US3803380A - Plasma-spray burner and process for operating the same - Google Patents
Plasma-spray burner and process for operating the same Download PDFInfo
- Publication number
- US3803380A US3803380A US00340533A US34053373A US3803380A US 3803380 A US3803380 A US 3803380A US 00340533 A US00340533 A US 00340533A US 34053373 A US34053373 A US 34053373A US 3803380 A US3803380 A US 3803380A
- Authority
- US
- United States
- Prior art keywords
- nozzle
- cathode
- arc
- gas
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B7/00—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
- B05B7/16—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
- B05B7/22—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc
- B05B7/222—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc
- B05B7/226—Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed electrically, magnetically or electromagnetically, e.g. by arc using an arc the material being originally a particulate material
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3484—Convergent-divergent nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/42—Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
Definitions
- a plasma-spray burner and process for operating the [22] Filed: Man 12, 1973 same includes a longitudinally reciprocable cathode disposed upstream of a nozzle which serves as an an- PP Q' 340,533 ode, a power source being electrically connected therebetween.
- the cathode is movable between at least two positions one of the positions serving to seal 30 F'Al't"P"tDt l 1 orelgn pp y a a the inlet to the nozzle whereby the flow of operational Mar.
- Means are also provided for synchronously controlling the movement (g! 2l9/l2lBP2,32kl of the cathode in conjunction with the supply of [58] 77 121 P powerto the cathode and anode in a pulsed fashion 0 care whereby power will be supplied when 'the'cathode is I moved to a position which permits the flow of gas to [56] References cued occur through the nozzle, an are thereby existing be- UNITED STATES PATENTS tween the cathode and anode, and wherein such 3,524,956 8/1970 Rocklin' 219/76 power will be terminated when the cathode is moved 3,004,189 Giannini P to the position seals the nozzle inlet 3,324,278 6/1967 Jackson 219/74 X 6 Claims, 2 Drawing Figures I l l PATENTEIJAPR 91914 SHEUHFZ 85803380 10
- the present invention relates generally to burners and more particularly to plasma-spray burners and a process for operating the same in which an arc exists between a cathode and a nozzle, serving as the anode and through which flows the operational gas, the are serving to generate the plasma jet in the form of particles to be sprayed.
- Plasma-spray burners that is, plasma-burners for the deposition of surface layers, particularly with respect to substances having high melting points and which are generally difficult to deposit, are of course known, such as for example, as disclosed in ZEITSCl-IRIFT FUER WIRTSCI-IAFTLICHE FERTIGUNG 64 1969, Heft 6, 277-282; TECHNICA 1968 No. 19, Pages 1671-1720.
- Such burners most often involve DC plasma burners provided with a tungsten cathode and a copper nozzle acting as anode, the plasma jet being generated by means of an inert gas and wherein the burner is operated under a power of several tens of kw.
- the substance to be sprayed is introduced into the plasma jet in the form of particles ranging in size from to 100 microns. These particles may be suspended within a gas stream and thus be mixed with the plasma jet, or they may be introduced as a result of melting wires of the substance to be deposited.
- the particles are heated within the plasma jet, preferably to .a temperature where they will be plastic or liquid and are accelerated by the rapid plasma flow. If the particles then impinge upon the substrate to be coated, a strongly adherent and hermetic layer will be formed.
- the known plasma-spray burners however suffer from several drawbacks, one of which is the fact that only particles with speeds ranging from about 100-300 m/sec can be accelerated. Therefore, the sprayed-on layers will often not be of the desired thickness or attain the desired adhesive properties. Furthermore, the operation of known plasma-spray burners is substantially uneconomical due to the fact that a large part of the ordinarily expensive operational gas, which is ineffective with respect to the spraying process, will often flow out, in a cooling fashion, between the arc and the nozzle wall. Finally, oxidizing and corrosive gases, which would of course be desirable with respect to the cost factor, may not be used due to the fact that the tungsten cathode would burn in an oxidizing medium at high temperature. I
- Another object of the present invention is to provide an improved plasma-spray burner which is capable of coating an article with a layer having a desired, uniform thickness and which exhibits desirable adhesive properties.
- Still another object of the present invention is to provide an improved plasma-spray burner which exhibits a low percentage loss of the operational gas and spray substance.
- Yet another object of the present invention is to provide an improved plasma-spray burner which is economical to operate due to the fact that cheap gases, including corrosive gases, may be utilized without jeopardizing the structural integrity of the apparatus.
- aplasma-spray burner in which operational gas is subjected to a pressure of 2 atmospheres prior to its entry into the nozzle, utilizing an arc-burning current of at least 1,000 amperes within the system of the invention to attain the type of plasma-spray process initially indicated, and by synchronously pulsing the gas flow through the nozzle with the arc-burning current.
- the gas flow through the nozzle and the arc-burning current will be substantially zero between the pulses.
- the pressure of the operational gas prior to its entry into the nozzle is very high, for instance 20 atmospheres, and the value of the burning current shall also be as high as possible, such as for example, 20 kamp.
- FIG. 1 is a schematic embodiment of a burner constructed according to the present invention.
- FIG. 2 is a graph showing the time-variation of the position of the cathode, the current and the ignition pulse of the burner of FIG. 1.
- the burner of the present invention includes a cylindrical cathode which is capable of being shifted in an axial direction and which is preferably made of tungsten, and a Laval nozzle 2, which is preferably made' of copper and which is located downstream of cathode l.
- the nozzle is surrounded by a dish 3, which may be made of brass, and which is configured so as to provide an annular channel 4 in which a coolant may circulate for cooling nozzle 2.
- the coolant
- An insulator 5 is mounted upon the top of nozzle 2 and is provided with a radial inlet 6 which serves to admit the operational gas under high pressure such as for example, 20 atm., together with the particulate spraying substance, both substances being further transmitted to a combustion chamber.
- a radial inlet 6 which serves to admit the operational gas under high pressure such as for example, 20 atm., together with the particulate spraying substance, both substances being further transmitted to a combustion chamber.
- an axial bore 7 in conjunction with which there is mounted an O-ring type seal, through which passes the displaceable cathode 1.
- a D. C. power source 12 is also provided and the current may be switched on or off by means of a thyristor adjustment component 13 which is also synchronously controlled with lever 10 by means of cam 11, the position of the components shown in the drawing illustrating the ON mode of operation.
- cathode l which serves as the anode, causing the operational gas located above the nozzle inlet to flow out of the nozzle 2 as a luminous plasma jet 14 at supersonic speed.
- Plasma jet 14 then impacts upon a substrate 15 so that the latter will be coated by means of the sprayparticles which were introduced into the operational gas via inlet 6.
- the burner of FIG. 1 is of course shown in schematic form, various parts thereof obviously lending themselves to different modifications.
- the cathode 1 will be provided with coolant means in addition to the coolant provided for anode 2.
- the displacement mechanism for cathode 1 may not be, as shown in the embodiment, the cam-lever mechanism 10 and 11, but on the contray, such may be in the form of an electro-magnet for cathode 1, which will render the burner easier to operate.
- the burner as shown is operated such that a high pressure, for example, preferably atm. and at least 2 atm., exists within the combustion chamber and that the current intensity when switched to the ON mode amounts to several kamp., such as for example, preferably 20 kamp, and at least 1 kamp.
- a high pressure for example, preferably atm. and at least 2 atm.
- the current intensity when switched to the ON mode amounts to several kamp., such as for example, preferably 20 kamp, and at least 1 kamp.
- An arc will then exist when the relative position between the cathode and the anode is as shown, the potential therebetween being of the order of 1 kv., and the plasma jet 14 will exit from nozzle 2 with a speed of several l,000 m/sec.
- the nozzle intake have a small radius of curvature, preferably less than 15 mm., so as to assure are stability.
- the cam-lever mechanism 10 and 11 will of course be moved longitudinally up and down in order to achieve pulsing of the gas stream, cathode 1 thus being moved up and down in accordance with the movement of lever 10, whereby the nozzle inlet will be opened and closed in a pulse-like manner.
- FIG. 2 the path S(t) of cathode 1, plotted as a function of time t, is shown.
- This pulse will initiate a current l(t), which is a function of time, via the thyristor control component 13, and the arc ignited between cathode l and anode 2 is immediately propelled into nozzle 2 by means of the intense gas stream.
- the ignition pulse Z(t), which is also a function of time, for thyristor control component 13, and the pertinent synchronous high potential pulses are of course determined by the position of cam 11.
- While the powder to be sprayed upon substrate 15 may be added to the gas within the high pressure compartment via inlet 6, such may alternatively be admitted to the plasma jet at any location within the nozzle 2.
- the spray substance is made of a substance which is not compatible with oxidizing gases, such as is in the case of copper.
- oxidizing gases such as is in the case of copper.
- the burner one may thus coat steel with tungsten carbide, copper with A1 0 or brass withtungstenfMai'kedly corrosive gases may also be used, the burner not being jeopardized due to the operation under conditions exhibiting pulse-like heating.
- the losses as regards the operational gas and spray substance are appreciably less for the burner of the present invention than they are for conventional plasma spray burners.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Electromagnetism (AREA)
- Coating By Spraying Or Casting (AREA)
- Plasma Technology (AREA)
- Discharge Heating (AREA)
- Arc Welding In General (AREA)
- Arc Welding Control (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH392872A CH578622A5 (xx) | 1972-03-16 | 1972-03-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3803380A true US3803380A (en) | 1974-04-09 |
Family
ID=4266499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US00340533A Expired - Lifetime US3803380A (en) | 1972-03-16 | 1973-03-12 | Plasma-spray burner and process for operating the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US3803380A (xx) |
JP (1) | JPS48103050A (xx) |
CH (1) | CH578622A5 (xx) |
DE (1) | DE2216981C2 (xx) |
FR (1) | FR2176042B1 (xx) |
GB (1) | GB1370593A (xx) |
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4142089A (en) * | 1977-03-22 | 1979-02-27 | Canadian Patents And Development Limited | Pulsed coaxial thermal plasma sprayer |
US4162389A (en) * | 1976-05-19 | 1979-07-24 | Mitsubishi Denki Kabushiki Kaisha | Welding apparatus |
EP0072409A2 (en) * | 1981-08-14 | 1983-02-23 | The Perkin-Elmer Corporation | Plasma spray gun nozzle |
US4689463A (en) * | 1985-02-12 | 1987-08-25 | Metallurgical Industries, Inc. | Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon |
US4692584A (en) * | 1985-11-29 | 1987-09-08 | Caneer Jr Clifford | Gas control system for a plasma arc welding apparatus |
US4701590A (en) * | 1986-04-17 | 1987-10-20 | Thermal Dynamics Corporation | Spring loaded electrode exposure interlock device |
US4775774A (en) * | 1985-11-29 | 1988-10-04 | Caneer Jr Clifford | Plasma arc welding apparatus |
AU584393B2 (en) * | 1985-02-12 | 1989-05-25 | Sermatech International, Inc. | A welding apparatus and method for depositing wear surfacing material and a substrate having a weld bead thereon |
US4896016A (en) * | 1989-04-24 | 1990-01-23 | Century Mfg. Co. | Plasma arc metal cutting apparatus with actuation spring |
US4990739A (en) * | 1989-07-07 | 1991-02-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Plasma gun with coaxial powder feed and adjustable cathode |
EP0517638A1 (fr) * | 1991-06-07 | 1992-12-09 | AEROSPATIALE Société Nationale Industrielle | Tuyère modulaire à refroidissement par film d'eau notamment pour essais à haute température d'éprouvettes ou analogues |
US5233153A (en) * | 1992-01-10 | 1993-08-03 | Edo Corporation | Method of plasma spraying of polymer compositions onto a target surface |
US5518178A (en) * | 1994-03-02 | 1996-05-21 | Sermatech International Inc. | Thermal spray nozzle method for producing rough thermal spray coatings and coatings produced |
US5599469A (en) * | 1994-06-28 | 1997-02-04 | Kabushiki Kaisha Kobe Seiko Sho | Plasma welding process |
US5609451A (en) * | 1994-12-16 | 1997-03-11 | Mcstack Usa | Display unit with improved support feet |
EP0761415A2 (de) * | 1995-09-01 | 1997-03-12 | Agrodyn Hochspannungstechnik GmbH | Verfahren und Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken |
US5858469A (en) * | 1995-11-30 | 1999-01-12 | Sermatech International, Inc. | Method and apparatus for applying coatings using a nozzle assembly having passageways of differing diameter |
US6447632B1 (en) * | 1998-03-18 | 2002-09-10 | Ebara Corporation | Apparatus and nozzle device for gaseous polishing |
US20070021747A1 (en) * | 2005-07-08 | 2007-01-25 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of plasma surgical device |
US20070021748A1 (en) * | 2005-07-08 | 2007-01-25 | Nikolay Suslov | Plasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma |
FR2891434A1 (fr) * | 2005-09-23 | 2007-03-30 | Renault Sas | Generateur de plasma et dispositif de reformage d'hydrocarbures pourvu d'un tel generateur de plasma. |
US20070284340A1 (en) * | 2006-06-09 | 2007-12-13 | Morten Jorgensen | Vortex generator for plasma treatment |
US20080185366A1 (en) * | 2007-02-02 | 2008-08-07 | Nikolay Suslov | Plasma spraying device and method |
US20090039789A1 (en) * | 2007-08-06 | 2009-02-12 | Suslov Nikolay | Cathode assembly and method for pulsed plasma generation |
WO2009018838A1 (en) * | 2007-08-06 | 2009-02-12 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
US20090039790A1 (en) * | 2007-08-06 | 2009-02-12 | Nikolay Suslov | Pulsed plasma device and method for generating pulsed plasma |
US20090047439A1 (en) * | 2007-08-16 | 2009-02-19 | Withers James C | Method and apparatus for manufacturing porous articles |
US20100170641A1 (en) * | 2006-06-09 | 2010-07-08 | 3Dt Llc | Plasma treatment method and apparatus |
US20110101125A1 (en) * | 2009-11-04 | 2011-05-05 | Mario Felkel | Plasma Spray Nozzle with Internal Injection |
US20110190752A1 (en) * | 2010-01-29 | 2011-08-04 | Nikolay Suslov | Methods of sealing vessels using plasma |
CN103269558A (zh) * | 2013-06-05 | 2013-08-28 | 南京理工大学 | 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪 |
US20130226073A1 (en) * | 2012-02-23 | 2013-08-29 | Dräger Medical GmbH | Device for disinfecting wound treatment |
US9089319B2 (en) | 2010-07-22 | 2015-07-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
CN105228329A (zh) * | 2015-10-30 | 2016-01-06 | 中国科学院力学研究所 | 一种分散电弧提高发生器寿命的方法及电弧等离子体发生器 |
US20160013021A1 (en) * | 2014-07-11 | 2016-01-14 | Rolls-Royce Corporation | Gas cooled plasma spraying device |
DE102014215357A1 (de) * | 2014-08-04 | 2016-02-04 | Dr. Laure Plasmatechnologie Gmbh | Plasmagenerator |
CN106576419A (zh) * | 2014-05-31 | 2017-04-19 | 第六元素公司 | 热喷涂组件及其使用方法 |
US9815075B2 (en) | 2014-05-31 | 2017-11-14 | Element Six Gmbh | Thermal spray assembly and method for using it |
CN107470050A (zh) * | 2017-09-30 | 2017-12-15 | 江西远达环保有限公司 | 具冷却效果的脱硫脱硝用喷枪 |
US9913358B2 (en) | 2005-07-08 | 2018-03-06 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of a plasma surgical device |
CN111043000A (zh) * | 2019-12-23 | 2020-04-21 | 北京航空航天大学 | 一种磁等离子体推力器 |
CN111712342A (zh) * | 2017-07-21 | 2020-09-25 | 加拿大派罗杰尼斯有限公司 | 用于使用推力器辅助等离子体雾化以大规模成本有效地生产超细球形粉末的方法 |
US11882643B2 (en) | 2020-08-28 | 2024-01-23 | Plasma Surgical, Inc. | Systems, methods, and devices for generating predominantly radially expanded plasma flow |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1543164A (en) * | 1975-03-05 | 1979-03-28 | Nat Res Dev | Plasma torches |
DE2544539C2 (de) * | 1975-10-04 | 1977-09-01 | Messer Griesheim Gmbh, 6000 Frankfurt | Verfahren zum Schließen eines Stichloches beim Plasmastichlochschweißen |
DE4406940A1 (de) * | 1994-03-03 | 1995-09-07 | Cerasiv Gmbh | Verfahren zur Herstellung beschichteter Werkstoffe |
DE4440323A1 (de) * | 1994-11-11 | 1996-05-15 | Sulzer Metco Ag | Düse für einen Brennerkopf eines Plasmaspritzgeräts |
US6091043A (en) * | 1999-03-19 | 2000-07-18 | Ford Global Technologies, Inc. | Depositing metal upon an article |
DE202010008661U1 (de) | 2010-09-29 | 2012-01-13 | Technische Universität Chemnitz | Vorrichtung zum thermischen Spritzen |
DE102010037848A1 (de) * | 2010-09-29 | 2012-03-29 | Technische Universität Chemnitz | Verfahren und Vorrichtung zum thermischen Spritzen |
GB201409694D0 (en) * | 2014-05-31 | 2014-07-16 | Element Six Gmbh | Method of coating a body, granules for the method and method of making granules |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3007072A (en) * | 1959-01-29 | 1961-10-31 | Gen Electric | Radial type arc plasma generator |
US3324278A (en) * | 1964-01-15 | 1967-06-06 | Union Carbide Corp | Welding process |
-
1972
- 1972-03-16 CH CH392872A patent/CH578622A5/xx not_active IP Right Cessation
- 1972-04-08 DE DE2216981A patent/DE2216981C2/de not_active Expired
-
1973
- 1973-03-12 US US00340533A patent/US3803380A/en not_active Expired - Lifetime
- 1973-03-14 FR FR7309111A patent/FR2176042B1/fr not_active Expired
- 1973-03-14 JP JP48029885A patent/JPS48103050A/ja active Pending
- 1973-03-14 GB GB1229272A patent/GB1370593A/en not_active Expired
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4162389A (en) * | 1976-05-19 | 1979-07-24 | Mitsubishi Denki Kabushiki Kaisha | Welding apparatus |
US4142089A (en) * | 1977-03-22 | 1979-02-27 | Canadian Patents And Development Limited | Pulsed coaxial thermal plasma sprayer |
EP0072409A2 (en) * | 1981-08-14 | 1983-02-23 | The Perkin-Elmer Corporation | Plasma spray gun nozzle |
EP0072409A3 (en) * | 1981-08-14 | 1984-05-23 | Metco Inc. | Plasma spray gun nozzle |
AU584393B2 (en) * | 1985-02-12 | 1989-05-25 | Sermatech International, Inc. | A welding apparatus and method for depositing wear surfacing material and a substrate having a weld bead thereon |
US4689463A (en) * | 1985-02-12 | 1987-08-25 | Metallurgical Industries, Inc. | Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon |
US4692584A (en) * | 1985-11-29 | 1987-09-08 | Caneer Jr Clifford | Gas control system for a plasma arc welding apparatus |
US4775774A (en) * | 1985-11-29 | 1988-10-04 | Caneer Jr Clifford | Plasma arc welding apparatus |
US4701590A (en) * | 1986-04-17 | 1987-10-20 | Thermal Dynamics Corporation | Spring loaded electrode exposure interlock device |
US4896016A (en) * | 1989-04-24 | 1990-01-23 | Century Mfg. Co. | Plasma arc metal cutting apparatus with actuation spring |
US4990739A (en) * | 1989-07-07 | 1991-02-05 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Plasma gun with coaxial powder feed and adjustable cathode |
EP0517638A1 (fr) * | 1991-06-07 | 1992-12-09 | AEROSPATIALE Société Nationale Industrielle | Tuyère modulaire à refroidissement par film d'eau notamment pour essais à haute température d'éprouvettes ou analogues |
FR2677450A1 (fr) * | 1991-06-07 | 1992-12-11 | Aerospatiale | Tuyere modulaire a refroidissement par film d'eau notamment pour essais a haute temperature d'eprouvettes ou analogues. |
US5240180A (en) * | 1991-06-07 | 1993-08-31 | Societe Anonyme Aerospatiale Societe Nationale Industrielle | Water film cooling modular nozzle particularly for high temperature testing of specimens or similar |
US5233153A (en) * | 1992-01-10 | 1993-08-03 | Edo Corporation | Method of plasma spraying of polymer compositions onto a target surface |
US5518178A (en) * | 1994-03-02 | 1996-05-21 | Sermatech International Inc. | Thermal spray nozzle method for producing rough thermal spray coatings and coatings produced |
US5599469A (en) * | 1994-06-28 | 1997-02-04 | Kabushiki Kaisha Kobe Seiko Sho | Plasma welding process |
US5609451A (en) * | 1994-12-16 | 1997-03-11 | Mcstack Usa | Display unit with improved support feet |
EP0761415A2 (de) * | 1995-09-01 | 1997-03-12 | Agrodyn Hochspannungstechnik GmbH | Verfahren und Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken |
EP0761415A3 (de) * | 1995-09-01 | 1998-01-28 | Agrodyn Hochspannungstechnik GmbH | Verfahren und Vorrichtung zur Oberflächen-Vorbehandlung von Werkstücken |
US5837958A (en) * | 1995-09-01 | 1998-11-17 | Agrodyn Hochspannungstechnik Gmbh | Methods and apparatus for treating the surface of a workpiece by plasma discharge |
US5858469A (en) * | 1995-11-30 | 1999-01-12 | Sermatech International, Inc. | Method and apparatus for applying coatings using a nozzle assembly having passageways of differing diameter |
US6447632B1 (en) * | 1998-03-18 | 2002-09-10 | Ebara Corporation | Apparatus and nozzle device for gaseous polishing |
US12075552B2 (en) | 2005-07-08 | 2024-08-27 | Plasma Surgical, Inc. | Plasma-generating device, plasma surgical device and use of a plasma surgical device |
US20070021748A1 (en) * | 2005-07-08 | 2007-01-25 | Nikolay Suslov | Plasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma |
US20070021747A1 (en) * | 2005-07-08 | 2007-01-25 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of plasma surgical device |
US10201067B2 (en) | 2005-07-08 | 2019-02-05 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of a plasma surgical device |
US9913358B2 (en) | 2005-07-08 | 2018-03-06 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of a plasma surgical device |
US8465487B2 (en) | 2005-07-08 | 2013-06-18 | Plasma Surgical Investments Limited | Plasma-generating device having a throttling portion |
US8337494B2 (en) | 2005-07-08 | 2012-12-25 | Plasma Surgical Investments Limited | Plasma-generating device having a plasma chamber |
US8109928B2 (en) | 2005-07-08 | 2012-02-07 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device and use of plasma surgical device |
US8105325B2 (en) | 2005-07-08 | 2012-01-31 | Plasma Surgical Investments Limited | Plasma-generating device, plasma surgical device, use of a plasma-generating device and method of generating a plasma |
FR2891434A1 (fr) * | 2005-09-23 | 2007-03-30 | Renault Sas | Generateur de plasma et dispositif de reformage d'hydrocarbures pourvu d'un tel generateur de plasma. |
US20070284340A1 (en) * | 2006-06-09 | 2007-12-13 | Morten Jorgensen | Vortex generator for plasma treatment |
US7547861B2 (en) | 2006-06-09 | 2009-06-16 | Morten Jorgensen | Vortex generator for plasma treatment |
US20100170641A1 (en) * | 2006-06-09 | 2010-07-08 | 3Dt Llc | Plasma treatment method and apparatus |
US7928338B2 (en) | 2007-02-02 | 2011-04-19 | Plasma Surgical Investments Ltd. | Plasma spraying device and method |
US20080185366A1 (en) * | 2007-02-02 | 2008-08-07 | Nikolay Suslov | Plasma spraying device and method |
WO2009018838A1 (en) * | 2007-08-06 | 2009-02-12 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
US20090039789A1 (en) * | 2007-08-06 | 2009-02-12 | Suslov Nikolay | Cathode assembly and method for pulsed plasma generation |
US8030849B2 (en) | 2007-08-06 | 2011-10-04 | Plasma Surgical Investments Limited | Pulsed plasma device and method for generating pulsed plasma |
US20100089742A1 (en) * | 2007-08-06 | 2010-04-15 | Plasma Surgical Investment Limited | Pulsed plasma device and method for generating pulsed plasma |
US7589473B2 (en) | 2007-08-06 | 2009-09-15 | Plasma Surgical Investments, Ltd. | Pulsed plasma device and method for generating pulsed plasma |
CN101828433B (zh) * | 2007-08-06 | 2013-04-24 | 普拉斯马外科投资有限公司 | 用于脉冲等离子体生成的阴极组件和方法 |
US20090039790A1 (en) * | 2007-08-06 | 2009-02-12 | Nikolay Suslov | Pulsed plasma device and method for generating pulsed plasma |
US8735766B2 (en) | 2007-08-06 | 2014-05-27 | Plasma Surgical Investments Limited | Cathode assembly and method for pulsed plasma generation |
US20090047439A1 (en) * | 2007-08-16 | 2009-02-19 | Withers James C | Method and apparatus for manufacturing porous articles |
US8528835B2 (en) * | 2009-11-04 | 2013-09-10 | Siemens Aktiengesellschaft | Plasma spray nozzle with internal injection |
US20110101125A1 (en) * | 2009-11-04 | 2011-05-05 | Mario Felkel | Plasma Spray Nozzle with Internal Injection |
US9309587B2 (en) | 2009-11-04 | 2016-04-12 | Siemens Aktiengesellschaft | Plasma spray nozzle with internal injection |
US8613742B2 (en) | 2010-01-29 | 2013-12-24 | Plasma Surgical Investments Limited | Methods of sealing vessels using plasma |
US20110190752A1 (en) * | 2010-01-29 | 2011-08-04 | Nikolay Suslov | Methods of sealing vessels using plasma |
US9089319B2 (en) | 2010-07-22 | 2015-07-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
US12023081B2 (en) | 2010-07-22 | 2024-07-02 | Plasma Surgical, Inc. | Volumetrically oscillating plasma flows |
US10631911B2 (en) | 2010-07-22 | 2020-04-28 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
US10492845B2 (en) | 2010-07-22 | 2019-12-03 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
US10463418B2 (en) | 2010-07-22 | 2019-11-05 | Plasma Surgical Investments Limited | Volumetrically oscillating plasma flows |
US20130226073A1 (en) * | 2012-02-23 | 2013-08-29 | Dräger Medical GmbH | Device for disinfecting wound treatment |
US9314603B2 (en) * | 2012-02-23 | 2016-04-19 | Dräger Medical GmbH | Device for disinfecting wound treatment |
CN103269558A (zh) * | 2013-06-05 | 2013-08-28 | 南京理工大学 | 一种超音速等离子体喷枪的阳极及超音速等离子体喷枪 |
US9789501B2 (en) | 2014-05-31 | 2017-10-17 | Element Six Gmbh | Thermal spray assembly and method for using it |
US9815075B2 (en) | 2014-05-31 | 2017-11-14 | Element Six Gmbh | Thermal spray assembly and method for using it |
CN106576419A (zh) * | 2014-05-31 | 2017-04-19 | 第六元素公司 | 热喷涂组件及其使用方法 |
CN106576419B (zh) * | 2014-05-31 | 2019-04-19 | 第六元素公司 | 热喷涂组件及其使用方法 |
US9704694B2 (en) * | 2014-07-11 | 2017-07-11 | Rolls-Royce Corporation | Gas cooled plasma spraying device |
US20160013021A1 (en) * | 2014-07-11 | 2016-01-14 | Rolls-Royce Corporation | Gas cooled plasma spraying device |
DE102014215357A1 (de) * | 2014-08-04 | 2016-02-04 | Dr. Laure Plasmatechnologie Gmbh | Plasmagenerator |
CN105228329A (zh) * | 2015-10-30 | 2016-01-06 | 中国科学院力学研究所 | 一种分散电弧提高发生器寿命的方法及电弧等离子体发生器 |
CN111712342A (zh) * | 2017-07-21 | 2020-09-25 | 加拿大派罗杰尼斯有限公司 | 用于使用推力器辅助等离子体雾化以大规模成本有效地生产超细球形粉末的方法 |
CN107470050B (zh) * | 2017-09-30 | 2023-04-18 | 江西远达环保有限公司 | 具冷却效果的脱硫脱硝用喷枪 |
CN107470050A (zh) * | 2017-09-30 | 2017-12-15 | 江西远达环保有限公司 | 具冷却效果的脱硫脱硝用喷枪 |
CN111043000B (zh) * | 2019-12-23 | 2020-12-29 | 北京航空航天大学 | 一种磁等离子体推力器 |
CN111043000A (zh) * | 2019-12-23 | 2020-04-21 | 北京航空航天大学 | 一种磁等离子体推力器 |
US11882643B2 (en) | 2020-08-28 | 2024-01-23 | Plasma Surgical, Inc. | Systems, methods, and devices for generating predominantly radially expanded plasma flow |
US12058801B2 (en) | 2020-08-28 | 2024-08-06 | Plasma Surgical, Inc. | Systems, methods, and devices for generating predominantly radially expanded plasma flow |
Also Published As
Publication number | Publication date |
---|---|
GB1370593A (en) | 1974-10-16 |
DE2216981C2 (de) | 1974-01-31 |
CH578622A5 (xx) | 1976-08-13 |
DE2216981B1 (de) | 1973-07-05 |
JPS48103050A (xx) | 1973-12-24 |
FR2176042B1 (xx) | 1977-02-04 |
FR2176042A1 (xx) | 1973-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3803380A (en) | Plasma-spray burner and process for operating the same | |
US3839618A (en) | Method and apparatus for effecting high-energy dynamic coating of substrates | |
US5679167A (en) | Plasma gun apparatus for forming dense, uniform coatings on large substrates | |
US4853250A (en) | Process of depositing particulate material on a substrate | |
KR850000598B1 (ko) | 플라즈마 분사장치 | |
US6861101B1 (en) | Plasma spray method for applying a coating utilizing particle kinetics | |
US6986471B1 (en) | Rotary plasma spray method and apparatus for applying a coating utilizing particle kinetics | |
US4841114A (en) | High-velocity controlled-temperature plasma spray method and apparatus | |
Arata et al. | Ceramic coatings produced by means of a gas tunnel‐type plasma jet | |
CN107109626B (zh) | 用于在部件的表面上形成涂层的装置 | |
US5174826A (en) | Laser-assisted chemical vapor deposition | |
US5356674A (en) | Process for applying ceramic coatings using a plasma jet carrying a free form non-metallic element | |
EP3105363B1 (en) | Plasma-kinetic spray apparatus&method | |
CA2581162A1 (en) | Flame spraying process and apparatus | |
CN109554701B (zh) | 一种手机壳体表面的喷涂方法及喷涂装置 | |
WO2009072318A1 (ja) | 黒色酸化イットリウム溶射皮膜の形成方法および黒色酸化イットリウム溶射皮膜被覆部材 | |
US4121082A (en) | Method and apparatus for shielding the effluent from plasma spray gun assemblies | |
US20100034979A1 (en) | Thermal spraying method and device | |
USRE31018E (en) | Method and apparatus for shielding the effluent from plasma spray gun assemblies | |
JP2716844B2 (ja) | 溶射複合膜形成方法 | |
Mordynsky et al. | Properties of Al2O3 coatings obtained by electric arc plasma method in “dynamic vacuum” | |
JPH04346649A (ja) | プラズマ溶射方法及びプラズマ溶射装置 | |
Tailor et al. | Plasma Spray Coatings: State Of The Art | |
SU1502655A1 (ru) | Способ плазменного напылени покрытий | |
JPH0819513B2 (ja) | クロミヤの溶射方法 |