US20150034401A1 - Levitation System for a Train - Google Patents

Levitation System for a Train Download PDF

Info

Publication number
US20150034401A1
US20150034401A1 US14/000,753 US201214000753A US2015034401A1 US 20150034401 A1 US20150034401 A1 US 20150034401A1 US 201214000753 A US201214000753 A US 201214000753A US 2015034401 A1 US2015034401 A1 US 2015034401A1
Authority
US
United States
Prior art keywords
fender
bar
rims
track
rim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/000,753
Inventor
Bernardus Ludgerus Lubertus Hijlkema
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOVUS FINITOR BV
Original Assignee
NOVUS FINITOR BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NOVUS FINITOR BV filed Critical NOVUS FINITOR BV
Assigned to NOVUS FINITOR B.V. reassignment NOVUS FINITOR B.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIJLKEMA, BERNARDUS LUDGERUS LUBERTUS
Publication of US20150034401A1 publication Critical patent/US20150034401A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60VAIR-CUSHION VEHICLES
    • B60V3/00Land vehicles, waterborne vessels, or aircraft, adapted or modified to travel on air cushions
    • B60V3/02Land vehicles, e.g. road vehicles
    • B60V3/04Land vehicles, e.g. road vehicles co-operating with rails or other guiding means, e.g. with air cushion between rail and vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60VAIR-CUSHION VEHICLES
    • B60V1/00Air-cushion
    • B60V1/04Air-cushion wherein the cushion is contained at least in part by walls
    • B60V1/046Air-cushion wherein the cushion is contained at least in part by walls the walls or a part of them being rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60VAIR-CUSHION VEHICLES
    • B60V1/00Air-cushion
    • B60V1/14Propulsion; Control thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61BRAILWAY SYSTEMS; EQUIPMENT THEREFOR NOT OTHERWISE PROVIDED FOR
    • B61B13/00Other railway systems
    • B61B13/08Sliding or levitation systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details
    • B61F5/52Bogie frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a fender.
  • Fenders are known in practice, for instance in hovercrafts. Another known fender, suitable for use for a train, is described in NL 1007109.
  • fenders are beset with a number of practical problems, including having to provide large support surfaces and having to supply sufficient liquid or air for the purpose of supporting a load.
  • the present invention has for its object to reduce or wholly obviate the existing problems.
  • the invention comprises a fender, the fender comprising:
  • Providing a flexible rim, at least for a part of this rim, is found to realize an additional pressure increase, whereby a significant increase in the load-bearing capacity of the fender is realized.
  • An improved load-bearing capacity results from providing at least one extra pressure chamber. In the currently preferred embodiment this results during use in a decreasing pressure variation from the inner pressure chamber to an outer rim, wherein the fluid flows laterally as seen from the inner pressure chamber to the outer rim.
  • Air is preferably used as fluid. If desired, other gases or liquids can also be used in addition to air. Air has the additional advantage that it is light and widely available.
  • the rim preferably comprises a feed for feeding the fluid.
  • At least three rims are preferably also provided, preferably four, more preferably at least six and most preferably at least eight.
  • 35 rims can for instance also be provided if suitable thicknesses of the rims are chosen.
  • Additional pressure increases can be realized by providing additional rims with additional pressure chambers located therebetween. It is hereby possible to further increase the total load-bearing capacity along the fender according to the present invention.
  • At least a part of the rims is preferably provided movably to some extent relative to each other and/or the support surface.
  • the rims can comprise metal or a plastic.
  • the rims preferably comprise aluminium.
  • Flexibly arranged, relatively stiff rims are obtained by combining one or more flexible rims comprising relatively stiff rings made from aluminium plate, wherein in a currently preferred embodiment annular air chambers are provided on the upper side of these rings.
  • the rings are manufactured from an inflatable material in order to further increase the overall flexibility.
  • Such rims are for instance air-inflatable or can be filled with another gas or optionally with a liquid.
  • the fender as described above can for instance be used as for instance a bogie of a train, although other applications are also possible, for instance for a boat or vehicle.
  • the invention further also relates to a bogie for a train, comprising a fender as described above.
  • Such a bogie provides the same effects and advantages as described for the fender.
  • the bogie preferably comprises a contactless drive.
  • a contactless drive is preferably provided with a number of permanent magnets on a rotating disc which are positioned such that rotation along a guiding strip or track realizes a propelling force.
  • a type of contactless drive can be realized in effective manner with which the bogie is displaceable relative to the guiding strip.
  • the guiding functions here as conductor. An effective and energy-efficient drive is hereby realized.
  • the invention further also relates to a train provided with a bogie as described above and/or to a track suitable for such a bogie.
  • Such a train and track provide the same effects and advantages as described in respect of the fender and/or the bogie.
  • the track comprises a strip of conductive material provided on either side of the track for the purpose of the contactless drive.
  • the track is provided with a recess in which at least one strip of conductive material is provided for the drive.
  • the track is also provided with at least one recess such that a track section of this track can be placed over an existing railway track. Use can in this way be made of an existing track which is preferably suitable for a train based on a bogie as described above as well as a conventional train.
  • the invention further also relates to a method for supporting an element, such as a train as described above, comprising a fender as also described above, and to a method for propelling an element such as a train, comprising of providing a bogie as described above.
  • FIG. 1 shows a bogie according to the invention
  • FIG. 2 shows a train provided with such a bogie
  • FIG. 3 shows a cross-section of a fender according to the invention
  • FIG. 4 shows a view of such a fender provided in a train element of FIG. 2 ;
  • FIG. 5 shows an embodiment of a fender
  • FIG. 6 shows a representation of experimental results with the fender of FIG. 5 ;
  • FIG. 7 shows a representation of results with the fender of FIG. 5 ;
  • FIG. 8 shows a view of an alternative embodiment of a fender according to the invention.
  • FIG. 9 shows a representation of experimental results with the embodiment of the fender of FIG. 8 ;
  • FIG. 10 shows a conceptual representation of the drive according to the invention.
  • FIG. 11 shows a view of a drive and a suspension of a bogie of the train of FIG. 2 ;
  • FIGS. 12 and 13 show a view of a test setup of the drive
  • FIGS. 14 and 15 show a further embodiment of the fender according to the invention.
  • FIGS. 16 and 17 show respectively a cross-section and a view of a rigid fender with two flexible rims according to the invention
  • FIGS. 18-23 show diverse figures and results relating to a test with a plastic duo-fender with a diameter of 160 mm and a thickness of 10 mm;
  • FIGS. 24-27 show diverse figures and results relating to a calculation of the air consumption of a small foil fender.
  • a bogie 2 ( FIG. 1 ) is shown on a track 4 of a conventional railway 6 .
  • This conventional railway 6 consists of train rails 8 and sleepers 10 .
  • Bogie 2 is provided with a drive 12 .
  • Drive 12 comprises four rotating discs 14 , two on either side of bogie 2 .
  • Fenders 16 are also provided.
  • Guides 18 embodied in the shown embodiment as fenders, are also arranged for safety purposes.
  • the track is provided on the sides with a guiding strip 20 for the purpose of the driving.
  • Such a bogie 2 can be used for a train 22 ( FIG. 2 ).
  • a fender 24 ( FIG. 3 ) is provided with a support surface 26 which acts on an underlying track section 28 .
  • a fender has six rims 30 , wherein the rim comprises a ring which is made from an aluminium plate and above which is provided an annular air chamber 32 which can be actuated. Alternatively, another metal or a plastic is used for the rim. The actuation is also possible by means of other power sources, such as hydraulic or pneumatic cylinders, spring constructions, etc.
  • Feed channels 34 can individually adjust rims 30 .
  • Feed channel 36 provides air to the inner pressure chamber.
  • the pressure chambers between rims 30 are optionally provided with a feed channel (not shown).
  • the diameter of rims is about 200 mm and the height of the recess for the fender is about 65 mm, wherein the fender is fixed in horizontal direction with a connection 38 .
  • a train 40 ( FIG. 4 ) is provided with a fender 24 as shown in FIG. 3 .
  • the drive is similar to the configuration of FIG. 1 , wherein an angle ⁇ is provided for configuring train 40 in lateral direction.
  • a diameter is assumed in a first embodiment of 200 millimetres.
  • the radii of the rims are successively 22 and 28 , 30 and 36 , 38 and 44 , 46 and 52 , 54 and 60 , 62 and 68 , 70 and 76 , 78 and 84 , 86 and 92 , 94 and 100 .
  • a low pressure of ⁇ 0.03 bar in the outer rim (with a limited flow rate Q of 1.4 l/min and little wear of the rims) will be sufficiently high to support the train therewith.
  • FIG. 7 and table 1 show visually the obtained results of a number of embodiments.
  • FIG. 7 Diameter bearing 2R0 200 10 ⁇ 3 m Diameter pocket 2R1 188 10 ⁇ 3 m Diameter 2R2 4 10 ⁇ 3 m Pocket depth h2 500 10 ⁇ 6 m Film thickness h0 10 10 6 m Supply pressure pS 0.145 10 6 Pa Ambient pressure pA 0.1 10 6 Pa Result Pressure p(R1)/pA 1.45 Pressure factor ⁇ 1 Load-bearing capacity F 0.944 Flow rate M 30804 10 ⁇ 6 kg/s Load-bearing capacity F 1334.3 N
  • Stepwise calculation of load-bearing capacity (from outside to inside with the addition of a ring at a time), starting from a pressure value in the outer annular chamber of 1 bar:
  • a possible embodiment of the drive according to the invention is further described and shown in FIG. 10 .
  • the drive according to a first version, used for a train for the purpose of bogie 2 comprises an electric motor based on utilization of the Lorenz forces, preferably in aluminium strips functioning as conductor.
  • a source formed in an advantageous embodiment with a permanent magnet or magnets, causes a magnetic field through a conductive circuit.
  • An electric current is induced in the circuit by changing the magnetic field, preferably of the magnet which moves relative to this circuit.
  • the Lorentz force between the magnetic field and the current is manifested as a force between the permanent magnet and the conductive circuit which decelerates the permanent magnet and entrains the conductive circuit with the movement of the magnet.
  • a drive can be realized in this manner.
  • the magnetic field around a permanent magnet does not change abruptly from zero to a constant value, as in the wire frame example, but is a continuously varying function of the position.
  • the guiding rail in the wire frame example the electric current is forced to flow in a circuit with imposed geometry, and spatial integrals, such as in Faraday's law, can thereby be calculated relatively easily.
  • the eddy current will continuously form extended and more complex patterns, especially on the top side of the rail ( FIG. 10 ) where the current is ‘forced’ to reverse in order to remain in the rail.
  • FIG. 11 and FIG. 1 The drive and the positioning relative to the suspension of the levitating train is further shown in FIG. 11 and FIG. 1 .
  • drive 42 is provided centrally in track 43 .
  • Guiding strip 44 is provided in recess 45 .
  • Angle ⁇ is provided for lateral fixation.
  • the drive can also be used in other applications, such as a wind turbine.
  • the drive can for instance also be applied as generator.
  • FIGS. 12 and 13 A second embodiment of the drive is shown in FIGS. 12 and 13 .
  • a further test was performed with an setup as shown in FIG. 13 .
  • the test has shown in respect of the generable drive power that, on the basis of above stated video recorded test with a magnet package of two upright magnets of 40 ⁇ 40 ⁇ 10 mm, a traction force of about 7 kgf can be utilized as drive power in a similar configuration via the substantially contactless structural engagement on a guide as part of a track construction, for instance for the Aqua Planing Train.
  • a usable magnetic field could only be utilized on one side, while a magnetic field can be utilized on two sides via the above configuration of the magnets applied here. This is optionally even possible for three sides.
  • a further embodiment of the fender embodied in this case with a three-fold rim is constructed from rims in the form of three rings which are manufactured from a metal or from a rigid or flexible plastic, or a combination hereof, and which are provided relative to each other and to the construction of the fender with an airtight connection via arrangement of in this case rubber O-rings 64 , 66 , 68 ( FIGS. 14 and 15 ).
  • All three rims 70 , 72 , 74 are each actuated from the fender construction by three hydraulic or pneumatic cylinders 58 , 60 , 62 .
  • compressed air pressure with a pressure value of for instance 3 bar is applied in the inner pressure chamber.
  • the single feed of the air pressure and the, in this embodiment, likewise single feed of the hydraulic pressure corresponding to the value of the exerted force or load hereby has to be regulated with the purpose in this embodiment of allowing the pressure value in the air chambers to increase, as seen from the outside to the inside, from for instance 1 bar in the outer annular chamber to 2 bar in the inner annular chamber and to 3 bar in the inner pressure chamber.
  • an air cushion construction 52 can be arranged between the fender construction and for instance the train construction 50 .
  • the air pressure operating herein will also have to be regulated corresponding to the value of the varying force or load exerted on the fender.
  • FIGS. 16 and 17 show an embodiment of a rigid fender 80 with two flexible rims.
  • FIG. 17 is shown as representation in oval/elliptical form, while it will be appreciated that in reality it is circular.
  • rigid part 82 rigid part 82
  • air chamber 84 for actuating flexible rims 86 , 88 .
  • rigid fender parts 90 Further shown are rigid fender parts 90 .
  • FIGS. 18-27 show diverse figures and results in respect of a test with a plastic duo-fender. Use is made here of the following parameters:
  • Anticipated air consumption per fender 8 ⁇ 1.44 m 3 ⁇ 11.5 m 3 .
  • Anticipated air consumption train: 4 ⁇ 11.5 m 3 46 m 3 /hour.
  • DRL 100 requires a power of 5 kW and produces 89 m 3 of air (see also FIG. 21 with the bottom line for DLR 80, middle line for DRL 100 and top line for DLR 150 for air output in m 3 /hour relative to overpressure in bar, and FIG. 22 with bottom line for DLR 100, above this DLR 250, DLR 300 and at the top DLR 500 for power in kW relative to overpressure in bar).
  • FIGS. 23 and 24 show a number of configurations with parameters and calculated results in tables 2 and 3 respectively.
  • FIG. 27 the bottom line on the right shows the pressure of the configuration of FIG. 18 and the top line the configuration of FIG. 25 .
  • DRL 100 requires a power of 3 kW and produces 97 m 3 of air.

Abstract

The present invention relates to a fender, bogie, train, track and methods. The fender according to the invention comprises: a support surface provided on the underside during use; an inner pressure chamber provided in or on the support surface; a feed arranged in the pressure chamber for feeding a fluid; a first rim present round the inner pressure chamber, wherein at least a part of the rim is flexible; and a second rim arranged round the first rim such that a pressure chamber is created between two adjacent rims.

Description

  • The present invention relates to a fender.
  • Fenders are known in practice, for instance in hovercrafts. Another known fender, suitable for use for a train, is described in NL 1007109.
  • Known fenders are beset with a number of practical problems, including having to provide large support surfaces and having to supply sufficient liquid or air for the purpose of supporting a load.
  • The present invention has for its object to reduce or wholly obviate the existing problems.
  • For this purpose the invention comprises a fender, the fender comprising:
      • a support surface provided on the underside during use;
      • an inner pressure chamber provided in or on the support surface;
      • a feed arranged in the pressure chamber for feeding a fluid;
      • a first rim present round the inner pressure chamber, wherein at least a part of the rim is flexible; and
      • a second rim arranged round the first rim such that a pressure chamber is created between two adjacent rims.
  • Providing a flexible rim, at least for a part of this rim, is found to realize an additional pressure increase, whereby a significant increase in the load-bearing capacity of the fender is realized.
  • An improved load-bearing capacity results from providing at least one extra pressure chamber. In the currently preferred embodiment this results during use in a decreasing pressure variation from the inner pressure chamber to an outer rim, wherein the fluid flows laterally as seen from the inner pressure chamber to the outer rim.
  • Air is preferably used as fluid. If desired, other gases or liquids can also be used in addition to air. Air has the additional advantage that it is light and widely available. The rim preferably comprises a feed for feeding the fluid.
  • At least three rims are preferably also provided, preferably four, more preferably at least six and most preferably at least eight.
  • It is noted that 35 rims can for instance also be provided if suitable thicknesses of the rims are chosen.
  • Additional pressure increases can be realized by providing additional rims with additional pressure chambers located therebetween. It is hereby possible to further increase the total load-bearing capacity along the fender according to the present invention.
  • At least a part of the rims is preferably provided movably to some extent relative to each other and/or the support surface.
  • By providing flexible rims, wherein a relative movement is possible between the rims and/or between a rim and the support surface of the fender, friction is for instance reduced and the air consumption can also be reduced. In addition, the roughness of the track is however also less critical. This means in practice that good results can still be achieved with a rougher track.
  • The rims can comprise metal or a plastic.
  • The rims preferably comprise aluminium.
  • Flexibly arranged, relatively stiff rims are obtained by combining one or more flexible rims comprising relatively stiff rings made from aluminium plate, wherein in a currently preferred embodiment annular air chambers are provided on the upper side of these rings.
  • In an alternative embodiment the rings are manufactured from an inflatable material in order to further increase the overall flexibility. Such rims are for instance air-inflatable or can be filled with another gas or optionally with a liquid.
  • The fender as described above can for instance be used as for instance a bogie of a train, although other applications are also possible, for instance for a boat or vehicle.
  • The invention further also relates to a bogie for a train, comprising a fender as described above.
  • Such a bogie provides the same effects and advantages as described for the fender.
  • The bogie preferably comprises a contactless drive. Such a contactless drive is preferably provided with a number of permanent magnets on a rotating disc which are positioned such that rotation along a guiding strip or track realizes a propelling force. In this way a type of contactless drive can be realized in effective manner with which the bogie is displaceable relative to the guiding strip. The guiding functions here as conductor. An effective and energy-efficient drive is hereby realized.
  • The invention further also relates to a train provided with a bogie as described above and/or to a track suitable for such a bogie.
  • Such a train and track provide the same effects and advantages as described in respect of the fender and/or the bogie.
  • In a currently preferred embodiment the track comprises a strip of conductive material provided on either side of the track for the purpose of the contactless drive. Alternatively or additionally, the track is provided with a recess in which at least one strip of conductive material is provided for the drive. In an advantageous preferred embodiment the track is also provided with at least one recess such that a track section of this track can be placed over an existing railway track. Use can in this way be made of an existing track which is preferably suitable for a train based on a bogie as described above as well as a conventional train.
  • The invention further also relates to a method for supporting an element, such as a train as described above, comprising a fender as also described above, and to a method for propelling an element such as a train, comprising of providing a bogie as described above.
  • The stated methods provide the same effects and advantages as described for the fender, bogie, train or track.
  • Further advantages, features and details of the invention are elucidated on the basis of preferred embodiments thereof, wherein reference is made to the accompanying drawing, in which:
  • FIG. 1 shows a bogie according to the invention;
  • FIG. 2 shows a train provided with such a bogie;
  • FIG. 3 shows a cross-section of a fender according to the invention;
  • FIG. 4 shows a view of such a fender provided in a train element of FIG. 2;
  • FIG. 5 shows an embodiment of a fender;
  • FIG. 6 shows a representation of experimental results with the fender of FIG. 5;
  • FIG. 7 shows a representation of results with the fender of FIG. 5;
  • FIG. 8 shows a view of an alternative embodiment of a fender according to the invention;
  • FIG. 9 shows a representation of experimental results with the embodiment of the fender of FIG. 8;
  • FIG. 10 shows a conceptual representation of the drive according to the invention;
  • FIG. 11 shows a view of a drive and a suspension of a bogie of the train of FIG. 2;
  • FIGS. 12 and 13 show a view of a test setup of the drive;
  • FIGS. 14 and 15 show a further embodiment of the fender according to the invention;
  • FIGS. 16 and 17 show respectively a cross-section and a view of a rigid fender with two flexible rims according to the invention;
  • FIGS. 18-23 show diverse figures and results relating to a test with a plastic duo-fender with a diameter of 160 mm and a thickness of 10 mm; and
  • FIGS. 24-27 show diverse figures and results relating to a calculation of the air consumption of a small foil fender.
  • A bogie 2 (FIG. 1) is shown on a track 4 of a conventional railway 6. This conventional railway 6 consists of train rails 8 and sleepers 10. Bogie 2 is provided with a drive 12. Drive 12 comprises four rotating discs 14, two on either side of bogie 2. Fenders 16 are also provided. Guides 18, embodied in the shown embodiment as fenders, are also arranged for safety purposes. The track is provided on the sides with a guiding strip 20 for the purpose of the driving. Such a bogie 2 can be used for a train 22 (FIG. 2).
  • An embodiment of a fender 24 (FIG. 3) is provided with a support surface 26 which acts on an underlying track section 28. In the shown embodiment a fender has six rims 30, wherein the rim comprises a ring which is made from an aluminium plate and above which is provided an annular air chamber 32 which can be actuated. Alternatively, another metal or a plastic is used for the rim. The actuation is also possible by means of other power sources, such as hydraulic or pneumatic cylinders, spring constructions, etc. Feed channels 34 can individually adjust rims 30. Feed channel 36 provides air to the inner pressure chamber. The pressure chambers between rims 30 are optionally provided with a feed channel (not shown). The diameter of rims is about 200 mm and the height of the recess for the fender is about 65 mm, wherein the fender is fixed in horizontal direction with a connection 38.
  • In a possible first embodiment of the fender a train 40 (FIG. 4) is provided with a fender 24 as shown in FIG. 3. The drive is similar to the configuration of FIG. 1, wherein an angle α is provided for configuring train 40 in lateral direction. In order to calculate such a fender a diameter is assumed in a first embodiment of 200 millimetres.
  • The obtained calculation of a fender of □200 mm, constructed from ten 6 mm-wide aluminium rims functioning flexibly relative to each other and at a mutual distance of 2 mm (FIG. 5), was tested. The radii of the rims are successively 22 and 28, 30 and 36, 38 and 44, 46 and 52, 54 and 60, 62 and 68, 70 and 76, 78 and 84, 86 and 92, 94 and 100. With a pressure value in the inner pressure chamber of 10 bar compared to the pressure value of 1 bar in a fender with a single rim (here the pressure value in the outer annular chamber) the load-bearing capacity of this fender (1,346 kg) increased by a multiplication coefficient of ≈4.65 compared to the load-bearing capacity of the fender with a single rim (297 kg). As shown in the graph (FIG. 6, dots representing load-bearing capacity in kg and bars representing pressure value in kPa for the rings), owing to the minimal dimensions of the inner three pressure chambers the contribution of these three rims was found to be very minimal.
  • The above results, and particularly the marginal contribution of the three inner rims, indicate that if the size of the fender is increased the multiplication coefficient would increase further. A similar calculation was therefore carried out for a fender of Ø600 mm. The multiplication coefficient was found to have increased to 13.5×. This is therefore 2.9 times the multiplication coefficient of the fender diameter of 200 mm.
  • The greater the diameter of the fender, the greater this multiplication coefficient will therefore be. Looking at the ratio of the load-bearing capacities of the two fenders of diameter 200 mm (1,346 kg) and diameter 600 mm (36,483 kg) filled almost wholly with rims, respectively 10 and 30 rims, there is found to be a very interesting outcome. The ratio of the load-bearing capacities is ≈27× while the ratio of the surface areas of the fenders is 9×, so ≈3 times greater.
  • Extrapolation means that the fender with diameter 800 mm with 40 rims and so a surface area of 16× the surface area of the fender with diameter 200 mm will have 4×16=64 times the load-bearing capacity of this fender, therefore a load-bearing capacity of ≈175 tons. Or, converted to the weight of the train of ≈20 tons and the use of 4 fenders of □800 mm, a low pressure of ≈0.03 bar in the outer rim (with a limited flow rate Q of 1.4 l/min and little wear of the rims) will be sufficiently high to support the train therewith.
  • The above extrapolation is considered in the second embodiment.
  • Stepwise calculation of load-bearing capacity, from outside to inside with the addition of a ring at a time, starting from a pressure value in the outer annular chamber of 1 bar, results in:
  • 0. atmospheric 0 kg, Difference between 0 and 1: 297 kg
    1. A1×0.5 bar+A2×1 bar=37 cm2×0.5 kg/cm2+278 cm2×1 kg/cm2=18.5 kg+278 kg=297 kg, Difference between 1 and 2: 249 kg
    2. 18.5 kg+A3×1 bar+A4×1.5 bar+A5×2 bar=18.5 kg+12 kg+51 kg (=81.5 kg)+464 kg=546 kg, Difference between 2 and 3: 208 kg
    3. 81.5 kg+A6×2 bar+A7×2.5 bar+A8×3 bar=81.5 kg+22 kg+77.5 kg (=181 kg)+573 kg=754 kg, Difference between 3 and 4: 171 kg
    4. 181 kg+A9×3 bar+A10×3.5 bar+A11×4 bar=181 kg+30 kg+98 kg (=309 kg)+616 kg=925 kg, Difference between 4 and 5: 133 kg
    5. 309 kg+A12×4 bar+A13×4.5 bar+A14×5 bar=309 kg+36 kg+108 kg (=453 kg)+605 kg=1058 kg, Difference between 5 and 6: 103 kg
    6. 453 kg+A15×5 bar+A16×5.5 bar+A17×6 bar=453 kg+40 kg+116 kg (=609 kg)+552 kg=1161 kg, up to and including rim 6 provides 86.3% of the maximum load-bearing capacity. Difference between 6 and 7: 76 kg
    7. 609 kg+A18×6 bar+A19×6.5 bar+A20×7 bar=609 kg+42 kg+124 kg (=775 kg)+462 kg=1237 kg, up to and including rim 7 provides 91.9% of the maximum load-bearing capacity. Difference between 7 and 8: 53 kg
    8. 775 kg+A21×7 bar+A22×7.5 bar+A23×8 bar 775 kg+35 kg+120 kg (=930 kg)+360 kg=1290 kg. Difference between 8 and 9: 35 kg
    9. 930 kg+A24×8 bar+A25×8.5 bar+A26×9 bar=930 kg+32 kg+111 kg (=1073 kg)+252 kg=1325 kg. Difference between 9 and 10: 21 kg
    10. 1073 kg+A27×9 bar+A28×9.5 bar+A29×10 bar=1073 kg+27 kg+95 kg (=1196 kg)+150 kg=1346 kg.
  • The results obtained and above shown are plotted in FIG. 6. The maximum pressure value in the rigid single fender was found to amount in a practical test to about 0.45 bar. The above stated results must therefore be compensated with a correction factor so that the maximum load-bearing capacity must be 0.45×1346 kg=605 kg.
  • The load-bearing capacity of this multiple fender: 605 kg/(133.4 kg (see also FIG. 7))=4.53× the load-bearing capacity of rigid fender.
  • Fender with 7 rings: (0.45 (bar)×1237 kg 557 kg/(133.4)=4.17×
    Fender with 6 rings: (0.45 (bar)×1161 kg=) 522 kg/(133.4)=3.9×
    On the basis of this latter embodiment 20,000 kg/522 kg 38.3: therefore 40 of these fenders would be necessary for the train (or 80 fenders with a pressure value of 0.45 bar×(38.3/80=) 0.215 bar in the outer annular chamber with load-bearing capacity of about 260 kg each, or 160 fenders with a pressure value of 0.108 bar in the outer annular chamber with a load-bearing capacity of about 130 kg each).
  • FIG. 7 and table 1 show visually the obtained results of a number of embodiments.
  • TABLE 1
    Setting FIG. 7
    Diameter bearing 2R0 200 10−3 m
    Diameter pocket 2R1 188 10−3 m
    Diameter 2R2 4 10−3 m
    Pocket depth h2 500 10−6 m
    Film thickness h0 10 106 m
    Supply pressure pS 0.145 106 Pa
    Ambient pressure pA 0.1 106 Pa
    Result
    Pressure p(R1)/pA 1.45
    Pressure factor β 1
    Load-bearing capacity F 0.944
    Flow rate M 30804 10−6 kg/s
    Load-bearing capacity F 1334.3 N
  • In a second embodiment experiments were performed in similar manner. The configuration is shown in FIG. 8, with radii for the individual rims of 222 and 228, 230 and 236, 238 and 244, 246 and 252, 254 and 260, 262 and 268, 270 and 276, 278 and 284, 286 and 292, 294 and 300. Surface areas in cm2 are for A01 112, A02 2715, A03 37, A04 109, A05 2570, A06 36, A07 106, A08 2428, A09 35, A10 103, A11 2290, A12 34, A13 100, A14 2157, A15 33, A16 97, A17 2027, A18 32, A19 94, A20 1901, A21 31, A22 91, A23 1780, A24 30, A25 88, A26 1662, A27 29, A28 85, A29 1548.
  • Stepwise calculation of load-bearing capacity (from outside to inside with the addition of a ring at a time), starting from a pressure value in the outer annular chamber of 1 bar:
  • 1. A1×0.5 bar+A2×1 bar=112 cm2×0.5 kg/cm2+2715 cm2×1 kg/cm2 (=56 kg)+2,715 kg=2,731 kg, difference between 1 and 2: 2,626 kg
    2. 56 kg+A3×1 bar+A4×1.5 bar+A5×2 bar=56 kg+37 kg+164 kg (=257 kg)+5,140 kg=5,397 kg, difference between 2 and 3: 2,481 kg
    3. 257 kg+A6×2 bar+A7×2.5 bar+A8×3 bar=257 kg+72 kg+265 kg (=594 kg)+7,284 kg=7,878 kg, difference between 3 and 4: 2,341 kg
    4. 594 kg+A9×3 bar+A10×3.5 bar+A11×4 bar=549 kg+105 kg+360 kg (=1,059 kg)+9,160 kg=10,219 kg, difference between 4 and 5: 2,211 kg
    5. 1,059 kg+A12×4 bar+A13×4.5 bar+A14×5 bar=1,059 kg+136 kg+450 kg (=1,645 kg)+10,785 kg=12,430 kg, difference between 5 and 6: 2,076 kg
    6. 1,645 kg+A15×5 bar+A13×5.5 bar+A14×6 bar=1,645 kg+165 kg+534 kg (=2,344 kg)+12,162 kg=14,506 kg, difference between 6 and 7: 1,948 kg
    7. 2,344 kg+A18×6 bar+A19×6.5 bar+A20×7 bar=2,344 kg+192 kg+611 kg (=3,147 kg)+13,307 kg=16,454 kg, difference between 7 and 8: 1,832 kg
    8. 3,147 kg+A21×7 bar+A22×7.5 bar+A23×8 bar=3,147 kg+217 kg+682 kg (=4,046 kg)+14,240 kg=18,286 kg, difference between 8 and 9: 1,706 kg
    9. 4,046 kg+A24×8 bar+A25×8.5 bar+A26×9 bar=4,046 kg+240 kg+748 kg (=5,034 kg)+14,958 kg=19,992 kg, difference between 9 and 10: 1,590 kg
    10. 5,034 kg+A27×9 bar+A28×9.5 bar+A29×10 bar=5,034 kg+261 kg+808 kg (=6,102 kg)+15,480 kg=21,582 kg.
  • Otherwise assuming that the mutual differences between the load-bearing capacity of adjacent rims amount to an average “factor of increase in the difference” of 0.92×, the difference values for the rest of the calculation would amount to:
  • 10-11: 1463 kg 16-17: 816 kg 22-23: 495 kg 28-29: 300 kg
    11-12: 1345 kg 17-18: 750 kg 23-24: 455 kg 29-30: 276 kg
    12-13: 1240 kg 18-19: 690 kg 24-25: 419 kg 30-31: 254 kg
    13-14: 1139 kg 19-20: 635 kg 25-26: 385 kg 31-32: 233 kg
    14-15: 1048 kg 20-21: 549 kg 26-27: 354 kg 32-33: 214 kg
    15-16: 964 kg 21-22: 538 kg 27-28: 326 kg 33-34: 198 kg
    34-35: 182
    Area inner chamber (□4.4 cm; P=35 bar)=15.2 cm2:
  • contribution of inner chamber to the total load-bearing capacity: 532 kg.
  • Total load-bearing capacity: 37,382 kg.
  • The results obtained are shown in FIG. 9 with the upper line showing the load-bearing capacity in kg and the lower line the difference between adjacent rims.
  • A possible embodiment of the drive according to the invention is further described and shown in FIG. 10.
  • In the shown embodiment the drive according to a first version, used for a train for the purpose of bogie 2, comprises an electric motor based on utilization of the Lorenz forces, preferably in aluminium strips functioning as conductor. In such a motor a source, formed in an advantageous embodiment with a permanent magnet or magnets, causes a magnetic field through a conductive circuit. An electric current is induced in the circuit by changing the magnetic field, preferably of the magnet which moves relative to this circuit. The Lorentz force between the magnetic field and the current is manifested as a force between the permanent magnet and the conductive circuit which decelerates the permanent magnet and entrains the conductive circuit with the movement of the magnet. A drive can be realized in this manner.
  • By mounting permanent magnets on a wheel which is fixed to the vehicle and then allowing this wheel to rotate along a guiding beam (FIG. 10) we also obtain the qualitative effects described in the previous paragraphs. The vehicle will exert a force on the beam and be accelerated by the reaction force. This system thus forms in principle a motor. If however we wish to answer quantitative questions, we are confronted with a number of significant differences between the magnetic wheel/guiding rail combination and the theoretical example of the previous paragraph.
  • Firstly, there are the magnets themselves: the magnetic field around a permanent magnet does not change abruptly from zero to a constant value, as in the wire frame example, but is a continuously varying function of the position. Then there is the guiding rail: in the wire frame example the electric current is forced to flow in a circuit with imposed geometry, and spatial integrals, such as in Faraday's law, can thereby be calculated relatively easily. In a full guiding rail the eddy current will continuously form extended and more complex patterns, especially on the top side of the rail (FIG. 10) where the current is ‘forced’ to reverse in order to remain in the rail.
  • The drive and the positioning relative to the suspension of the levitating train is further shown in FIG. 11 and FIG. 1.
  • In the shown embodiments use is made of magnetic wheels with a diameter of 200 millimetres, and in an alternative embodiment with a diameter of 60 or 600 millimetres.
  • It is noted that the drive can also be applied without the fender according to the invention. The invention thus also relates to the drive separately. In FIG. 11 drive 42 is provided centrally in track 43. Guiding strip 44 is provided in recess 45. Angle β is provided for lateral fixation.
  • In addition, it is noted that the drive can also be used in other applications, such as a wind turbine. The drive can for instance also be applied as generator.
  • A second embodiment of the drive is shown in FIGS. 12 and 13.
  • The use of permanent magnets for driving and braking the train is further elucidated below. The super-strong Neodymium permanent magnets were found to be highly suitable for this purpose. The use of this type of magnet could present the possibility of hereby being able to develop sufficient traction and braking power to allow optimal operation of the APT train.
  • Apart from the relatively limited availability of this earth metal, the costs of applying these magnets in the track would have an adverse effect on efforts to keep infrastructure investment costs as low as possible. During the research into the practical applicability of these magnets in combination with steel strips, it was found that, if such a magnet was positioned displaceably at a short distance of about 1 mm between two steel strips with corresponding orifices, the magnet had to be pulled with a relatively great traction force in order to draw this magnet past those orifices. Calculation of this force in relation to the estimated drive power of the train gave sufficient cause to voice the expectation that utilization of this phenomenon could well be sufficient to develop a contactless driving technique on the basis thereof. Particularly having to arrange only steel blocks in the guide construction of the track would bring about only a limited increase in costs of the track. After carrying out traction tests with a constructed test setup for indicative determination of the dimensioning of the ideal ratio of the size of the steel strips and that of the magnet and the effect on the mutual distances, a first semi-rotating test setup was developed and constructed (see FIGS. 10 and 11). The tests performed herewith showed that the transferable torque was high enough to be able to assume that, using this technical option, an adequate solution for developing a low-friction driving technique could indeed be a possibility. The calculation of a graphic representation of this test setup gave sufficient insight into a possibly feasible dimensioning of such a type of driving technique.
  • The above discussed version of the technique has shown that a directly engaging, contactless transmission can be realized with this technique. It is the case that the first version functions optimally when there is a speed difference of 3.5 m/sec between the magnetic disc and the aluminium strips arranged here in the track construction. In order to gain more insight into the possible added value this transmission technique could produce, a second embodiment of this technique has been developed in a rotating version. The tests performed with this second version mounted on the turning device were found to produce a transferable torque of 4.5 Nm similar to that already obtained during previous stationary tests and calculations made 5 Nm). From the experience gained with and the knowledge developed from applying air bearing, the rotating version was subsequently provided with an air bearing between the magnetic disc and a single larger disc provided with iron cores. This appears to confirm that reducing the distance between the discs results in an increase in the transferable torque. In the previous tests there was a two-sided version. This latter setup however had a single version. A maximum transferable torque of 6.6 Nm was hereby measured. This is comparatively almost a tripling of the torque value.
  • Finally, this test was also performed with an aluminium disc in the turning device. The measured torque value was found to amount to ≈5 Nm.
  • With the setup of FIG. 12 a number of parameters were determined for this embodiment. These are:
  • Maximum traction force (Ftrek,max) about 19 kgf
    magnetic resistance about 0.7 kgf
    effective traction force about 18 kgf.
    Magnetic resistance (Rmagn) 150/118 mm×18 kgf about 24 kgf
    Required maximum force for acceleration Aquatrain about 26 KN=2600 kgf: Per drive wheel: 650 kgf=650/24, therefore 27-fold force compared to results of test setup.
    Magnets applied in test setup: 10×15×35 mm.
    Dimensioning magnets Aquatrain >>3× the dimensioning: 30×50×100 mm.
    Weight drive wheel:
    24 magnets×150 cm3=3.6 dm3=3.6×7.8 kgf>>28 kg.
    Aluminum disc Ø900 mm×30 mm: >>20 dm3×2.7 kg>>54 kg
    Including bearings: >>100/150 kg.
    Magnets 6×10×20 (I=1200 mm3): ratio with 10×15×35 (I=5250 mm3)=1200/5250=23%
    F could be 0.23×19>>4 kgf.
    Moment=4 kgf×0.15 m=0.6 kgfm=6 Nm.
  • A further test was performed with an setup as shown in FIG. 13. The test has shown in respect of the generable drive power that, on the basis of above stated video recorded test with a magnet package of two upright magnets of 40×40×10 mm, a traction force of about 7 kgf can be utilized as drive power in a similar configuration via the substantially contactless structural engagement on a guide as part of a track construction, for instance for the Aqua Planing Train. With these magnets a usable magnetic field could only be utilized on one side, while a magnetic field can be utilized on two sides via the above configuration of the magnets applied here. This is optionally even possible for three sides.
  • In the above technical development the following drive power can be generated per drive wheel on the basis of this value of 7 kgf:
  • A magnet of 80×80×20 mm has an eight-fold volume compared to a magnet of 40×40×10 mm and therefore an eight-fold generable traction power. This is thus a generable traction force per magnet which can be generated of 8×7 kgf=56 kgf. This outcome is thus the value generated by this magnet over two sides during load and is as such eight-fold the value of the traction force of 7 kgf which could be generated by 2 magnets of 40×40×10 mm in the test setup.
  • In this further development there is always a wholly or partially active number of magnets of nine per wheel for generating the drive power. When converted, the traction value of these nine magnets is comparable to four fully loaded magnets (sum of the positive and negative active parts), so a generable traction force of 4×56 kgf=224 kgf per wheel.
  • Per set of two drive wheels in a double-sided drive: 448 kgf.
  • A further embodiment of the fender embodied in this case with a three-fold rim is constructed from rims in the form of three rings which are manufactured from a metal or from a rigid or flexible plastic, or a combination hereof, and which are provided relative to each other and to the construction of the fender with an airtight connection via arrangement of in this case rubber O-rings 64, 66, 68 (FIGS. 14 and 15).
  • All three rims 70, 72, 74 are each actuated from the fender construction by three hydraulic or pneumatic cylinders 58, 60, 62. In this embodiment compressed air pressure with a pressure value of for instance 3 bar is applied in the inner pressure chamber. By increasing the diameter of the arranged cylinders per rim, as seen from the outside to the inside, such that this dimensioning will correspond to the vertical upward forces which are exerted on these rims and increase from outside to inside and which are exerted by the air pressure present under these rims. This achieves that in this case one hydraulic value can be employed in the cylinders. In the case of an increase or decrease in the force or load exerted on the fender construction, the single feed of the air pressure and the, in this embodiment, likewise single feed of the hydraulic pressure corresponding to the value of the exerted force or load hereby has to be regulated with the purpose in this embodiment of allowing the pressure value in the air chambers to increase, as seen from the outside to the inside, from for instance 1 bar in the outer annular chamber to 2 bar in the inner annular chamber and to 3 bar in the inner pressure chamber.
  • For an optionally smoother functioning of this embodiment an air cushion construction 52 can be arranged between the fender construction and for instance the train construction 50. The air pressure operating herein will also have to be regulated corresponding to the value of the varying force or load exerted on the fender.
  • FIGS. 16 and 17 show an embodiment of a rigid fender 80 with two flexible rims. FIG. 17 is shown as representation in oval/elliptical form, while it will be appreciated that in reality it is circular. Provided here are: rigid part 82, air chamber 84 for actuating flexible rims 86, 88. Further shown are rigid fender parts 90.
  • FIGS. 18-27 show diverse figures and results in respect of a test with a plastic duo-fender. Use is made here of the following parameters:
  • Supply pressure: 2 bar;
    Pcylinder: 2.5 bar;
    Acylinder Ø63: 31.7 cm2;
  • F≈79 kgf.
  • Total weight train: 20 tonf; 4 fenders: 5,000 kgf/fender: Number of fenders Ø16 cm required: 5,000 kgf/79 kgf≈64 fenders. Therefore necessary for scaling-up:
    √64=8×: Ø128 cm.
    Air consumption fender Ø16 cm: tank 24 litres, 8 to 2 bar: 96 litres (2 bar) in 4 minutes=24 litres (2 bar)/minute=1.44 m3/hour.
    Increase circumference in scaling-up: 8×. Anticipated air consumption per fender: 8×1.44 m3≈11.5 m3. Anticipated air consumption train: 4×11.5 m3=46 m3/hour. At a pressure of 2 bar DRL 100 requires a power of 5 kW and produces 89 m3 of air (see also FIG. 21 with the bottom line for DLR 80, middle line for DRL 100 and top line for DLR 150 for air output in m3/hour relative to overpressure in bar, and FIG. 22 with bottom line for DLR 100, above this DLR 250, DLR 300 and at the top DLR 500 for power in kW relative to overpressure in bar).
    Total electricity consumption for the whole train: 46 m3/89 m3×5 kWh=2.6 kWh.
    FIGS. 23 and 24 show a number of configurations with parameters and calculated results in tables 2 and 3 respectively.
  • TABLE 2
    Setting FIG. 23A 23B 23C
    Diameter
    40 10−3 m 160 10−3 m 160 10−3 m
    bearing 2R0
    Diameter Orifice 0.167 10−3 m 0.167 10−3 m 0.167 10−3 m
    2R1 = d_test
    Film thickness h0 5 10−6 m 5 10−6 m 51 10−6 m
    Supply pressure 0.5 106 Pa 0.59 106 Pa 0.59 106 Pa
    pS
    Ambient 0.1 106 Pa 0.1 106 Pa 0.1 106 Pa
    pressure pA
    Pressure factor β 0.6 0.6 0.6
    Coefficient of 0.7 0.7 0.7
    discharge Cd
    Result
    Pressure ratio 0.68 0.668 0.668
    pR/pS
    Load-bearing 0.092 0.081 0.081
    capacity F
    Flow rate M 0.417 10−6 kg/s 0.457 10−6 kg/s 485.395 10−6 kg/s
    Diameter orifice d 0.167 10−3 m 0.181 10−3 m 18.876 10−3 m
    Load-bearing 46.2 N 797.76 N 797.76 N
    capacity F
    Axial stiffness 12.32 106 N/m 214.51 106 N/m 21.03 106 N/m
    S = dF/dh
    Flow rate Q 0.021 l/min 0.023 l/min 24.49 l/min
  • TABLE 3
    Parameters figure
    24A 24B 24C 24D
    Diameters bearing 2R0 102 102 102 102 10−3 m
    Diameter pocket 2R1 100 100 100 100 10−3 m
    Diameter inlet 2R2 1 10 10 10 10−3 m
    Pocket depth h2 5000 5000 5000 5000 10−6 m
    Film thickness h0 5 5 15 15 10−6 m
    Supply pressure pS 0.167 0.167 0.167 0.162 106 Pa
    Ambient pressure pA 0.1 0.1 0.1 0.1 106 Pa
    Result
    Pressure p(R1)pA 1.67 1.67 1.67 1.62
    Pressure factor β 1 1 1 1
    Load-bearing capacity F 0.982 0.982 0.982 0.982
    Flow rate M kg/s 19.531 19.531 527.33 478.839 10−6
    Load-bearing capacity F 537.7 537.7 537.7 497.5 N
    Inherent stiffness 0 0 0 0 106 N/m
    S = dF/dH
    Flow rate Q 0.985 0.985 26.606 24.16 l/min

    There follows below a calculation of the air consumption of a small foil fender, with reference to FIGS. 24-27, with an additional rim 46. In FIG. 27 the bottom line on the right shows the pressure of the configuration of FIG. 18 and the top line the configuration of FIG. 25. The difference is explained by rim 46. This fender has a Ø10 cm: A=78 cm2. If F large fender Ø100 cm (A=7800 cm2)=5000 kgf, then F small fender Ø10 cm is thus 50 kgf, so P air chamber=50 kgf/78 cm2=0.64 bar.
    P rim=0.67 bar.
    Cylinder Ø6.3 cm: A=31.7 cm2: F=50 kgf, so P cylinder=50/31.7=1.58 bar.
    Air consumption small fender:
    From 8 to 2 bar: 12 minutes=4×24 litres=96 litres (2 bar) in 12 minutes (=480 litres (2 bar)/hour)=3×96 litres (0.67 bar)=288 litres (0.67 bar) in 12 minutes=288 litres/12 minutes=24 litres/minute (0.67 bar)=5×288 litres/hour=1.44 m3 (0.67 bar)/hour.
    For four fenders of Ø100 (circumference 10×)=4×10×1.44 m3 (0.67 bar)/hour=57.6 m3 (0.67 bar)/hour.
    At a pressure of 0.67 bar DRL 100 requires a power of 3 kW and produces 97 m3 of air.
    Total electrical consumption for the whole train: 57.6 m3/97 m3×3 kWh=1.8 kWh.
    For four fenders of Ø100 (circumference 10×)=4×10×0.48 m3 (2 bar)/hour=19.2 m3 (2 bar)/hour.
    At a pressure of 2 bar DRL 100 requires a power of 53 kW and produces 89 m3 of air.
    Total electrical consumption for the whole train: 19.2 m3/89 m3×5 kWh=1.08 kWh.
    Results considered on the basis of the air bearings calculation method:
    For the test setup with cylinders Ø63 mm: A=31.7 cm2; F=50 kgf: P=50 kgf/31.7 cm2=1.58 bar.
    Air feed (diameter inlet not important) on the metre: 0.67 bar and in the rim 0.62 bar.
    A film thickness of 15 microns is found to apply for a consumption of 24 litres/minute.
  • The present invention is by no means limited to the above described embodiments thereof. The rights sought are defined by the following claims, within the scope of which many modifications can be envisaged. The described and shown drive can thus be used for instance separately of the fenders, for instance in wind turbines.

Claims (20)

1. A fender, comprising:
a support surface provided on the underside during use;
an inner pressure chamber provided in or on the support surface;
a feed arranged in the pressure chamber for feeding a fluid;
a first rim present round the inner pressure chamber, wherein at least a part of the rim is flexible; and
a second rim arranged round the first rim such that a pressure chamber is created between two adjacent rims.
2. The fender as claimed in claim 1, wherein the fluid comprises air.
3. The fender as claimed in claim 1, wherein the rim comprises a feed for feeding the fluid.
4. The fender as claimed in claim 1, wherein at least two rims are provided.
5. The fender as claimed in claim 1, wherein at least a part of the rims are provided movably to some extent relative to each other and/or the support surface.
6. The fender as claimed in claim 1, wherein the rims are made of aluminium.
7. The fender as claimed in claim 1, wherein at least a part of the rim and/or rims is inflatable.
8. A bogie for a train, comprising a fender as claimed in claim 1.
9. The bogie as claimed in claim 8, further comprising a contactless drive.
10. The bogie as claimed in claim 9, wherein the contactless drive comprises a number of permanent magnets on a rotating disc which are positioned such that rotation along a guiding strip or track creates a propelling force.
11. A train provided with a bogie as claimed in claim 9.
12. A track suitable for a bogie as claimed in claim 9.
13. The track as claimed in claim 12, further comprising a strip attached on either side of the track for the drive.
14. The track as claimed in claim 12, further comprising a recess provided with at least one strip for the drive.
15. The track as claimed in claim 12, wherein the track is provided with at least one recess such that a track section can be placed over an existing railway track.
16. A method for supporting an element, comprising of providing a fender as claimed in claim 1.
17. A method for moving an element, comprising providing a bogie as claimed in claim 9 and driving the bogie.
18. The fender as claimed in claim 3, wherein at least two rims are provided.
19. The fender as claimed in claim 6, wherein at least two rims are provided.
20. The fender as claimed in claim 8, wherein at least two rims are provided.
US14/000,753 2011-02-21 2012-02-21 Levitation System for a Train Abandoned US20150034401A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL2006269 2011-02-21
NL2006269 2011-02-21
PCT/NL2012/000015 WO2012115506A1 (en) 2011-02-21 2012-02-21 Levitation system for a train

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2012/000015 A-371-Of-International WO2012115506A1 (en) 2011-02-21 2012-02-21 Levitation system for a train

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/088,696 Continuation US10293803B2 (en) 2011-02-21 2016-04-01 Levitation system for a train

Publications (1)

Publication Number Publication Date
US20150034401A1 true US20150034401A1 (en) 2015-02-05

Family

ID=46028108

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/000,753 Abandoned US20150034401A1 (en) 2011-02-21 2012-02-21 Levitation System for a Train
US15/088,696 Active 2032-11-25 US10293803B2 (en) 2011-02-21 2016-04-01 Levitation system for a train

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/088,696 Active 2032-11-25 US10293803B2 (en) 2011-02-21 2016-04-01 Levitation system for a train

Country Status (10)

Country Link
US (2) US20150034401A1 (en)
EP (1) EP2701960B1 (en)
DK (1) DK2701960T3 (en)
ES (1) ES2753536T3 (en)
HU (1) HUE045921T2 (en)
LT (1) LT2701960T (en)
PL (1) PL2701960T3 (en)
PT (1) PT2701960T (en)
SI (1) SI2701960T1 (en)
WO (1) WO2012115506A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293803B2 (en) * 2011-02-21 2019-05-21 Novus Finitor B.V. Levitation system for a train
WO2023092645A1 (en) * 2021-11-23 2023-06-01 林勇 Hovertrain and track

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014117165A1 (en) * 2014-11-24 2016-05-25 Kautex Textron Gmbh & Co. Kg Vehicle integrated vision and cleaning system

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121401A (en) * 1962-11-13 1964-02-18 Ford Motor Co Air supported vehicle
US3330384A (en) * 1964-03-10 1967-07-11 Bertin & Cie Braking device for ground effect vehicles movable along a track
US3347170A (en) * 1964-03-05 1967-10-17 L Aerotrain Soc Et Guiding and supporting track for vehicles supported by fluid cushions
US3385390A (en) * 1964-01-21 1968-05-28 Bertin & Cie Pressure fluid cushion sealing system for tracked ground effect machines
US3392800A (en) * 1965-10-23 1968-07-16 Clark Equipment Co Air supported material handling device with vibration preventing means
US3414076A (en) * 1965-04-30 1968-12-03 Bertin & Cie Gas-cushion devices intended to support or guide a movable load
US3459137A (en) * 1966-03-29 1969-08-05 Bertin & Cie Vehicle driving system
US3587772A (en) * 1967-11-17 1971-06-28 Andre Louis Jaumotte Air-cushion vehicle
US3680489A (en) * 1969-03-21 1972-08-01 Tracked Hovercraft Ltd Vehicle propelled by linear motor
US3797399A (en) * 1971-03-11 1974-03-19 Aerotrain Trim-correcting facility for ground effect machines
US3854418A (en) * 1972-03-03 1974-12-17 Bertin & Cie Improvements in rack-and-pinion systems
US3901162A (en) * 1972-03-03 1975-08-26 Bertin & Cie Systems comprising a cogwheel and a longitudinal reaction member cooperating with the cogs thereon
US3901161A (en) * 1972-03-03 1975-08-26 Bertin & Cie Transport systems equipped with a rack-and-pinion-type propelling mechanism
US3939776A (en) * 1972-05-08 1976-02-24 Rohr Industries, Inc. Railway truck magnetic suspension
US4061089A (en) * 1975-09-02 1977-12-06 Elbert Morgan Sawyer Personal rapid transit system
US4550663A (en) * 1981-02-27 1985-11-05 Otis Elevator Company Transportation system having a cable drawn vehicle
US4627362A (en) * 1983-06-28 1986-12-09 Kabushiki Kaisha Myotoku Air sliding device for work pallets or the like
US4756187A (en) * 1986-09-05 1988-07-12 Fiat Ferroviaria Savigliano S.P.A. Apparatus for maneuvering and performing measurements on rail vehicles
US4844194A (en) * 1986-08-06 1989-07-04 D.E.A. Digital Electronic Automation S.P.A. Air cushion shoe
US4843969A (en) * 1988-01-12 1989-07-04 The Gates Rubber Company Multi-plenum air float for load transportation and amusement ride system
US5542356A (en) * 1991-08-09 1996-08-06 Richert; Withold Track-guided transport vehicle
US5668421A (en) * 1995-04-06 1997-09-16 E. B. Eddy Forest Products Ltd. Pressurized air-gap guided active linear motor suspension system
US5909710A (en) * 1997-08-15 1999-06-08 Cummins; Richard D. Air-levitated train
US20010045311A1 (en) * 2000-04-18 2001-11-29 Kazuhiro Miyazawa Controlled levitation vehicle
US6431077B1 (en) * 1997-09-24 2002-08-13 Ingenieurs Bureau Oranjewoud B.V. Train
US20030205163A1 (en) * 2001-07-02 2003-11-06 Magna Force, Inc. Apparatus, systems and methods for levitating and moving objects

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3164103A (en) * 1963-04-02 1965-01-05 Gen Motors Corp High speed transit system and vehicle therefor
GB1067440A (en) * 1963-12-20 1967-05-03 Hovercraft Dev Ltd Improvements relating to gas-cushion supported vehicles
US3385228A (en) * 1965-04-16 1968-05-28 Skinner Prec Ind Inc Transportation system
FR1476772A (en) * 1966-02-28 1967-04-14 Alsthom Cgee Lifting and guiding a high-speed vehicle
GB1279622A (en) * 1968-06-24 1972-06-28 Tracked Hovercraft Ltd Gas cushion device
FR2018920A1 (en) * 1968-09-26 1970-06-26 Tracked Hovercraft Ltd
FR2036684A6 (en) * 1968-12-24 1970-12-31 Bertin & Cie
FR2036857A1 (en) * 1969-04-10 1970-12-31 Aerotrain Ste
FR2091844B1 (en) * 1969-10-02 1973-10-19 Bertin & Cie
US3623434A (en) * 1969-10-15 1971-11-30 Tracked Hovercraft Ltd Linear motor propelled air cushion vehicle
US3623433A (en) * 1969-10-15 1971-11-30 Tracked Hovercraft Ltd Circuits for track guided air cushion vehicle propulsion system
US3696753A (en) * 1969-10-29 1972-10-10 Transportation Technology Guideway and switching linear motor propelled vehicle
FR2067767A5 (en) * 1969-11-15 1971-08-20 Aerotrain
US3680488A (en) * 1970-09-16 1972-08-01 Transportation Technology Transportation system having inertial switch system
FR2633234B1 (en) * 1988-06-27 1991-05-10 Labarre Andre DEVICE FOR THE COLLECTIVE TRANSPORT OF PASSENGERS, OF THE METROPOLITAN TYPE WITH AUTOMATIC DRIVE BY INDEPENDENT TRACTOR CARRIAGES USING LINEAR MOTOR PROPULSION IN PARTICULAR
JPH0556509A (en) * 1991-01-11 1993-03-05 Aisin Aw Co Ltd Vehicle provided with noncontact drive mechanism and traffic system therefor
US5317976A (en) * 1991-11-22 1994-06-07 Kabushikikaisha Equos Research Vehicle and high-speed transport system having rotating alternating polarity magnet member for levitating, propelling, and guiding the vehicle
US5174215A (en) * 1992-01-22 1992-12-29 The Charles Stark Draper Laborator, Inc. Power collection system for transportation systems
US6899036B2 (en) * 2001-07-02 2005-05-31 Magna Force, Inc. Apparatus, systems and methods for levitating and moving objects
US6510799B2 (en) * 2001-07-02 2003-01-28 Magna Force, Inc. Apparatus, systems and methods for levitating and moving objects
CN100389035C (en) * 2005-08-25 2008-05-21 李岭群 Permanent magnetic suspension composite bogie
DE102006049588B4 (en) * 2006-02-03 2020-08-13 Sew-Eurodrive Gmbh & Co Kg Transport system
EP2701960B1 (en) * 2011-02-21 2019-08-07 Novus Finitor B.V. Levitation system for a train
KR101854034B1 (en) * 2016-08-30 2018-05-02 세메스 주식회사 Contactless driving module and transfer apparatus having the same

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3121401A (en) * 1962-11-13 1964-02-18 Ford Motor Co Air supported vehicle
US3385390A (en) * 1964-01-21 1968-05-28 Bertin & Cie Pressure fluid cushion sealing system for tracked ground effect machines
US3347170A (en) * 1964-03-05 1967-10-17 L Aerotrain Soc Et Guiding and supporting track for vehicles supported by fluid cushions
US3330384A (en) * 1964-03-10 1967-07-11 Bertin & Cie Braking device for ground effect vehicles movable along a track
US3414076A (en) * 1965-04-30 1968-12-03 Bertin & Cie Gas-cushion devices intended to support or guide a movable load
US3392800A (en) * 1965-10-23 1968-07-16 Clark Equipment Co Air supported material handling device with vibration preventing means
US3459137A (en) * 1966-03-29 1969-08-05 Bertin & Cie Vehicle driving system
US3587772A (en) * 1967-11-17 1971-06-28 Andre Louis Jaumotte Air-cushion vehicle
US3680489A (en) * 1969-03-21 1972-08-01 Tracked Hovercraft Ltd Vehicle propelled by linear motor
US3797399A (en) * 1971-03-11 1974-03-19 Aerotrain Trim-correcting facility for ground effect machines
US3901161A (en) * 1972-03-03 1975-08-26 Bertin & Cie Transport systems equipped with a rack-and-pinion-type propelling mechanism
US3854418A (en) * 1972-03-03 1974-12-17 Bertin & Cie Improvements in rack-and-pinion systems
US3901162A (en) * 1972-03-03 1975-08-26 Bertin & Cie Systems comprising a cogwheel and a longitudinal reaction member cooperating with the cogs thereon
US3939776A (en) * 1972-05-08 1976-02-24 Rohr Industries, Inc. Railway truck magnetic suspension
US4061089A (en) * 1975-09-02 1977-12-06 Elbert Morgan Sawyer Personal rapid transit system
US4550663A (en) * 1981-02-27 1985-11-05 Otis Elevator Company Transportation system having a cable drawn vehicle
US4627362A (en) * 1983-06-28 1986-12-09 Kabushiki Kaisha Myotoku Air sliding device for work pallets or the like
US4844194A (en) * 1986-08-06 1989-07-04 D.E.A. Digital Electronic Automation S.P.A. Air cushion shoe
US4756187A (en) * 1986-09-05 1988-07-12 Fiat Ferroviaria Savigliano S.P.A. Apparatus for maneuvering and performing measurements on rail vehicles
US4843969A (en) * 1988-01-12 1989-07-04 The Gates Rubber Company Multi-plenum air float for load transportation and amusement ride system
US5542356A (en) * 1991-08-09 1996-08-06 Richert; Withold Track-guided transport vehicle
US5668421A (en) * 1995-04-06 1997-09-16 E. B. Eddy Forest Products Ltd. Pressurized air-gap guided active linear motor suspension system
US5909710A (en) * 1997-08-15 1999-06-08 Cummins; Richard D. Air-levitated train
US6431077B1 (en) * 1997-09-24 2002-08-13 Ingenieurs Bureau Oranjewoud B.V. Train
US20010045311A1 (en) * 2000-04-18 2001-11-29 Kazuhiro Miyazawa Controlled levitation vehicle
US20030205163A1 (en) * 2001-07-02 2003-11-06 Magna Force, Inc. Apparatus, systems and methods for levitating and moving objects

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10293803B2 (en) * 2011-02-21 2019-05-21 Novus Finitor B.V. Levitation system for a train
WO2023092645A1 (en) * 2021-11-23 2023-06-01 林勇 Hovertrain and track

Also Published As

Publication number Publication date
SI2701960T1 (en) 2019-12-31
PT2701960T (en) 2019-11-18
EP2701960B1 (en) 2019-08-07
ES2753536T3 (en) 2020-04-13
PL2701960T3 (en) 2020-01-31
US10293803B2 (en) 2019-05-21
US20170028999A1 (en) 2017-02-02
DK2701960T3 (en) 2019-11-11
LT2701960T (en) 2019-12-10
HUE045921T2 (en) 2020-01-28
EP2701960A1 (en) 2014-03-05
WO2012115506A1 (en) 2012-08-30

Similar Documents

Publication Publication Date Title
US10293803B2 (en) Levitation system for a train
CN109466995A (en) The recycling elevator device simply supported
US7587982B2 (en) Magnetic levitation guideway-train system
CN106012716B (en) Symmetrical permanent magnet suspension system and permanent magnetic levitation train rail system
US6983701B2 (en) Suspending, guiding and propelling vehicles using magnetic forces
KR101630783B1 (en) Magnetic levitation system comprising propulsion electromagnet having guiding function
JP2006501799A (en) Floating, guiding, and propulsion transportation using magnetic force
KR20080095377A (en) Transferring system using aero-levitation style and transferring device using aero-levitation style
CN103245479B (en) Magnetic levitation type impact test platform
KR20140087674A (en) Magnetic levitation system having switch for guide elctromagnetic and stoping method thereof
CN108372864B (en) Vacuum pipeline train magnetic suspension EMS/EDS hybrid bearing structure
US3970917A (en) System for energy storage and DC to AC conversion
CN101139045A (en) Substrates transmission apparatus
CN110422051A (en) A kind of permanent magnetism magnetic suspension tube-rail transportation system
US8261668B2 (en) Propulsion vehicle which travels along a soft, porous track
CN206012366U (en) A kind of permanent magnetism magnetic suspension train
CN202130562U (en) Supporting device for ship launching inclined shipway with 800-ton load
CA2790120A1 (en) Transport system
CN114132186A (en) Rare earth permanent magnet suspension track suspension force regulation and control system and method
CN103802819A (en) Buoyancy car
US20150367241A1 (en) Friction Reducing Waterslide Section
EP0324592A2 (en) Multi-plenum air float for load transportation and amusement ride system
KR101544382B1 (en) Magnetic levitation system having invertor for current angle
US5476046A (en) Magnetic suspension and guidance system and method
CN206827858U (en) A kind of elevator expansion apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: NOVUS FINITOR B.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIJLKEMA, BERNARDUS LUDGERUS LUBERTUS;REEL/FRAME:031547/0933

Effective date: 20131001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION