US3623590A - Moving handrail system - Google Patents
Moving handrail system Download PDFInfo
- Publication number
- US3623590A US3623590A US3795A US3623590DA US3623590A US 3623590 A US3623590 A US 3623590A US 3795 A US3795 A US 3795A US 3623590D A US3623590D A US 3623590DA US 3623590 A US3623590 A US 3623590A
- Authority
- US
- United States
- Prior art keywords
- handrail
- edge portions
- central portion
- sheave
- elongated body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B23/00—Component parts of escalators or moving walkways
- B66B23/02—Driving gear
- B66B23/04—Driving gear for handrails
Definitions
- U.S.Cl 198/16 1gg/6lb69/l172 ABSTRACT A moving handra system for a passenger com 4 6 veyor in which the handrail has hinged edges folded under flanges of a balustrade guide member with the edges of the handrail being retained in osition by supporting plates.
- the hinged construction provides for bending and 1,101,209 Pm ":"iw. was/ yms flexing the handrail in either direction as it passes around a drive sheave and takeup sheaves.
- SHEET 2 [IF 2 INVi ERNEST 0, JOHN MOVING HANDRAIL SYSTEM This invention relates generally to a moving handrail and more particularly to the construction of a handrail which can be flexed in both directions with substantially the same effort and no increased wear.
- Passenger conveyor systems whether of the moving-belt or moving-stairway type are ordinarily provided at each side with an endless moving handrail driven in synchronism with the passenger-supporting conveyor.
- the upper run of the handrail is supported by suitable guides associated with a balustrade, and the return run and friction drive for the handrail may either be enclosed within the balustrade or located therebeneath depending on whether or not the balustrade is translucent.
- the handrails used heretofore have had a C-shaped cross section which has permitted flexing in one direction because the edges could turn inwardly; however, flexing in the other direction has been restricted because the edges could not turn outwardly and acted as stiffening ribs to resist the flexing. Consequently, the handrails have been limited to flexing in one direction around a bend radius of approximately 60 inches as opposed to flexing in the other direction around a bend radius of approximately 12 inches. As a result of this limitation, most handrail systems have been designed with the handrail twisting in devious paths around the drive sheave and takeup sheaves to avoid flexing in the direction requiring a large bend radius. This requirement has increased the cost of the handrail system because of the additional mechanism and space required.
- Another object of this invention is to provide a handrail system in which the handrail is retained on the guides by sup porting members which can be easily removed when it is necessary to remove and install the handrail.
- a further object of this invention is to provide a handrail drive and takeup mechanism in which the drive and takeup sheaves have relatively small radii and are rotatable in the same plane about parallel axes.
- a still further object of this invention is to provide a handrail having folded edges for sliding engagement with the guides of the balustrade and a central friction surface between the edges for driving engagement with a circumferential rib on a drive sheave.
- FIG. I is a schematic side elevation view of a passenger conveyor including a preferred form of handrail system constructed in accordance with this invention.
- FIG. 2 is an enlarged fragmentary section taken on the plane of the line 22 of FIG. I showing the construction of the handrail, balustrade, guide members and retaining members.
- FIG. 3 is an enlarged end view taken on the plane of the line 3-3 of FIG. I showing the drive and takeup sheaves with the handrail thereon, parts being broken away.
- FIG. 4 is an enlarged fragmentary transverse section of the drive sheave taken on the plane ofline 4-4 of FIG. l.
- FIG. 5 is an enlarged fragmentary transverse section of the takeup sheave and handrail taken on the plane of the line 5-5 of FIG. 1.
- FIG. 6 is an enlarged cross-sectional view of the handrail shown in FIG. 1.
- FIG. 7 is an enlarged cross-sectional view in perspective showing the handrail with the edges spread out in the condition it is made and spliced, parts being broken away.
- a passenger conveyor system I having a handrail 2 which is movable along a balustrade 3.
- the handrail 2 is guided through openings in the balustrade to the driving and takeup mechanism which is desirably located beneath the balustrade thus permitting light-transmissive or transparent panels 4 to be used for the balustrade.
- the driving of the handrail 2 may be provided by a traction drive sheave 7 which is rotatable at the same speed as the drive for the passenger conveyor belt of this system.
- Takeup sheave 8 is located in close proximity to drive sheave 7 for rotation in the same plane P P as the plane of rotation of the drive sheave.
- the takeup sheave 8 rotate about an axis X-X which is parallel to the axis Y-Y of the drive sheave 7. This is shown in more detail in FIG. 3.
- the takeup sheave 8 has a shaft 9 which may be mounted in bearings 10 for movement of the takeup sheave relative to the drive sheave 7 to maintain the desired tension of the handrail when it is moved in a counterclockwise direction around the handrail system as shown in FIG. 1.
- a second takeup sheave 11 may be mounted for rotation and tension adjustment at the other end of the balustrade 3 and is rotatable about an axis which is parallel to the axis X-X of takeup sheave 8 and axis Y-Y of drive sheave 7.
- the second takeup sheave 11 is located in close proximity to a guide sheave I4 rotating about an axis parallel to the axis of the second takeup sheave.
- Other guide members such as guide roller racks 15 may be located along the lower run of the handrail 2 for guiding it between guide sheave l4 and drive sheave 7.
- the drive sheave 7 has a shaft 16 which is supported in bearings 17 mounted on a supporting structure such as angle members 18 by bolts 19 and nuts 20.
- Shaft 16 may also be the drive shaft for the passenger conveyor belt or may be connected to that drive shaft.
- the balustrade 3 has a longitudinal channeled support member 23 to which the transparent panels 4 may be clamped by fastening strips 24 fastened to the edges of the support member.
- a guide member 25 on which the handrail 2 slides is secured.
- Spaced-apart sides 26 of the guide member 25 which has a bifurcated cross section carry flange members 27 at the edges for sliding contact with the handrail 2.
- the flange members 27 provide smooth surfaces on which the handrail 2 slides in the upper run and at the ends of the balustrade.
- Handrail-retaining trim plate members 30 having retaining surfaces 31 extending outwardly and under the edges of the handrail 2 are supported by the support member 23 of the balustrade. Inner edges 32 of the trim member 30 are seated in grooves 33 in the sides 26 of the guide member 25. Outer edges 34 of the trim members 30 may be removably fastened to the strips 24 by a resilient snap-in connection or by screws 35. As shown in FIG. 2, the trim members 30 may be removed by removing screws 35, swinging the outer edges 34 upwardly and outwardly to displace the inner edges 32 from the grooves 33.
- the handrail 2 is shown in the condition in which it is made and spliced.
- the handrail may be molded of flexible material such as natural or synthetic rubber with central portion 36 connected to edge portions 39 by hinge portions 40.
- the hinge portions 40 are of lesser thickness than the central portion 36 or edge portions 39 to provide for folding the edge portions under the central portion.
- the handrail 2 is subjected to tension and therefore suitable longitudinal tension members which may be steel bands 41 are embedded in the central portion 36. Reinforcement of the handrail 2 in the transverse direction is provided by a reinforcing ply 42 of suitable textile material such as nylon or rayon material bonded to the handrail and extending between the edge portions 39.
- the handrail 2 is shown in the condition with the edge portions 39 folded under the central portion 36 at the hinge portions 40.
- Smooth sliding surfaces 43 are provided on the opposing faces of the edge portions 39 and central portion 36.
- the edge portions 39 are spaced apart and a friction surface 46 is molded or cut in the face of the central portion 36 which is exposed between the edge portions 39.
- the handrail 2 is shown with the sliding surfaces 43 in sliding contact with the flange members 27 while the friction surface 46 is held out of engagement with any part of the guide member 25.
- the handrail 2 is shown in engagement with the drive sheave 7 which has a circumferential rib member 47 for engagement with the friction surface 46 of the handrail.
- the rib member 47 preferably has a thickness greater than the thickness of the edge portions 39 to provide the desired frictional engagement between the rib member 47 and handrail 2.
- the rib member 47 may have a friction surface 48 machined or ground therein for engagement with the friction surface 46 of the handrail 2.
- the outer surface which is normally grasped by passengers in the upper run will engage the sheave and the handrail will be flexed in one direction as shown in FIG. 5. Then as the handrail 2 passes over the traction drive sheave 7 the friction surface 46 and the edge portion 39 will engage the sheave flexing the handrail in the other direction. In either case because of the hinged construction, the resistance to bending and flexing is kept at a minimum. As illustrated in FIG. 3, the radius about which the handrail 2 passes maybe relatively small as compared to the thickness of the handrail.
- the radius R of the drive sheave 7 and the takeup sheave 8 is not more than l times the folded thickness T of the handrail 2 so that the drive and takeup mechanism can be installed in a relatively small space.
- This also applies to the radii of the second takeup sheave l1 and the idler guide sheave 14. It can be seen from FIG. I that the outer surface of the handrail 2 engages the second takeup sheave 11 and the edge portions 39 engage the idler guide sheave 14.
- one of the edge portions 39 is folded at one of the hinge portions 40 and inserted between one of the flange members 27 and an opposing retaining surface 31 of the handrail-retaining trim member at one side of the balustrade.
- the handrailretaining trim member 30 is removed by disengaging screws and moving the outer edge 34 upwardly and outwardly so that the inner edge 32 can be removed from the groove 33 in the side 26 of the guide member 25.
- the other edge portion 39 may than be folded at the other hinge portion 40 to a position under the other flange member 27.
- the trim member 30 is then inserted under the edge portion 39 with the inner edge 32 in groove 33 so that the retaining surface 31 engages the edge portion 39 of the handrail 2.
- the trim member 30 is then fastened to the fastening strip 24 by screws 35 and the handrail is ready for operation.
- the sliding surfaces 43 of the handrail 2 engage the flange members 27 as it passes over the balustrade in the upper run and the retaining surfaces 31 of the trim members 30 positively hold the handrail in place on the guide member 25.
- the takeup sheave 8 In the lower run of the handrail 2 it passes over the takeup sheave 8, drive sheave 7, second takeup sheave II and idler guide sheave l4 flexing in both directions with a minimum of resistance and wear.
- a handrail for passenger conveyors comprising an elongated body of flexible material having a central portion with longitudinal edges for grasping by passengers, edge portions underlying said central portion and fold under flanges of a guide member, hinge portions connecting said central and edge portions at said longitudinal edges, said hinge portions having greater transverse flexibility than said central portion and said edge portions to facilitate folding said edge portions under said flanges of a guide member and producing a minimum resistance to bending of the handrail in both directions around sheaves of a driving and guiding system.
- a handrail and guide mechanism for a passenger conveyor system comprising an elongated body of flexible material, support means for supporting and guiding said body, said elongated body having a central portion, edge portions, hinge portions connecting said central and said edge portions and having greater transverse flexibility than said central portion and said edge portions to facilitate folding of said edge portions under said central portion, flange members mounted on said support means and extending outwardly between said folded edge portions and said central portion and handrailretaining means mounted on said support means under said edge portions to retain said edge portions in the turned-under condition between said flange members and said retaining mean.
- a handrail and drive mechanism for a passenger conveyor system comprising an endless elongated body of flexible material, support means for supporting said body adjacent one side of the conveyor, said elongated body having an upper run for grasping by passengers, a lower run, a central portion, edge portions, hinge portions connecting said central and said edge portions connecting said central and said edge portions and having greater transverse flexibility than said central portions and said edge portions for folding under said central portion, a traction drive sheave and a takeup sheave in engagement with said elongated body in said lower run, said drive sheave and said takeup sheave being located in the same plane with substantially parallel axes of rotation of engaging opposite sides of said elongated body and flexing it in both directions.
- edge portions in the folded-under condition are spaced apart providing an exposed friction surface, said driving sheave having a circumferential driving rib member for engagement with said friction surface, and said rib member having a thickness greater than the thickness of said edge portion to facilitate engagement with said friction surface.
Landscapes
- Escalators And Moving Walkways (AREA)
Abstract
A moving handrail system for a passenger conveyor in which the handrail has hinged edges folded under flanges of a balustrade guide member with the edges of the handrail being retained in position by supporting plates. The handrail is driven by a sheave having a circumferential rib extending between the edges and engaging a driving face of the handrail. The hinged construction provides for bending and flexing the handrail in either direction as it passes around a drive sheave and takeup sheaves.
Description
Unite States Patent 1 1 3,623,590
[72] inventor Ern D-J I I SD 2.686585 8/1954 Margles et a1. 198/16 Tfl lm g i 2,028,358 1/1936 Shonnard 198/16 [21] Appl. No. 3,795 2,225,772 12/1940 Dunlop 198/16 [45] Patented Nov. 30, 1971 426,148 7/1965 Sw1tzerland 198/16 [73] Assgnee zt' gs' Rubb Cmnpany 433,141 11/1935 Great Britain 198/16 Primary Examiner-Even C. Blunk Assistant ExaminerHadd S. Lane MOVING HANDRAIL SYSTEM A!10rneysF. W. Brunner and Oberlin, Maky. Donnelly &
16 Claims, 7 Drawing Figs. Renner [52] U.S.Cl 198/16 1gg/6lb69/l172 ABSTRACT: A moving handra system for a passenger com 4 6 veyor in which the handrail has hinged edges folded under flanges of a balustrade guide member with the edges of the handrail being retained in osition by supporting plates. The [5 6] References Cited P UNITED STATES PATENTS handrail is driven by a sheave having a circumferential rib extending between the edges and engaging a driving face of the 3,463,290 8/1969 Ta lma 198/16 handraiL The hinged construction provides for bending and 1,101,209 Pm ":"iw. was/ yms flexing the handrail in either direction as it passes around a drive sheave and takeup sheaves.
PATENTED V 30197! 3.623.590
SHEET 2 [IF 2 INVi ERNEST 0, JOHN MOVING HANDRAIL SYSTEM This invention relates generally to a moving handrail and more particularly to the construction of a handrail which can be flexed in both directions with substantially the same effort and no increased wear.
Passenger conveyor systems whether of the moving-belt or moving-stairway type are ordinarily provided at each side with an endless moving handrail driven in synchronism with the passenger-supporting conveyor. The upper run of the handrail is supported by suitable guides associated with a balustrade, and the return run and friction drive for the handrail may either be enclosed within the balustrade or located therebeneath depending on whether or not the balustrade is translucent.
The handrails used heretofore have had a C-shaped cross section which has permitted flexing in one direction because the edges could turn inwardly; however, flexing in the other direction has been restricted because the edges could not turn outwardly and acted as stiffening ribs to resist the flexing. Consequently, the handrails have been limited to flexing in one direction around a bend radius of approximately 60 inches as opposed to flexing in the other direction around a bend radius of approximately 12 inches. As a result of this limitation, most handrail systems have been designed with the handrail twisting in devious paths around the drive sheave and takeup sheaves to avoid flexing in the direction requiring a large bend radius. This requirement has increased the cost of the handrail system because of the additional mechanism and space required.
Even with the systems incorporating the twisting of the handrails to avoid bending in both directions, the flexing of the C- shaped handrail has caused the edges to lose their resiliency. This has resulted in premature replacement of the handrails since the resiliency has been necessary to retain the handrails on the guide member of the balustrades.
With the foregoing in mind it is a principal object of this invention to provide a handrail construction which is adapted to flex in both directions overdrive and takeup sheaves without decreasing the life of the handrail.
Another object of this invention is to provide a handrail system in which the handrail is retained on the guides by sup porting members which can be easily removed when it is necessary to remove and install the handrail.
A further object of this invention is to provide a handrail drive and takeup mechanism in which the drive and takeup sheaves have relatively small radii and are rotatable in the same plane about parallel axes.
A still further object of this invention is to provide a handrail having folded edges for sliding engagement with the guides of the balustrade and a central friction surface between the edges for driving engagement with a circumferential rib on a drive sheave.
Other objects and advantages of the present invention will become apparent as the following description proceeds.
To the accomplishment of the foregoing and related ends, the invention, then, comprises the features hereinafter fully described and particularly pointed out in the claims, the following description and the annexed drawings setting forth in detail a certain illustrative embodiment of the invention, this being indicative, however, of but one of the various ways in which the principles of the invention may be employed.
In the annexed drawings:
FIG. I is a schematic side elevation view ofa passenger conveyor including a preferred form of handrail system constructed in accordance with this invention.
FIG. 2 is an enlarged fragmentary section taken on the plane of the line 22 of FIG. I showing the construction of the handrail, balustrade, guide members and retaining members.
FIG. 3 is an enlarged end view taken on the plane of the line 3-3 of FIG. I showing the drive and takeup sheaves with the handrail thereon, parts being broken away.
FIG. 4 is an enlarged fragmentary transverse section of the drive sheave taken on the plane ofline 4-4 of FIG. l.
FIG. 5 is an enlarged fragmentary transverse section of the takeup sheave and handrail taken on the plane of the line 5-5 of FIG. 1.
FIG. 6 is an enlarged cross-sectional view of the handrail shown in FIG. 1.
FIG. 7 is an enlarged cross-sectional view in perspective showing the handrail with the edges spread out in the condition it is made and spliced, parts being broken away.
Referring now in detail to the drawings and first especially to FIG. I, there is shown a passenger conveyor system I having a handrail 2 which is movable along a balustrade 3. At the ends of the balustrade 3 the handrail 2 is guided through openings in the balustrade to the driving and takeup mechanism which is desirably located beneath the balustrade thus permitting light-transmissive or transparent panels 4 to be used for the balustrade. The driving of the handrail 2 may be provided by a traction drive sheave 7 which is rotatable at the same speed as the drive for the passenger conveyor belt of this system. Takeup sheave 8 is located in close proximity to drive sheave 7 for rotation in the same plane P P as the plane of rotation of the drive sheave. Preferably the takeup sheave 8 rotate about an axis X-X which is parallel to the axis Y-Y of the drive sheave 7. This is shown in more detail in FIG. 3. The takeup sheave 8 has a shaft 9 which may be mounted in bearings 10 for movement of the takeup sheave relative to the drive sheave 7 to maintain the desired tension of the handrail when it is moved in a counterclockwise direction around the handrail system as shown in FIG. 1.
To regulate the tension in the handrail 2 when it is moved in the opposite direction, a second takeup sheave 11 may be mounted for rotation and tension adjustment at the other end of the balustrade 3 and is rotatable about an axis which is parallel to the axis X-X of takeup sheave 8 and axis Y-Y of drive sheave 7. The second takeup sheave 11 is located in close proximity to a guide sheave I4 rotating about an axis parallel to the axis of the second takeup sheave. Other guide members such as guide roller racks 15 may be located along the lower run of the handrail 2 for guiding it between guide sheave l4 and drive sheave 7.
Referring again to FIG. 3, the drive sheave 7 has a shaft 16 which is supported in bearings 17 mounted on a supporting structure such as angle members 18 by bolts 19 and nuts 20. Shaft 16 may also be the drive shaft for the passenger conveyor belt or may be connected to that drive shaft.
As shown more clearly in FIG. 2 the balustrade 3 has a longitudinal channeled support member 23 to which the transparent panels 4 may be clamped by fastening strips 24 fastened to the edges of the support member. At the outer surface of the support member 23 a guide member 25 on which the handrail 2 slides is secured. Spaced-apart sides 26 of the guide member 25 which has a bifurcated cross section carry flange members 27 at the edges for sliding contact with the handrail 2. The flange members 27 provide smooth surfaces on which the handrail 2 slides in the upper run and at the ends of the balustrade.
Handrail-retaining trim plate members 30 having retaining surfaces 31 extending outwardly and under the edges of the handrail 2 are supported by the support member 23 of the balustrade. Inner edges 32 of the trim member 30 are seated in grooves 33 in the sides 26 of the guide member 25. Outer edges 34 of the trim members 30 may be removably fastened to the strips 24 by a resilient snap-in connection or by screws 35. As shown in FIG. 2, the trim members 30 may be removed by removing screws 35, swinging the outer edges 34 upwardly and outwardly to displace the inner edges 32 from the grooves 33.
Referring now to FIG. 7, the handrail 2 is shown in the condition in which it is made and spliced. The handrail may be molded of flexible material such as natural or synthetic rubber with central portion 36 connected to edge portions 39 by hinge portions 40. The hinge portions 40 are of lesser thickness than the central portion 36 or edge portions 39 to provide for folding the edge portions under the central portion. The handrail 2 is subjected to tension and therefore suitable longitudinal tension members which may be steel bands 41 are embedded in the central portion 36. Reinforcement of the handrail 2 in the transverse direction is provided by a reinforcing ply 42 of suitable textile material such as nylon or rayon material bonded to the handrail and extending between the edge portions 39.
Referring now to FIG. 6, the handrail 2 is shown in the condition with the edge portions 39 folded under the central portion 36 at the hinge portions 40. Smooth sliding surfaces 43 are provided on the opposing faces of the edge portions 39 and central portion 36. The edge portions 39 are spaced apart and a friction surface 46 is molded or cut in the face of the central portion 36 which is exposed between the edge portions 39.
Referring again to FIG. 2, the handrail 2 is shown with the sliding surfaces 43 in sliding contact with the flange members 27 while the friction surface 46 is held out of engagement with any part of the guide member 25. In FIG. 4 the handrail 2 is shown in engagement with the drive sheave 7 which has a circumferential rib member 47 for engagement with the friction surface 46 of the handrail. The rib member 47 preferably has a thickness greater than the thickness of the edge portions 39 to provide the desired frictional engagement between the rib member 47 and handrail 2. As shown in FIG. 3 the rib member 47 may have a friction surface 48 machined or ground therein for engagement with the friction surface 46 of the handrail 2.
As the handrail 2 is guided over the takeup sheave 8 the outer surface which is normally grasped by passengers in the upper run will engage the sheave and the handrail will be flexed in one direction as shown in FIG. 5. Then as the handrail 2 passes over the traction drive sheave 7 the friction surface 46 and the edge portion 39 will engage the sheave flexing the handrail in the other direction. In either case because of the hinged construction, the resistance to bending and flexing is kept at a minimum. As illustrated in FIG. 3, the radius about which the handrail 2 passes maybe relatively small as compared to the thickness of the handrail. Preferably the radius R of the drive sheave 7 and the takeup sheave 8 is not more than l times the folded thickness T of the handrail 2 so that the drive and takeup mechanism can be installed in a relatively small space. This also applies to the radii of the second takeup sheave l1 and the idler guide sheave 14. It can be seen from FIG. I that the outer surface of the handrail 2 engages the second takeup sheave 11 and the edge portions 39 engage the idler guide sheave 14.
Installation and removal of the handrail 2 is accomplished with a minimum of effort. To install the handrail 2 on the guide member 25, one of the edge portions 39 is folded at one of the hinge portions 40 and inserted between one of the flange members 27 and an opposing retaining surface 31 of the handrail-retaining trim member at one side of the balustrade. At the other side of the balustrade 3 the handrailretaining trim member 30 is removed by disengaging screws and moving the outer edge 34 upwardly and outwardly so that the inner edge 32 can be removed from the groove 33 in the side 26 of the guide member 25. The other edge portion 39 may than be folded at the other hinge portion 40 to a position under the other flange member 27. The trim member 30 is then inserted under the edge portion 39 with the inner edge 32 in groove 33 so that the retaining surface 31 engages the edge portion 39 of the handrail 2. The trim member 30 is then fastened to the fastening strip 24 by screws 35 and the handrail is ready for operation.
The sliding surfaces 43 of the handrail 2 engage the flange members 27 as it passes over the balustrade in the upper run and the retaining surfaces 31 of the trim members 30 positively hold the handrail in place on the guide member 25. In the lower run of the handrail 2 it passes over the takeup sheave 8, drive sheave 7, second takeup sheave II and idler guide sheave l4 flexing in both directions with a minimum of resistance and wear.
While certain representative embodiments and details have been shown for the purpose of illustrating the invention, it will be apparent to those skilled in the art that various changes and modifications may be made therein without departing from the spirit or scope of the invention.
I, therefore, particularly point out and distinctly claim as my invention:
1. A handrail for passenger conveyors comprising an elongated body of flexible material having a central portion with longitudinal edges for grasping by passengers, edge portions underlying said central portion and fold under flanges of a guide member, hinge portions connecting said central and edge portions at said longitudinal edges, said hinge portions having greater transverse flexibility than said central portion and said edge portions to facilitate folding said edge portions under said flanges of a guide member and producing a minimum resistance to bending of the handrail in both directions around sheaves of a driving and guiding system.
2. A handrail of claim I wherein said hinge portions have a thickness less than the thickness of the connected central and edge portions to provide said greater flexibility and reduce the resistance to bending of the handrail.
3. The handrail of claim I wherein a reinforcing member is embedded in said elongated body and extends from said central portion into said edge portions.
4. The handrail of claim 3 wherein said reinforcing member comprises a ply of flexible textile material.
5. The handrail of claim I wherein a longitudinal tension member is embedded in said elongated body.
6. The handrail of claim 5 wherein said tension member is disposed in said central portion and extends throughout the length of said elongated body for absorbing the tensile stresses imposed on the handrail.
7. The handrail of claim 6 wherein said elongated body has a friction surface located on said central portion between said edge portions for engagement with the driving sheave.
8. The handrail of claim 7 wherein said elongated body has sliding surfaces on said central portion outboard of said friction surface for sliding engagement with the flanges of the guide member.
9. A handrail and guide mechanism for a passenger conveyor system comprising an elongated body of flexible material, support means for supporting and guiding said body, said elongated body having a central portion, edge portions, hinge portions connecting said central and said edge portions and having greater transverse flexibility than said central portion and said edge portions to facilitate folding of said edge portions under said central portion, flange members mounted on said support means and extending outwardly between said folded edge portions and said central portion and handrailretaining means mounted on said support means under said edge portions to retain said edge portions in the turned-under condition between said flange members and said retaining mean.
10. The handrail and guide mechanism of claim 9 wherein said retaining means are plate members mounted on said support means and said edge portions are retained between said flange members and said plate members.
11. The handrail and guide mechanism of claim 10 wherein one of said plate members is removably attached to said support means whereby removal of the plate member permits folding the adjacent edge portion out from under said central portion and sliding of the handrail 05 the opposite flange member.
12. The handrail and guide mechanism of claim 11 wherein said removably attached plate member is fastened to said support means at one edge.
13. A handrail and drive mechanism for a passenger conveyor system comprising an endless elongated body of flexible material, support means for supporting said body adjacent one side of the conveyor, said elongated body having an upper run for grasping by passengers, a lower run, a central portion, edge portions, hinge portions connecting said central and said edge portions connecting said central and said edge portions and having greater transverse flexibility than said central portions and said edge portions for folding under said central portion, a traction drive sheave and a takeup sheave in engagement with said elongated body in said lower run, said drive sheave and said takeup sheave being located in the same plane with substantially parallel axes of rotation of engaging opposite sides of said elongated body and flexing it in both directions.
14. The handrail and drive mechanism of claim 13 wherein said lower run including said drive sheave and takeup sheave are located below said conveyor so that translucent panels may be inserted in said support means.
15. The handrail and drive mechanism of claim 13 wherein said edge portions in the folded-under condition are spaced apart providing an exposed friction surface, said driving sheave having a circumferential driving rib member for engagement with said friction surface, and said rib member having a thickness greater than the thickness of said edge portion to facilitate engagement with said friction surface.
16. The handrail and drive mechanism of claim 13 wherein the radii of said drive sheave and said takeup sheave over which said elongated body is flexed in both directions are not over 15 times the folded thickness of the handrail.
UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,623,59 Dated November 30, 1971 Inventor(a) Ernest D Johnson It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown be1ow:
Column line 56, "mean" should read --means--.
Column 5, line 1, delete "connecting said central and said edge portions";
line 7, "rotation of" should read --rotation for--.
Signed and sealed this 30th day of May 1972.
(SEAL) Attest:
EDWARD M.FLETCHER, JR. ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents
Claims (14)
1. A handrail for passenger conveyors comprising an elongated body of flexible material having a central portion with longitudinal edges for grasping by passengers, edge portions underlying said central portion and folded under flanges of a guide member, hinge portions connecting said central and edge portions at said longitudinal edges, said hinge portions having greater transverse flexibility than said central portion and said edge portions to facilitate folding said edge portions under said flanges of a guide member and producing a minimum resistance to bending of the handrail in both directions around sheaves of a driving and guiding system.
2. A handrail of claim 1 wherein said hinge portions have a thickness less than the thickness of the connected central and edge portions to provide said greater flexibility and reduce the resistance to bending of the handrail. 3. The handrail of claim 1 wherein a reinforcing member is embedded in said elongated body and extends from said central portion into said edge portions.
4. The handrail of claim 3 wherein said reinforcing member comprises a ply of flexible textile material.
5. The handrail of claim 1 wherein a longitudinal tension member is embedded in said elongated body.
6. The handrail of claim 5 wherein said tension member is disposed in said central portion and extends throughout the length of said elongated body for absorbing the tensile stresses imposed on the handrail.
7. The handrail of claim 6 wherein said elongated body has a friction surface located on said central portion between said edge portions for engagement with the driving sheave. 8. The handrail of claim 7 wherein said elongated body has sliding surfaces on said central portion outboard of said friction surface for sliding engagement with the flanges of the guide member.
9. A handrail and guide mechanism for a passenger conveyor system comprising an elongated body of flexible material, support means for supporting and guiding said body, said elongated body having a central Portion, edge portions, hinge portions connecting said central and said edge portions and having greater transverse flexibility than said central portion and said edge portions to facilitate folding of said edge portions under said central portion, flange members mounted on said support means and extending outwardly between said folded edge portions and said central portion and handrail-retaining means mounted on said support means under said edge portions to retain said edge portions in the turned-under condition between said flange members and said retaining means.
10. The handrail and guide mechanism of claim 9 wherein said retaining means are plate members mounted on said support means and said edge portions are retained between said flange members and said plate members.
11. The handrail and guide mechanism of claim 10 wherein one of said plate members is removably attached to said support means whereby removal of the plate member permits folding the adjacent edge portion out from under said central portion and sliding of the handrail off the opposite flange member.
12. The handrail and guide mechanism of claim 11 wherein said removably attached plate member is fastened to said support means at one edge.
13. A handrail and drive mechanism for a passenger conveyor system comprising an endless elongated body of flexible material, support means for supporting said body adjacent one side of the conveyor, said elongated body having an upper run for grasping by passengers, a lower run, a central portion, edge portions, hinge portions connecting said central and said edge portions and having greater transverse flexibility than said central portions and said edge portions for folding under said central portion, a traction drive sheave and a takeup sheave in engagement with said elongated body in said lower run, said drive sheave and said takeup sheave being located in the same plane with substantially parallel axes of rotation for engaging opposite sides of said elongated body and flexing it in both directions.
14. The handrail and drive mechanism of claim 13 wherein said lower run including said drive sheave and takeup sheave are located below said conveyor so that translucent panels may be inserted in said support means.
15. The handrail and drive mechanism of claim 13 wherein said edge portions in the folded-under condition are spaced apart providing an exposed friction surface, said driving sheave having a circumferential driving rib member for engagement with said friction surface, and said rib member having a thickness greater than the thickness of said edge portion to facilitate engagement with said friction surface.
16. The handrail and drive mechanism of claim 13 wherein the radii of said drive sheave and said takeup sheave over which said elongated body is flexed in both directions are not over 15 times the folded thickness of the handrail.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US379570A | 1970-01-19 | 1970-01-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3623590A true US3623590A (en) | 1971-11-30 |
Family
ID=21707646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3795A Expired - Lifetime US3623590A (en) | 1970-01-19 | 1970-01-19 | Moving handrail system |
Country Status (12)
Country | Link |
---|---|
US (1) | US3623590A (en) |
JP (1) | JPS4821478B1 (en) |
BE (1) | BE761013A (en) |
BR (1) | BR7100058D0 (en) |
CA (1) | CA927305A (en) |
CH (1) | CH529056A (en) |
DE (1) | DE2100772A1 (en) |
FR (1) | FR2075088A5 (en) |
GB (1) | GB1284240A (en) |
NL (1) | NL7100652A (en) |
SE (1) | SE366714B (en) |
ZA (1) | ZA708321B (en) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949858A (en) * | 1973-05-04 | 1976-04-13 | Industrie Pirelli S.P.A. | Handrail for passenger conveyors and the like |
JPS546286A (en) * | 1977-06-16 | 1979-01-18 | Hitachi Ltd | Man conveyor |
US4488631A (en) * | 1982-07-16 | 1984-12-18 | Westinghouse Electric Corp. | Balustrade |
US4776446A (en) * | 1987-12-18 | 1988-10-11 | Westinghouse Electric Corp. | Handrail for transportation appartus |
US4932512A (en) * | 1989-10-12 | 1990-06-12 | Otis Elevator Company | Escalator handrail guide rail mounting assembly |
US5117968A (en) * | 1991-11-15 | 1992-06-02 | Otis Elevator Company | Assembly for cleaning the underside of an escalator handrail |
US5255772A (en) * | 1992-12-22 | 1993-10-26 | Escalator Handrail Company | Handrail for escalators and moving walkways with improved dimensional stability |
US6086806A (en) * | 1996-04-05 | 2000-07-11 | Ronald H. Ball | Method of splicing thermoplastic articles |
US6237740B1 (en) | 1998-06-30 | 2001-05-29 | Ronald H. Ball | Composite handrail construction |
WO2001056914A1 (en) * | 2000-02-04 | 2001-08-09 | Ball, Ronald, H. | Escalator handrails, and manufacture thereof |
US6673431B1 (en) * | 1998-09-11 | 2004-01-06 | Semperit Aktiengesellschaft Holding | Hand-rail |
WO2004108581A1 (en) * | 2003-06-04 | 2004-12-16 | Semperit Aktiengesellschaft Holding | Handrail, handrail guiding system, and handrail drive system of an escalator or moving sidewalk |
US20080308385A1 (en) * | 2004-01-16 | 2008-12-18 | Jin Koo Lee | Newel Guide for Supporting a Handrail Traveling Over a Newel |
US20100181164A1 (en) * | 2007-06-28 | 2010-07-22 | Mitsubishi Electric Corporation | Handrail for passenger conveyor |
US20100237535A1 (en) * | 2007-09-10 | 2010-09-23 | Ehc Canada, Inc. | Method and apparatus for pretreatment of a slider layer for extruded composite handrails |
US20100258403A1 (en) * | 2007-09-10 | 2010-10-14 | Viqar Haider | Modified handrail |
US20100283173A1 (en) * | 2007-09-10 | 2010-11-11 | Andrew Oliver Kenny | Method and apparatus for extrusion of thermoplastic handrail |
US20110114443A1 (en) * | 2008-03-27 | 2011-05-19 | Semperit Ag Holding | Handrail for moving walkways, escalators and the like |
CN103964288A (en) * | 2013-02-01 | 2014-08-06 | 株式会社日立制作所 | Moving handrail of passenger conveyor |
US9981415B2 (en) | 2007-09-10 | 2018-05-29 | Ehc Canada, Inc. | Method and apparatus for extrusion of thermoplastic handrail |
US10160623B2 (en) | 2015-05-07 | 2018-12-25 | Ehc Canada, Inc. | Compact composite handrails with enhanced mechanical properties |
USD853676S1 (en) * | 2016-11-18 | 2019-07-09 | Kone Corporation | Ramp with paneling |
US10350807B2 (en) | 2007-09-10 | 2019-07-16 | Ehc Canada, Inc. | Method and apparatus for extrusion of thermoplastic handrail |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55121264A (en) * | 1979-03-13 | 1980-09-18 | Tokyo Shibaura Electric Co | Bulb |
AT390780B (en) * | 1988-08-30 | 1990-06-25 | Semperit Ag | HANDRAIL |
DE102004044951B4 (en) | 2004-09-16 | 2017-05-04 | Semperit Ag Holding | Handrail and guide rail for a passenger transport system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1101209A (en) * | 1912-04-22 | 1914-06-23 | Rafford Pitt | Hand-rail for conveyers. |
GB438141A (en) * | 1934-05-12 | 1935-11-12 | Henley S Tyre & Rubber Company | Improvements in or relating to flexible hand rails for escalators |
US2028358A (en) * | 1934-06-27 | 1936-01-21 | Harold W Shonnard | Handrail for moving stairways |
US2225772A (en) * | 1940-04-27 | 1940-12-24 | Westinghouse Elec Elevator Co | Moving stairway |
US2686585A (en) * | 1949-05-04 | 1954-08-17 | Otis Elevator Co | Moving stairway |
CH426148A (en) * | 1964-07-29 | 1966-12-15 | Wertheim Werke Ag | Handrail drive with the help of drive wheels for escalators or passenger conveyor belts |
US3463290A (en) * | 1966-04-27 | 1969-08-26 | Mitsubishi Electric Corp | Handrail belt for escalator |
-
1970
- 1970-01-19 US US3795A patent/US3623590A/en not_active Expired - Lifetime
- 1970-12-09 ZA ZA708321A patent/ZA708321B/en unknown
- 1970-12-09 GB GB58429/70A patent/GB1284240A/en not_active Expired
- 1970-12-14 CA CA100484A patent/CA927305A/en not_active Expired
- 1970-12-21 JP JP45115590A patent/JPS4821478B1/ja active Pending
- 1970-12-24 FR FR7046686A patent/FR2075088A5/fr not_active Expired
- 1970-12-29 BE BE761013A patent/BE761013A/en unknown
-
1971
- 1971-01-06 DE DE19712100772 patent/DE2100772A1/en active Pending
- 1971-01-06 BR BR58/71A patent/BR7100058D0/en unknown
- 1971-01-11 CH CH35171A patent/CH529056A/en not_active IP Right Cessation
- 1971-01-18 NL NL7100652A patent/NL7100652A/xx unknown
- 1971-01-19 SE SE00596/71A patent/SE366714B/xx unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1101209A (en) * | 1912-04-22 | 1914-06-23 | Rafford Pitt | Hand-rail for conveyers. |
GB438141A (en) * | 1934-05-12 | 1935-11-12 | Henley S Tyre & Rubber Company | Improvements in or relating to flexible hand rails for escalators |
US2028358A (en) * | 1934-06-27 | 1936-01-21 | Harold W Shonnard | Handrail for moving stairways |
US2225772A (en) * | 1940-04-27 | 1940-12-24 | Westinghouse Elec Elevator Co | Moving stairway |
US2686585A (en) * | 1949-05-04 | 1954-08-17 | Otis Elevator Co | Moving stairway |
CH426148A (en) * | 1964-07-29 | 1966-12-15 | Wertheim Werke Ag | Handrail drive with the help of drive wheels for escalators or passenger conveyor belts |
US3463290A (en) * | 1966-04-27 | 1969-08-26 | Mitsubishi Electric Corp | Handrail belt for escalator |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3949858A (en) * | 1973-05-04 | 1976-04-13 | Industrie Pirelli S.P.A. | Handrail for passenger conveyors and the like |
JPS546286A (en) * | 1977-06-16 | 1979-01-18 | Hitachi Ltd | Man conveyor |
JPS582154B2 (en) * | 1977-06-16 | 1983-01-14 | 株式会社日立製作所 | man conveyor |
US4488631A (en) * | 1982-07-16 | 1984-12-18 | Westinghouse Electric Corp. | Balustrade |
US4776446A (en) * | 1987-12-18 | 1988-10-11 | Westinghouse Electric Corp. | Handrail for transportation appartus |
US4932512A (en) * | 1989-10-12 | 1990-06-12 | Otis Elevator Company | Escalator handrail guide rail mounting assembly |
US5117968A (en) * | 1991-11-15 | 1992-06-02 | Otis Elevator Company | Assembly for cleaning the underside of an escalator handrail |
US5255772A (en) * | 1992-12-22 | 1993-10-26 | Escalator Handrail Company | Handrail for escalators and moving walkways with improved dimensional stability |
US6086806A (en) * | 1996-04-05 | 2000-07-11 | Ronald H. Ball | Method of splicing thermoplastic articles |
US6237740B1 (en) | 1998-06-30 | 2001-05-29 | Ronald H. Ball | Composite handrail construction |
US6673431B1 (en) * | 1998-09-11 | 2004-01-06 | Semperit Aktiengesellschaft Holding | Hand-rail |
WO2001056914A1 (en) * | 2000-02-04 | 2001-08-09 | Ball, Ronald, H. | Escalator handrails, and manufacture thereof |
WO2004108581A1 (en) * | 2003-06-04 | 2004-12-16 | Semperit Aktiengesellschaft Holding | Handrail, handrail guiding system, and handrail drive system of an escalator or moving sidewalk |
US20060237284A1 (en) * | 2003-06-04 | 2006-10-26 | Herwig Miessbacher | Handrail, handrail guiding system, and handrail drive system of an escalator or moving sidewalk |
US20080308385A1 (en) * | 2004-01-16 | 2008-12-18 | Jin Koo Lee | Newel Guide for Supporting a Handrail Traveling Over a Newel |
US7571797B2 (en) * | 2004-01-16 | 2009-08-11 | Otis Elevator Company | Newel guide for supporting a handrail traveling over a newel |
US20100181164A1 (en) * | 2007-06-28 | 2010-07-22 | Mitsubishi Electric Corporation | Handrail for passenger conveyor |
US8186498B2 (en) * | 2007-06-28 | 2012-05-29 | Mitsubishi Electric Corporation | Handrail for passenger conveyor |
US8820511B2 (en) | 2007-09-10 | 2014-09-02 | Ehc Canada, Inc. | Modified handrail |
US10350807B2 (en) | 2007-09-10 | 2019-07-16 | Ehc Canada, Inc. | Method and apparatus for extrusion of thermoplastic handrail |
US20100258403A1 (en) * | 2007-09-10 | 2010-10-14 | Viqar Haider | Modified handrail |
US20100237535A1 (en) * | 2007-09-10 | 2010-09-23 | Ehc Canada, Inc. | Method and apparatus for pretreatment of a slider layer for extruded composite handrails |
US20100283173A1 (en) * | 2007-09-10 | 2010-11-11 | Andrew Oliver Kenny | Method and apparatus for extrusion of thermoplastic handrail |
US10940625B2 (en) | 2007-09-10 | 2021-03-09 | Ehc Canada, Inc. | Method and apparatus for extrusion of thermoplastic handrail |
US8323544B2 (en) | 2007-09-10 | 2012-12-04 | Ehc Canada, Inc. | Method and apparatus for pretreatment of a slider layer for extruded composite handrails |
US9579839B2 (en) | 2007-09-10 | 2017-02-28 | Ehc Canada, Inc. | Apparatus for extrusion of thermoplastic handrail |
US9981415B2 (en) | 2007-09-10 | 2018-05-29 | Ehc Canada, Inc. | Method and apparatus for extrusion of thermoplastic handrail |
US20110114443A1 (en) * | 2008-03-27 | 2011-05-19 | Semperit Ag Holding | Handrail for moving walkways, escalators and the like |
US8522952B2 (en) * | 2008-03-27 | 2013-09-03 | Semperit Ag Holding | Handrail for moving walkways, escalators and the like |
CN103964288B (en) * | 2013-02-01 | 2016-03-16 | 株式会社日立制作所 | The moving hand-rail of apparatus of passenger conveyor |
CN103964288A (en) * | 2013-02-01 | 2014-08-06 | 株式会社日立制作所 | Moving handrail of passenger conveyor |
US10287133B2 (en) | 2015-05-07 | 2019-05-14 | Ehc Canada, Inc. | Compact composite handrails with enhanced mechanical properties |
US10160623B2 (en) | 2015-05-07 | 2018-12-25 | Ehc Canada, Inc. | Compact composite handrails with enhanced mechanical properties |
USD853676S1 (en) * | 2016-11-18 | 2019-07-09 | Kone Corporation | Ramp with paneling |
Also Published As
Publication number | Publication date |
---|---|
CH529056A (en) | 1972-10-15 |
ZA708321B (en) | 1971-09-29 |
SE366714B (en) | 1974-05-06 |
GB1284240A (en) | 1972-08-02 |
CA927305A (en) | 1973-05-29 |
NL7100652A (en) | 1971-07-21 |
FR2075088A5 (en) | 1971-10-08 |
BE761013A (en) | 1971-05-27 |
JPS4821478B1 (en) | 1973-06-28 |
DE2100772A1 (en) | 1971-07-29 |
BR7100058D0 (en) | 1973-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3623590A (en) | Moving handrail system | |
KR0147083B1 (en) | Speed variable moving sidewalk | |
US3414109A (en) | Transportation devices having movable handrails | |
GB1566269A (en) | Stretchable belt conveyor | |
US5125494A (en) | Handrail drive mechanism for a passenger conveyor | |
TW200824899A (en) | Lift belt for a lift installation and method of producing such a lift belt | |
US5231933A (en) | Material conveyor system comprising powered trolleys on an overhead rail, the rail having varying thickness curved rail sections to maintain a constant spring compression on a roller during traversal of grades | |
US3669238A (en) | Conveyors | |
US3633725A (en) | Handrails for escalators and travolators | |
US5558206A (en) | Conveyor technology | |
US7748520B1 (en) | Slip roller conveyor | |
KR950008336A (en) | A drive assembly for moving a handrail on a passenger conveyor | |
CN108726319A (en) | Tensional element for elevator system belt | |
US7802670B2 (en) | Hand rail and guide rail for passenger conveyance system | |
US3653484A (en) | Handrail driving assembly for belt type moving passenger conveyors | |
US4470497A (en) | Escalator | |
US9856113B2 (en) | Elevator | |
CN1150779A (en) | Transit system employing traction belt | |
US3908811A (en) | Conveyor, particularly for passengers | |
US3545598A (en) | Laterally flexible belt conveyor | |
US3712447A (en) | Handrail guide system for passenger conveyor | |
US2211427A (en) | Moving stairway handrail drive | |
JP2706141B2 (en) | Escalators or moving siderails | |
US3666074A (en) | Safety brake for passenger conveyor | |
US3714902A (en) | Conveyor handrails |