13 | 2023-08-08 | 株洲中车特种装备科技有限公司 | 采用钢结构轨道的架空类齿轨车运行时的减振降噪方法 |
| US12129623B2 (en) | 2021-03-31 | 2024-10-29 | American Piledriving Equipment, Inc. | Segmented ram systems and methods for hydraulic impact hammers |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| SE466490B (sv) * | 1987-08-20 | 1992-02-24 | Interbau Cyprus Ltd | En foer godsbefordran avsedd anordning |
| JPH0771567A (ja) * | 1993-09-03 | 1995-03-17 | Nec Corp | 歯車装置 |
| DE10023775A1 (de) * | 2000-05-15 | 2001-11-22 | Volkswagen Ag | Zahnstange mit Oberflächenschutz |
| DE10258842B4 (de) * | 2002-12-17 | 2011-03-24 | Zf Lenksysteme Gmbh | Zahnstangenlenkgetriebe |
| DE102013209376A1 (de) * | 2013-05-22 | 2014-11-27 | Bayerische Motoren Werke Aktiengesellschaft | Zahnstange für eine Lenkvorrichtung eines Kraftfahrzeugs |
| AT514882A3 (de) * | 2013-09-23 | 2015-06-15 | Knorr Bremse Ges Mit Beschränkter Haftung | Schiebetürmodul/Schwenkschiebetürmodul mit fliegender Lagerung einer Zahnstange eines Zahnstangenantriebs |
| AT514883A3 (de) * | 2013-09-23 | 2015-06-15 | Knorr Bremse Ges Mit Beschränkter Haftung | Materialpaarung für einen Zahnstangenantrieb eines Schiebetürmoduls/Schwenkschiebetürmoduls |
| DE102014216727A1 (de) * | 2014-08-22 | 2016-02-25 | Zf Friedrichshafen Ag | Zahnradelement zur Geräuschreduzierung |
| DE102021211441A1 (de) * | 2021-10-11 | 2023-04-13 | Contitech Antriebssysteme Gmbh | Linearantrieb |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2652785A (en) * | 1951-10-05 | 1953-09-22 | Walter C Cox | Traction mechanism for cog roads |
| US3229543A (en) * | 1962-02-12 | 1966-01-18 | Frank T Johmann | Racks |
-
1973
- 1973-02-27 GB GB603175A patent/GB1424478A/en not_active Expired
- 1973-02-27 GB GB957373A patent/GB1424477A/en not_active Expired
- 1973-02-28 DE DE19732309949 patent/DE2309949A1/de active Pending
- 1973-03-01 CA CA165,167A patent/CA972582A/en not_active Expired
- 1973-03-01 US US00336950A patent/US3854418A/en not_active Expired - Lifetime
- 1973-03-02 IT IT21149/73A patent/IT981089B/it active
- 1973-03-02 CH CH306873A patent/CH569148A5/xx not_active IP Right Cessation
- 1973-03-03 JP JP48025617A patent/JPS48100557A/ja active Pending
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2652785A (en) * | 1951-10-05 | 1953-09-22 | Walter C Cox | Traction mechanism for cog roads |
| US3229543A (en) * | 1962-02-12 | 1966-01-18 | Frank T Johmann | Racks |
Cited By (46)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4030592A (en) * | 1976-01-20 | 1977-06-21 | Diagraph-Bradley Industries, Inc. | Stencil cutting apparatus |
| JPS52109214A (en) * | 1976-03-10 | 1977-09-13 | Siemens Ag | Runnin point rack for driven conveying vehicle |
| US4266484A (en) * | 1978-02-11 | 1981-05-12 | Hauhinco Maschinenfabrik G. Hausherr, Jochums & Co. Kg | Rack-rail assembly for a mining machine |
| US4257286A (en) * | 1978-03-22 | 1981-03-24 | Nippon Kogaku K.K. | Precision driving apparatus |
| WO1980002534A1 (en) * | 1979-05-21 | 1980-11-27 | Centronics Data Computer | Self-propelled carriage assembly for printers and the like |
| US4498556A (en) * | 1982-09-11 | 1985-02-12 | Access Engineering Ltd. | Vertically movable, road towable work platform |
| US4683805A (en) * | 1985-03-25 | 1987-08-04 | Flo-Tork, Inc. | Rotary actuator having integral piston assembly with floating rack |
| US4690177A (en) * | 1985-07-30 | 1987-09-01 | Lindauer Dornier Gesellschaft Mbh | Gripper rod for shuttleless looms |
| EP0258696A3 (en) * | 1986-08-21 | 1989-12-13 | Hasenclever Maschf Sms | Forging manipulator |
| US5024164A (en) * | 1988-02-29 | 1991-06-18 | Pipp Mobile Systems, Inc. | Mobile storage system with improved driving assemblies |
| US4944231A (en) * | 1988-02-29 | 1990-07-31 | Pipp Mobile Systems, Inc. | Mobile storage system with driving assemblies |
| US5150631A (en) * | 1990-09-13 | 1992-09-29 | Webasto Ag Fahrzeugtechnik | Flexible thermoplastic rack bar |
| US5540111A (en) * | 1992-08-03 | 1996-07-30 | Franklin E. Barnett | Drive apparatus and method |
| US5398617A (en) * | 1992-12-03 | 1995-03-21 | Fata Automation S.P.A. | Overhead rail conveyor system with improved traction having elastically deforming wheel or rail portions |
| US5542357A (en) * | 1994-03-18 | 1996-08-06 | Northrop Grumman Corporation | Linear turbine propulsion system |
| US5669308A (en) * | 1994-03-18 | 1997-09-23 | Northrop Grumman Corporation | Linear turbine propulsion system |
| US6368444B1 (en) | 1998-11-17 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for cross-directional stretching of polymeric film and other nonwoven sheet material and materials produced therefrom |
| WO2000029199A1 (en) * | 1998-11-17 | 2000-05-25 | Kimberly-Clark Worldwide, Inc. | Apparatus and method for cross-directional stretching of polymeric film and other nonwoven sheet material and materials produced therefrom |
| GB2361664B (en) * | 1998-11-17 | 2003-04-02 | Kimberly Clark Co | Apparatus and method for cross-directional stretching of polymeric film and other nonwoven sheet material and materials produced therefrom |
| GB2361664A (en) * | 1998-11-17 | 2001-10-31 | Kimberly Clark Co | Apparatus and method for cross-directional stretching of polymeric film and other nonwoven sheet material and materials produced therefrom |
| US6684727B2 (en) | 1999-06-30 | 2004-02-03 | Trw Inc. | Rack and pinion steering apparatus |
| US6293164B1 (en) | 1999-06-30 | 2001-09-25 | Trw Inc. | Rack and pinion steering apparatus and method for manufacturing a helical pinion |
| EP1089021A3 (fr) * | 1999-09-30 | 2001-06-20 | S.A. Defontaine | Système de liaison d'une couronne dentée de démarrage sur un support lié à l'arbre de sortie d'un moteur thermique |
| US6782773B1 (en) | 1999-09-30 | 2004-08-31 | S.A. Defontaine | System for coupling a toothed starter ring to a support connected to the output shaft of an internal combustion engine |
| US20110081208A1 (en) * | 2000-08-01 | 2011-04-07 | American Piledriving Equipment, Inc. | Automatically adjustable caisson clamp |
| US8496072B2 (en) | 2002-09-17 | 2013-07-30 | American Piledriving Equipment, Inc. | Preloaded drop hammer for driving piles |
| US20120304884A1 (en) * | 2009-09-30 | 2012-12-06 | Maurer Söhne Gmbh & Co. Kg | Transport system having a positive drive |
| US8661987B2 (en) * | 2009-09-30 | 2014-03-04 | Joerg Beutler | Transport system having a positive drive |
| US9157408B2 (en) | 2009-11-23 | 2015-10-13 | Robert Bosch Gmbh | Noise-optimized starter device |
| US8763719B2 (en) | 2010-01-06 | 2014-07-01 | American Piledriving Equipment, Inc. | Pile driving systems and methods employing preloaded drop hammer |
| US20110162859A1 (en) * | 2010-01-06 | 2011-07-07 | White John L | Pile driving systems and methods employing preloaded drop hammer |
| US8434969B2 (en) | 2010-04-02 | 2013-05-07 | American Piledriving Equipment, Inc. | Internal pipe clamp |
| US20130160589A1 (en) * | 2010-09-24 | 2013-06-27 | Miba Sinter Austria Gmbh | Toothed wheel and backlash free gear train |
| US9222569B2 (en) * | 2010-09-24 | 2015-12-29 | Miba Sinter Austria Gmbh | Toothed wheel and backlash free gear train |
| US10293803B2 (en) | 2011-02-21 | 2019-05-21 | Novus Finitor B.V. | Levitation system for a train |
| US20150034401A1 (en) * | 2011-02-21 | 2015-02-05 | Novus Finitor B.V. | Levitation System for a Train |
| US9249551B1 (en) | 2012-11-30 | 2016-02-02 | American Piledriving Equipment, Inc. | Concrete sheet pile clamp assemblies and methods and pile driving systems for concrete sheet piles |
| US9371624B2 (en) | 2013-07-05 | 2016-06-21 | American Piledriving Equipment, Inc. | Accessory connection systems and methods for use with helical piledriving systems |
| US9874050B2 (en) | 2013-09-23 | 2018-01-23 | Knorr-Bremse Gesellschaft Mit Beschrankter Haftung | Sliding door module/pivoting sliding door module having floating mounting of a rack of a rack-and-pinion drive |
| US10907719B2 (en) * | 2015-11-02 | 2021-02-02 | The Uab Research Foundation | Hybrid composite gear with enhanced strength and wear resistance |
| US10273646B2 (en) | 2015-12-14 | 2019-04-30 | American Piledriving Equipment, Inc. | Guide systems and methods for diesel hammers |
| US10538892B2 (en) | 2016-06-30 | 2020-01-21 | American Piledriving Equipment, Inc. | Hydraulic impact hammer systems and methods |
| US12129623B2 (en) | 2021-03-31 | 2024-10-29 | American Piledriving Equipment, Inc. | Segmented ram systems and methods for hydraulic impact hammers |
| CN114312128A (zh) * | 2022-01-28 | 2022-04-12 | 中车长春轨道客车股份有限公司 | 齿轨轮及转向架 |
| CN114312128B (zh) * | 2022-01-28 | 2023-10-27 | 中车长春轨道客车股份有限公司 | 齿轨轮及转向架 |
| CN116556118A (zh) * | 2023-04-13 | 2023-08-08 | 株洲中车特种装备科技有限公司 | 采用钢结构轨道的架空类齿轨车运行时的减振降噪方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CH569148A5 (OSRAM) | 1975-11-14 |
| CA972582A (en) | 1975-08-12 |
| GB1424478A (en) | 1976-02-11 |
| JPS48100557A (OSRAM) | 1973-12-19 |
| DE2309949A1 (de) | 1973-09-06 |
| IT981089B (it) | 1974-10-10 |
| GB1424477A (en) | 1976-02-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3854418A (en) | Improvements in rack-and-pinion systems | |
| KR960010221B1 (ko) | 궤도차량용 무한궤도 및 궤도조립체 | |
| US2986432A (en) | Antifriction bearing with a casing of plastic synthetic material acting as elastic yieldable cushion | |
| US4844484A (en) | Floating lip seal with reinforced flexible portion | |
| US3924907A (en) | Bearing pad and bridge construction | |
| US4671519A (en) | Lip sealing ring with tow rows of projections and for a rotary shaft | |
| US4195852A (en) | End face seal assembly | |
| US3623590A (en) | Moving handrail system | |
| JPH0315056B2 (OSRAM) | ||
| US4526482A (en) | Hydrodynamic bearing surface for high loads and low viscosity lubricating fluids | |
| US2449421A (en) | Track for vehicles | |
| JPS589870B2 (ja) | メカニカルシ−ル | |
| JPS5119251A (OSRAM) | ||
| CA2132807A1 (en) | Track-belt for track driven vehicles | |
| EP0442539A3 (en) | Friction facing material amd carrier assembly | |
| US3439959A (en) | Endless steel track construction | |
| GB1402829A (en) | Flexible strip and means for retaining said strip to a second member | |
| JPH0784905B2 (ja) | 相対回転する機械部品の軸封装置 | |
| WO1980001902A1 (en) | Laterally flexible conveyor belt | |
| US3767214A (en) | Freeze-resisting seal ring | |
| US2453209A (en) | Drive for track-laying vehicles | |
| US3429420A (en) | Conveyor installation and conveyor belt system therefor | |
| US3428375A (en) | Bearing having flexible seal arrangement | |
| ATE109844T1 (de) | Schiene für schienenfahrzeuge. | |
| US2794662A (en) | Seal with side acting spring |